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Abstract: Magnetic resonance spectroscopy (MRS) can provide quantitative information about local metabolite 

concentrations in living tissues, but in practice the quantification can be difficult. Recently deep learning (DL) 

has been used for quantification of MRS signals in the frequency domain, and DL combined with time-

frequency analysis for artefact detection in MRS. The networks most widely used in previous studies were 

Convolutional Neural Networks (CNN). Nonetheless, the optimal architecture and hyper-parameters of the 

CNN for MRS are not well understood; CNN has no knowledge about the nature of the MRS signal and its 

training is computationally expensive. On the other hand, Wavelet Scattering Convolutional Network 

(WSCN) is well-understood and computationally cheap. In this study, we found that a wavelet scattering 

network could hopefully be also used for metabolite quantification. We showed that a WSCN could yield 

results more robust than QUEST (one of quantitation methods based on model fitting) and the same as a CNN 

while being faster. We used wavelet scattering transform to extract features from the MRS signal, and a 

superficial neural network implementation to predict metabolite concentrations. Effects of phase, noise, and 

macromolecules variation on the WSCN estimation accuracy were also investigated. 

1 INTRODUCTION 

Magnetic Resonance Spectroscopy (MRS) has 

attracted the MR community over the past seven 

decades (Van Der Graaf, 2010). A significant part of 

the interest in biomedical MRS stems from the 

possibility of noninvasive measurements of 

metabolites. Information about tissue metabolites can 

help in clinical diagnostics. For instance, detection of 

metabolic pathway changes may facilitate diagnosing 

disease in earlier stages before anatomy changes can 

be observed, and thus enable more efficient treatment. 

E.g., in glioma, a decrease of N-acetylaspartate 

(NAA) and creatine concentrations and an increase of 

choline, lipids, and lactate predicts an increase of the 

glioma grade (Robin A. de Graaf, 2019; Van Der 

Graaf, 2010). To detect such changes, quantification 

of MRS signals is required for obtaining the 

metabolite concentrations in the tissue. However, 
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reliable quantification of MRS is difficult. The 

existing MRS quantitation methods are based on 

model fitting of the signal in either the time or the 

frequency domain (Poullet et al., 2008). In recent 

years, new novel machine learning solutions have 

been proposed for quantification, one of which is 

deep learning (DL). Even though the first usage of 

machine learning dates back to the 1970s, it was 

unpractical until the past decade due to lack of high-

performance hardware and novel algorithms (Chen et 

al., 2020). DL has achieved many accomplishments 

in a wide range of tasks, including the MRI field 

(Alaskar, 2019). Due to the poor SNR, chemical shift 

displacement, and overlapping signal components in 

MRS signals, only recently has DL been used for 

metabolite quantification of MRS signals in the 

frequency domain (Hatami et al., 2018; Lee & Kim, 

2019) 
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Hatami et al. showed the first step in this area by 

using the Convolutional Neural Network (CNN) 

approach for simulated MRS signal quantification 

(Hatami et al., 2018). Kim et al. conducted a 

comprehensive study on brain metabolite 

quantification using DL (Lee and Kim, 2019). 

Nonetheless, the practical application of DL in MRS 

has not been limited to quantifications only. 

Kyathanahally et al. taught a CNN with time-

frequency data to detect and remove ghosting artifacts 

in clinical magnetic resonance spectra of the human 

brain (Kreis & Kyathanahally, 2018). 

However, the optimal architecture and hyper-

parameters of CNN for MRS are not well understood. 

Besides, training a CNN is a computationally 

expensive and time-consuming task, and it usually 

needs a big dataset (Bruna & Mallat, 2013). 

Moreover, in the case of MRS signals, CNN has no 

understanding of the nature of the signal, and 

therefore, any shape difference of the signal under 

investigation from signals in the training data set can 

lead to CNN failure. If we look at a CNN as a 

transformation from the time domain to a features 

domain, due to the nature of MRS signals, the 

transformation should be invariant to time shift, 

deformation in the time domain, and frequency shift. 

To satisfy such requirements, CNN could be designed 

as   

-  an optimized and simple deep architecture 

which pools the features using a nonlinear averaging 

measure. 

-  a network with a fast computational 

algorithm which is stable to time-shifting, 

deformation in the time domain, and frequency shift.  

Wavelet Scattering Convolutional Network 

(WSCN) can be a method of choice. WSCNs are 

well-understood, computationally cheap, and fast for 

a deep learning task (Andén & Mallat, 2014; Bruna & 

Mallat, 2013). Wavelet-based methods have 

previously been used for MRS quantification and 

water removal (Poullet et al., 2008; Suvichakorn et 

al., 2008); but as far as we are aware, wavelet 

transform has not been implemented by a deep 

convolutional neural network to quantify MRS 

signals. 

Given the mentioned accomplishments of 

machine learning in MRS for signal quantification, 

this paper describes to our knowledge the first attempt 

to use this state-of-the-art technique to quantify MRS 

signals by WSCNs. We used wavelet scattering 

transform to extract features from the free induction 

decay (FID, i.e. the MRS signal in the time domain) 

and a superficial neural network implementation to 

predict metabolite concentrations.  

In this study, we used two different basis sets. The 

first basis set was the ISMRM challenge 2016 

simulated basis set for comparing results of our 

method with the results published for a CNN and 

another conventional quantification method, QUEST 

(Graveron-Demilly, 2014). For the second basis set, 

we simulated our own metabolite signals and 

generated different synthetic datasets from them for 

evaluating our method against phase changing, noise, 

and presence of macromolecule signals.  

2 METHODS 

All steps were run on a laptop with a 4-core Intel i7 
processor running at 2.6 GHz and an NVIDIA GTX 
1050Ti graphics processing units using Matlab 
(R2019a, Mathworks Inc., Natick, MA, USA) 
software. 

2.1 Simulation of Metabolites 

To build a basis-set signals, fifteen metabolites  –

Alanine (Ala), Aspartate (Asp), Creatine (Cr), 

Choline (Cho), Gamma Aminobutyric Acid (GABA), 

Glutathione (GSH), Glutamine (Gln), Glutamate 

(Glu), Lactate (Lac), N-Acetylaspartate (NAA), N-

acetyl-aspartyl-glutamate (NAAG), Phosphatidyl-

choline (PC), Phosphocreatine (PCr), Taurine (Tau) 

and myo-Inositol (mIns) – were simulated at 9.4 T 

magnetic field with the PRESS sequence (TE = 20 

ms; TR = 2500 ms; acquisition points: 2048; 

acquisition bandwidth: 4401.41 Hz; three PRESS 

pulses with Hermite shapes and flip angles: P1 = 90°, 

P2 = 180°, P3 = 180°). The simulation was performed 

in NMRScopeB (Starčuk & Starčuková, 2017; Stefan 

et al., 2009). The parameters selected in the sequence 

were taken from an in-vivo experiment, which allows 

reusing the simulated basis set. 

2.2 Baseline and Macromolecule 
Simulation 

The baseline signals were simulated as a linear 

combination of several Gaussian lines identified by 

Osorio-Garcia (Opstad et al., 2008; Osorio-Garcia et 

al., 2011). The number and parameters of Gaussian 

lines were extracted from in-vivo signals using 

inversion recovery (Osorio-Garcia et al., 2011). 

2.3 Signal Generation Framework 

The MRS signal was defined as a linear combination  
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of amplitude-scaled frequency- and phase-shifted 

metabolite signals, the baseline, and noise.  

The model describing a time-domain MRS signal 

s[n] as a combination of several metabolite profiles is 

(Poullet et al., 2007): 

 

   

 

 n

nMMA

nXAns

MMMMMM

mmm

itnfi
MM

itnfi
M

m

mm







+

++

+=

+

+

=



ee

ee

)2(

)2(

1

 
(1) 

 

where 𝑋𝑚[𝑛] is the n-th sample of the m-th simulated 

metabolite, ∆𝑇  is the sampling period, Am is the 

scaling factor of the metabolite, 𝛥𝛼m is the damping 

factor, Δfm is the frequency shift of the m-th 

metabolite affected by the static magnetic field 

inhomogeneity, pH, temperature and chemical 

composition of the tissue, ∆𝜃𝑚 is the phase of the m-

th metabolite, Δt is the time step, and M is the number 

of metabolites. 

Table 1 specifies the range of parameter values 

used for generating different datasets according to 

equation (1). For a comparison of our results with the 

previous study (Hatami et al., 2018), the basis set 

provided for the ISMRM challenge 2016 (ISMRM, 

2016) was used to generate dataset DSS1 (20 

metabolite and one macromolecule components). All 

other datasets were generated using the basis set 

simulated with NMRScopeB (15 metabolites). The 

same parameter ranges that were used in the previous 

study (Hatami et al., 2018) were also used in this 

study for DSS1, but we decided to choose ranges of 

parameters for other datasets (DSS2-DSS7) in the 

same manner as we would do if we evaluated real 

acquired spectra. 

Instead of generating 500 000 signal samples per 

dataset, in our study only 10 000 signal samples were 

generated for validating the hypothesis that our 

network is as robust as Hatami et al.'s approach 

(Hatami et al., 2018) even with a smaller number of 

samples but faster. Parameters were chosen randomly 

from defined ranges with a uniform distribution. In 

DSS1, random complex Gaussian noise was added to 

signal samples based on the previous study (Hatami 

et al., 2018). In the rest of the datasets, the SNR of the 

signal samples was adjusted by adding random noise 

such that the SNR was in the range of ~5 to ~15. In 

this study, we used MATLAB built-in snr function 

which calculates the signal-to-noise ratio (SNR) of an 

MRS signal by computing the ratio of its summed 

squared magnitude to that of the noise. In Table 1, the 

presence of a parameter is marked by a tick and the 

absence of a parameter by a cross. 

2.4 Deep Learning 

2.4.1 Invariant Wavelet Scattering Network 

Invariant wavelet scattering network is a transform 

from the time domain to the features domain, which 

has three stages, namely, Convolution (wavelet), 

Non-linearity, and Averaging (scaling factor).  

In contrast to the classical wavelet transform, the 

Complex wavelet transform is translation invariant. 

In this study, we chose Morlet (Gabor) wavelets, a 

type of complex wavelet transform, because they 

have a simple mathematical representation.  

Figure 1 illustrates the wavelet scattering 

transform processes (see (Andén & Mallat, 2014; 

Bruna & Mallat, 2013) for more details). In practice, 

a scattering decomposition framework was created 

with a signal input length of 1024 samples. 

Table 1: Specification of datasets. 

Name 
Amplitude 

(Am) 

Frequency 

shift(Δfm) 

Damping 

range(𝛥𝛼m) 

Noise 

(𝜖) 

Phase ( ∆𝜃𝑚) MM (𝐴𝑀𝑀) 

Common Separated Constant Changing 

DSS1 

(Hatami et 

al., 2018) 

[0, 1] [-10, 10] [-10, 10]      

DSS2 [0.5 1] [-10, 10] [-5, 2.5]      

DSS3 [0.5 1] [-10, 10] [-5, 2.5]  [−
𝜋

8
,

𝜋

8
]    

DSS4 [0.5 1] [-10, 10] [-5, 2.5]   [−
𝜋

8
,

𝜋

8
]   

DSS5 [0.5 1] [-10, 10] [-5, 2.5]  [−
𝜋

8
,

𝜋

8
]    

DSS6 [0.5 1] [-10, 10] [-5, 2.5]      

DSS7 [0.5 1] [-10, 10] [-5, 2.5]     
Within ±10 percent 

of initial values 
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The framework had two filter banks; in other words, 

the depth of the framework was 3. The quality factor 

(the number of wavelet filters per octave) of the first 

and second filter banks were 8 and 1, respectively. 

For the given signal length and quality factors, the 

output of the framework was a matrix with a size of 

154 by 8 by 2. There were 154 scattering paths and 8 

scattering windows for each of the real and imaginary 

parts of the signal. 

2.4.2 Regression 

 

Figure 1: The process of wavelet scattering network; 

averaging and convolution of a signal with wavelet filters 

are showed by an arrow (green) and a circled star, 

respectively. 

Flattening and fully-connected layers were what we 

had at the last stage of our network. The first step, so-

called flattening, was converting a feature matrix into 

a 1-dimensional array. The matrices from the output 

of WSCN were flattened to create a single long 

feature vector.  The flattening layer was connected to 

a fully-connected layer, which was a feedforward 

artificial neural network for the regression task. 

Neural networks with the different number of neurons 

in hidden layers were investigated. The best fully-

connected layer structure was obtained by trial and 

error on the basis of the lowest error on the training 

and validation dataset. The results showed that one 

hidden-layer network with 20 neurons in the hidden 

layer yielded better results than other network types. 

The modeling performance and training were 

evaluated by the mean square error (MSE) and scaled 

conjugate gradient, respectively. 

Figure 2 demonstrates the process of 

transformation, flattening, and regression. The input 

and output of a fully-connected layer were the 

features vector and the relative amplitudes of various 

metabolite basis spectra, respectively. 

 

Figure 2: A schematic of feature extraction and flattening 

and the training of an artificial neural network. 

2.4.3 Quantification 

80% of each dataset was allocated to the training set, 

10% for validation and the rest 10% for the test set. It 

applied to all datasets, DSS1 to DSS7, and then they 

were fed to the network. First, the network was 

trained with the training dataset; then, it was used to 

predict the test dataset. The output of the network was 

a vector in which each element represents the relative 

amplitude of each metabolite. 

2.5 Accuracy Evaluation 

The Symmetric mean absolute percentage error 

(SMAPE) is used to measure the accuracy of the 

model. SMAPE is defined as below for each 

metabolite: 

 

SMAPE[m] =
∑ |𝐴𝑚𝑛 − 𝐴𝑚𝑛

′  |𝑁
𝑛=1

∑ (𝐴𝑚𝑛 + 𝐴𝑚𝑛
′ ) 𝑁

𝑛=1

 (2) 

 

Where m, N, A, and 𝐴′ are the metabolite index, the 

number of test datasets, the ground truth, and the 

estimated amplitude, respectively. 

3 RESULTS 

3.1 Comparison between the 
Quantification Result of QUEST, 
CNN, and WSCN for ISMRM 
Challenge Dataset 

Figure 3 shows the comparison between different 

methods, namely Quest, CNN, and WSCN, for 

dataset DSS1, where the SNR of signals was set to 10. 

The result for CNN and QUEST were extracted from 

(Hatami et al., 2018). 

 

Flattening

Feature 
Extraction

Signal(s[n])
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Figure 3: Comparison between SMAPEs of each metabolite for the WSCN (red), the CNN (yellow), and Quest (green). 

 

Figure 4: Comparison between SMAPEs of the concentration of all metabolites with fixed phases (DSS2), common phase 

varied (DSS3) and independently varied phases (DSS4) (different phase changes for different metabolites). (Test datasets, 

N=1000). The error bars represent the standard deviation. 

3.2 Effect of Phase Variation and Noise 
on WSCN Estimation Accuracy 

The performance of WSCN was evaluated on 

different datasets (DSS2 to DSS7) in table 1. Figure 

4 shows the effect of metabolite phase variation in the 

signals under test. We compared the result of signals 

with a fixed phase, a common varied phase, and 

independently varied phases. The average of 

SMAPEs for DSS2, DSS3, and DSS4 were 1.13%, 

1.38%, and 1.7%, respectively.  

The results of the metabolite quantification for 

DSS5 (DSS3 with added noise) is shown in Figure 5.   

For all 15 metabolites, the average of SMAPE was 

3.46% ± 2.81%. Asp with SMAPE of 6.00 ± 4.48 and 

NAAG with SMAPE of 13.20% ± 10.12% were 

quantified as highest and lowest SMAPE, 

respectively. The average SMAPE of DSS5 was 

increased by 151% compared to DSS3 (without 

noise). 

3.3 Effect of Macromolecules Variation 
on WSCN Estimation Accuracy 

Figure 6 shows a comparison between DSS6 and 

DSS7. In dataset DSS6, the parameters of baseline 

signals (11 Gaussian lines) are constant, while in 

DSS7, amplitudes of Gaussian lines were randomly 

varied in the range of ±10% of their initial values. For 

all metabolites of DSS6 and DSS7, the average 

SMAPEs were 5.92% ± 4.40% and 6.12% + 4.55%, 

respectively. The average SMAPE of DSS6 and 

DSS7 was increased by 73% compared to DSS5 

(without Macromolecules inclusion).  

0
5

10
15
20
25
30
35
40
45
50

Sy
m

m
et

ri
c 

m
ea

n
 a

b
so

lu
te

 
p

e
rc

en
ta

ge
 e

rr
o

r 
(S

M
A

P
E,

 %
)

WSCN CNN Quest

0

1

2

3

4

5

6

7

Ala Asp Cr Cho GABA GSH Gln Glu Lac NAA NAAG PC PCr Tau mIns

Sy
m

m
et

ri
c 

m
ea

n
 a

b
so

lu
te

 
p

e
rc

en
ta

ge
 e

rr
o

r 
(S

M
A

P
E,

 %
)

DSS2 DSS3 DSS4

BIOSIGNALS 2021 - 14th International Conference on Bio-inspired Systems and Signal Processing

272



 

Figure 5: Symmetric mean absolute percent error (SMAPE) of the concentrations of all metabolites in dataset DSS5, which 

contains noisy signal (N = 5000). The error bars represent the standard deviation. 

 

Figure 6: Comparison between SMAPEs of the concentration of all metabolites in dataset DSS6, and DSS7 (Test datasets, 

N=1000). In DSS6, the amplitudes of macromolecules lines were constant. In contrary, the amplitudes were varying within 

±10% of initial range in DSS7. Both datasets are noisy and with common phase changing. 

4 CONCLUSIONS 

The aim of MRS signal quantification is to estimate 

the amplitudes/areas (in time/frequency domain) of 

different metabolites in the signal. The estimated 

amplitudes/areas then can be converted to meaningful 

numbers as the concentration of metabolites. The 

conventional and widely used approach is to estimate 

amplitudes of single sinusoids (areas of single peaks) 

in MRS signal or to estimate the amplitudes (areas) of 

whole metabolite signals (spectra). In the former 

approach, the model is fitted to data using non-linear 

least-squares analysis; the latter approach uses a basis 

set of metabolite profiles in the model function and 

uses a semi-parametric fitting technique. The oldest 

method, so-called peak integration, is calculating 

peaks area in a selected frequency interval. 

Nonetheless, using these approaches for 

quantification is challenging (Stagg & Rothman, 

2014).  

On the other hand, the quantification of the MRS 

signal using deep learning has attracted huge interest 

in recent years (Chen et al., 2020). DL can detect 

important features in the MRS signal and 

subsequently determine a non-linear mapping 

between these features and the outputs, which can be 

the concentrations of the metabolites. The most 

widely used DL approach for quantification is CNN. 

Nevertheless, this approach has drawbacks, for 

example, poor understanding of the CNN architecture 

and hyper-parameters for MRS, expensive and time-
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consuming computation, and the need of a big dataset 

for CNN training (Bruna and Mallat, 2013).  

These shortages motivated us to develop a deep 

network for MRS signal quantification, which can be 

fast, well-understood, and works with a small dataset 

of training samples. For this purpose, we used a 

WSCN.  

In every DL task, determining the proper input 

and output of the network is an important step. In our 

study, the input is an FID, i.e., time-domain signal, 

and the network estimates amplitudes of the first 

points of metabolite signals (what corresponds to 

areas under metabolite signals in metabolite spectra). 

In this work, we demonstrated that the use of the 

wavelet scattering network could achieve better 

results than the semi-parametric fitting technique 

QUEST and similar results as the computationally 

more demanding CNN (Figure 3).  

It is known that the accuracy of estimation in the 

peak integration approaches is influenced by phases 

of peaks (Stagg & Rothman, 2014), and that phase 

should be included in the model as one of the 

unknown parameters. Therefore, we also investigated 

whether WSCN is capable of estimating amplitudes 

of metabolites in case that metabolite phases change. 

It resulted in an increase in the complexity of the 

model, but WSCN proved to have the capability of 

handling this task. Figure 4 shows the WSCN can 

quantify signals with common varied phases (with 

SMAPE of 1.38%) as well as signals without fixed 

phases (with SMAPE of 1.13%). The average of 

MAPEs for DSS4 is increased by 36% and 17% 

compared to DSS2 and DSS3, respectively. It 

indicates that quantification can be moderately harder 

for a dataset with independently varied phases. 

Another source of error in quantification are 

macromolecular signals, which stem in macro-

molecules present in the tissue under investigation. In 

conventional quantification approaches, macro-

molecule signals can either be removed in the 

preprocessing step or modeled in the quantitation 

step. However, the risk of errors will be increased and 

accumulated in fitting error in the former approach, 

and therefore the latter approach is recommended. 

However, macromolecule signals often overlap with 

metabolite components, for which DL can be a 

method of choice for disentangling. As we showed in 

Figure 3, the WSCN could estimate macromolecules 

better than other approaches. Later in this study, we 

modeled the macromolecules signal as a set of 

Gaussian lines using parameters (like linewidth, 

frequency) measured using the inversion-recovery 

recovery (Osorio-Garcia et al., 2011). Figure 6 

demonstrates that the WSCN showed nearly the same 

error for signals with randomly varied macro-

molecule lines and signals with fixed macromolecule 

lines. This could indicate that despite the changing of 

background signals parameters, the WSCN is stable 

against nuisance components in MRS, such as 

macromolecules. Additional research should be done 

however with simulated signals that will imitate in-

vivo data. 

To compare the learning times of both networks, 

i.e., Hatami et al.'s CNN and our WSCN, we rebuilt 

their CNN and fed both networks with the DSS5 

dataset, and ran both networks in the earlier 

mentioned system. Our proposed approach is 

estimated to be 45 times faster than Hatami et al.'s 

approach (the WSCN’s learning time was 5 min 40 

sec precisely and the CNN’s learning time was 268 

min). The WSCN showed that it could be faster than 

the CNN due to using fixed-size filters and less 

parameter optimization. 

It should be noted that even though deep learning 

showed promising results in areas like speech 

recognition and image processing (Chen et al., 2020), 

this study is one of the very initial steps in the 

application of DL in MRS and more studies are 

needed for proving DL suitability for in-vivo 

spectroscopy. Below some of the limitations and open 

issues are addressed: 

1. In this study, we only quantified simulated 

data. The amplitudes of metabolites in our 

simulated data did not imitate the metabolite 

concentrations in in-vivo data. Quantification of 

simulated data with concentrations close to in-

vivo data should be investigated as the next step 

together with data acquired from a phantom.  

2. Real MRS data is influenced by numerous 

factors such as voxel size, voxel placement, 

radiofrequency (RF) coil sensitivity, receiver 

gain, and other experimental factors. Further 

research must take all factors into account. 

3. A potential application of our proposed 

approach is the quantification of MRSI data, 

where a fast method is needed for quantification 

of a set of MRS signal. Learning a network and 

using it for only a single voxel may not be 

efficient as using it for a set of signals.  
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