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Abstract: This paper presents an integer linear programming approach for the coalition structure generation (CSG)
problem over graphs. Forming such structures is a major problem in areas like artificial intelligence an multi-
agent systems. The problem asks to partition a given set of agents into coalitions in order to maximize their
social well-fare - the agents being vertices in a given graph and their communication links being the edges.
We give a truncated branch and price algorithm using valuation functions for which this problem is proven
to be computationally hard. We consider three cases: first when the value of a coalition is the sum of the
weights of its edges, second when the value takes account of both inter- and intra-coalitional disagreements
and agreements, respectively, and another one when the value takes account of the pairs of adjacent agents
which have common neighbors outside. The experimental results cover sets of up to fifty agents. Our approach
prove that an off the shelf optimization solver can be used to solve CSG problem over graphs for some of the
most used valuation functions. We prove also that for the coordination valuation the corresponding decision
problem is NP-complete when the number of coalitions must be two.

1 INTRODUCTION

Coalition formation is one of the main approaches in
multi-agent systems when cooperation among agents
is required, especially if the agents have different ob-
jectives and collaboration skills. Coalition structure
generation (CSG) is one of the steps in the coalition
formation process (Sandholm et al., 2009) which in-
cludes also optimizing the coalitions performance and
rewarding the coalitions value among the members.

Coalition structure generation is a major problem
in artificial intelligence (Voice et al., 2012a), multi-
agent systems (Bistaffa et al., 2014), (Voice et al.,
2012a) communication networks, cooperative game
theory (Deng and Papadimitriou, 1994), (Flammini
et al., 2018), (Ueda et al., 2018), scheduling (Hoff-
man and Padberg, 1993), combinatorial auctions etc.
Given a set of agents V = {1,2, . . . ,n}, and a valu-
ation function v : 2V → R assigning a value to any
coalition of agents, the problem is to partition the set
of agents into pairwise disjoint classes (coalitions)
such that the sum of their values is maximized.
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CSG comes from real-world applications: con-
sider a set of agents who can cooperate by working
in groups. Some of them work better together while
others find difficult to cooperate. The problem is to
maximize the so called social well-fare or the total
value of the designated coalitions. Cooperative game
theory usually uses a super-additive valuation func-
tion that values better a merged coalition than the sum
of the values of the component coalitions; this leads
to the great coalition formation which can be costly
to coordinate or manipulate. Besides this there are
natural constraints on possible coalitions, hence the
abstractions like super-additivity are not always ap-
propriate for modeling the coalitions values and the
agents should be divided into smaller coalitions.

The problem is computationally difficult: the in-
put specification for all 2|V | possible coalitions is in-
tractable even for reasonable values of |V | and the
computational difficulty maintains even under quite
restrictive assumptions; hence implicit representa-
tions of the valuation function are not practical. The
literature presents a very large number of approaches
to CSG problem like (Rahwan et al., 2015): dy-
namic programming, meta heuristic methods, branch
and bound algorithms based on dividing the searching
space, anytime algorithms that maintain a monotoni-
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cally improving feasible solution etc.
The classic CSG framework assumes no particular

structure of the set of agents, while in many real world
applications the agents are the nodes of a network.
This is the background of the following version of the
CSG problem: to generate a coalition structure when
the agents are placed in the vertices of a given graph
and the edges represent the communication links be-
tween them; each such link having a capacity that in-
dicates the probability that the link works, the amount
of information that can be changed along it, or the
level of trust between the two agents. In such a con-
text the value of a group of nodes must depend on the
capacities of the edges between them and the group
members must share a certain level of connectedness
in order to ensure the spread of the information.

In this paper we provide a truncated branch and
price algorithm which proved to be effective for some
of the most used coalition valuations to form coali-
tions among agents embedded in a graph. Our algo-
rithm is independent of the structure of the underlying
graph and works for up to 50 agents. Our setting sug-
gests that we can deal with CSG over graphs as long
as the value of a coalition can be expressed as a poly-
nomial of the characteristic vector of the coalition.

The remaining of the paper is organized as fol-
lows: Section 2 describes our setting and the related
work, Section 3 describes the LP model and the col-
umn generation method, Section 4 introduces the val-
uation functions, the corresponding sub-problems and
their equivalent formulations, Section 5 describes the
branch and price algorithm, and the last Sections con-
tain the numerical results and the conclusions.

2 BACKGROUND

Various approaches were employed for this problem
ranging from constraint optimization to integer lin-
ear programming (ILP). In (Voice et al., 2012a) a
dynamic programming (DP) algorithm is proposed
for valuations having the independent disconnected
members property, other DP approaches can be found
in (Rahwan et al., 2009a) and (Michalak et al., 2016).

Mixed integer linear programming (MILP) tech-
nique is used in (Ueda et al., 2018) and (Tran–Thanh
et al., 2013). In (Tran–Thanh et al., 2013) a coali-
tional skill vector model is introduced and the value
of a coalition is measured as a function of the distance
between the corresponding coalition’s skill vector and
a set of goals, while (Ueda et al., 2018) introduced a
mixed integer programming formulation based on a
set of rules. Other approaches are based on concise
representations of the searching space and include

branch and bound algorithms (Bistaffa et al., 2014),
(Rahwan et al., 2009b), and constraint optimization
methods (Ueda et al., 2018). Sometimes in order to
reduce the execution time of the algorithm a truncat-
ing techniques are employed like in the case of any-
time algorithms that can offer at any moment a sub-
optimal solution to the problem (Bistaffa et al., 2014),
(Rahwan et al., 2009b), (Sandholm et al., 2009).

The CSG problem over graphs has been also stud-
ied for graphs with a particular structure, e. g. syner-
gistic graphs (Voice et al., 2012b) and (Bistaffa et al.,
2014), graphs with bounded tree-width in (Voice
et al., 2012a)). To a limited extent the only related
algorithms to ours are the MIlP formulations (Ueda
et al., 2018) which require that the valuation function
to have a rules-based representation or (Tran–Thanh
et al., 2013) which uses a vector-based representation
that assigns a skill vector to each agent, and a coali-
tion’s skill level will be expressed as an aggregation of
the composing skill vectors. Hence we cannot com-
pare our approach against these two approaches.

Our setting is that of a (mixed) integer lin-
ear/quadratic programming and is based on the clas-
sical model of the set partitioning problem in a graph.
Given a graph G = (V,E) the vertices are agents
and the edges represent connections between agents,
therefore we require that the coalitions induce con-
nected sub-graphs.

We study three types of valuations: the edge sum,
the correlation, and the coordination functions. The
edge sum valuation of a coalition (Deng and Papadim-
itriou, 1994) is the sum of the weights of its edges,
this function frequently occurs in communication net-
works and cooperative game theory. The correla-
tion valuation function (Bansal et al., 2004) occurs in
the clustering framework and it takes account of the
agreements from inside and the disagreements from
outside the structure - an edge being labeled with a
plus or a minus depending on whether the involved
agents are similar or different. The coordination valu-
ation accounts for all 3-cliques of three agents, two in-
side the coalition and one outside; this valuation aims
to privileges coalitions having agents with common
outside neighbors.

Our approach is based on solving an ILP prob-
lem, which is equivalent with CSG, using a branch
and bound algorithm in which the problems in nodes
are built by means of column generation method.
This approach works as long as the involved sub-
problem can be solved. We proved that this can
be done for edge sum, correlation, and coordina-
tion valuation functions since the sub-problem be-
comes a quadratic knapsack problem or a mixed inte-
ger quadratically constrained programming problem
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with forbidden configurations. These problems can
be solved in practice using the corresponding mixed
integer quadratic programming model or the MILP
equivalent model.

Our numerical results show that we can approach
by this method sets of up to 45 agents depending on
the magnitude of the weight function for edge sum
valuation function, up to 50 agents for the correlation
valuation function, and up to 35 agents for the coor-
dination valuation function using just a regular PC.

3 LP MODEL AND COLUMN
GENERATION

Consider V = {1,2, . . . ,n} to be a set of n agents and
v : 2V →R a valuation function on the power set of V .
A coalition structure is a collection of pairwise dis-
joint exhaustive subsets (coalitions) V1,V2, . . . ,Vp, i.e.

Vi∩Vj = ∅ for all 1 ≤ i < j ≤ p and
p⋃

i=1

Vi = V . The

problem of finding a coalition structure of maximum
value is equivalent with the set partitioning problem
(SPP) (Hoffman and Padberg, 1993):

max
2n−1

∑
j=1

v(C j)x j (1)
2n−1

∑
j=1

ai jx j = 1,∀i ∈V (2)

x j ∈ {0,1},∀ j = 1,2n−1 (3)

where {C1, . . . ,C2n−1} is an enumeration of 2V \{∅}
and (ai j)i∈V is the characteristic vector of C j, that is

ai j =

{
1, if i ∈C j
0, otherwise , for each j = 1,2n−1.

We relax (3) by replacing them with

x j ≥ 0,∀ j ∈ {1,2, . . . ,2n−1} (3’)

We write the relaxed problem as a minimum one by
replacing (1) by

min

(
2n−1

∑
j=1
−v(C j)x j

)
(1’)

The dual of the problem (1’), (2) , (3’) is

max
n

∑
j=1

πi (4)
n

∑
i=1

ai jπi ≤−v(C j),∀ j = 1,2n−1 (5)

πi ∈ R,∀i ∈V (6)

We will use the column generation method (Lubbecke
and Desrosiers, 2005) for dealing with the huge num-
ber of variables in the primal problem. Let C j = { j},
for any j∈{1,2, . . . ,n}. An initial feasible basic solu-
tion to the problem (1’), (2), (3’) could be that corre-
sponding to the coalition structure ({1},{2}, . . .{n}),
i. e., x1,x2, . . . ,xn. We restrict the problem to a
smaller number of variables including x1,x2, . . . ,xm
and we get the restricted master problem (RMP):

min ∑
j∈J
−v(C j)x j (7)

∑
j∈J

ai jx j = 1,∀i ∈V (8)

x j ≥ 0,∀ j ∈ J (9)

where J = {1,2, . . . ,m}∪ J′ ⊆ {1,2, . . . ,2m−1}.
The dual of the RMP is

max
n

∑
i=1

πi (10)
n

∑
i=1

ai jπi ≤−v(C j),∀ j ∈ J (11)

πi ∈ R,∀1≤ i≤ n (12)

Let (x,π) be an optimum primal-dual solution for
this pair of problems; we look for a non-basic vari-
able (column) with the minimum negative reduced
cost (Dantzig rule) - by solving a corresponding sub-
problem - that would be added to the current restricted
master problem. When such a variable does not exist
we can stop: we have an optimum solution to the pri-
mal problem. The sub-problem is to find

j0 = argmax
j∈{0,1,...,2n−1}\J

(
v(C j)+

n

∑
i=1

ai jπi

)
(13)

The arising question is: how can we solve problem
(13)? The answer depends on the form of the valua-
tion function v(·). In the following sections we will
analyze this sub-problem for two of the most frequent
used valuation functions defined for coalition struc-
ture over graphs: the edge-sum and the correlation,
and for another one the coordination valuation.

4 COALITION STRUCTURE
GENERATION OVER GRAPHS

4.1 The Edge-Sum Valuation

Let G= (V,E) be graph and w : E→R a weight func-
tion on its edges. The corresponding edge-sum coali-
tion valuation function is

v : P (V )→ R,v(C) = ∑
i j∈E:i, j∈C

wi j,∀C ⊆V.
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This function was extensively studied in the context
of cooperative game theory (Deng and Papadimitriou,
1994) and the corresponding CSG problem is NP-
complete even for planar graphs (Voice et al., 2012a).

If v is the characteristic vector of the generic coali-
tion C, then the sub-problem becomes:

max
v∈{0,1}m,v6=χCj ,∀ j∈J

(
∑

i j∈E
wi jviv j + ∑

i∈V
πivi

)
> 0

(14)

That is, the sub-problem is a quadratic knapsack prob-
lem with forbidden configurations (QKPf). We can
find a new column to add to the restricted master prob-
lem if and only if this quadratic knapsack problem has
a strictly positive optimal objective value.

QKPf could be a computationally difficult prob-
lem since the quadratic knapsack problem (QKP)
is known to be NP-hard (being a generalization of
Clique problem). By rephrasing it we get:

max

(
∑

i j∈E
wi jviv j + ∑

i∈V
πivi

)
(15)

∑
i/∈C j

vi + ∑
i∈C j

(1− vi)≥ 1,∀ j ∈ J (16)

vi ∈ {0,1},∀i ∈V (17)

We cast the constraints (16) in order to avoid the al-
ready added coalitions/variables to the original prob-
lem and the already revealed unconnected coalitions
(J is the set of indexes of these variables).

The problem (15) - (17) has a quadratic objective
but only linear constraints: it is an Integer Quadratic
Programming (IQP) problem. Such a problem can be
solved by using a mathematical optimization solver as
such or by linearizing it first in order to transform it
into a MILP problem. We note here that the known
methods used for solving such a problem are not ap-
plicable here since the usual requirements are to have
non-negative integer or positive coefficients for the
quadratic (some times non-diagonal) terms (Caprara
et al., 1999), (Gallo et al., 1980), (Pisinger, 2007).
Hence we had to settle to solve it as a general IQP
problem using a mathematical optimization solver.

4.2 The Correlation Valuation

Suppose we have a function e : E → {+,−} that as-
signs to each edge i j ∈ E a label + or − depending
on whether agents i and j are similar or different (this
function arises in clustering frameworks). A valuation
function that takes account of both inter- and intra-
coalitional similarities can be defined in the following
way (Bansal et al., 2004): we want to minimize the
number of mistakes: a positive mistake occurs when

e(i j) = −, with i and j belonging to the same coali-
tion, a negative one occurs when e(i j) = +, but i and
j belong to different coalitions. Or, equivalently, we
maximize the number of agreements; first define, for
a coalition C⊆V , the intra- and inter-coalitional con-
nections

Intra+(C) = |{i j ∈ E : e(i j) = +, i, j ∈C}|,

Inter−(C) = |{i j ∈ E : e(i j) =−, i ∈C, j /∈C}}|.
The correlation valuation function is

v : 2V →R,v(C) = Intra+(C)+Inter−(C)/2,∀C⊆V.

It was known that the corresponding CSG problem
is NP-complete (Bansal et al., 2004). We define two
weight functions on the set of edges of G, w+,w− :
E→{0,1}, by

w+(i j) = w+
i j =

{
1, if e(i j) = +
0, if e(i j) =− ,

w−(i j) = w−i j =

{
1, if e(i j) =−
0, if e(i j) = +

,∀i j ∈ E.

Let v be the characteristic vector of the generic coali-
tion C, then

v(C) =
1
2 ∑

i∈V
∑
j∈V

w+
i jviv j +

1
2 ∑

i∈V
∑
j∈V

w−i jvi(1− v j).

The sub-problem (13) becomes the following QKPf
problem:

max

(
1
2 ∑

i∈V
∑
j∈V

w+
i jviv j+

+
1
2 ∑

i∈V
∑
j∈V

w−i jvi(1− v j)+ ∑
i∈V

πivi

)
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1,∀ j ∈ J

vi ∈ {0,1},∀i ∈V

4.3 The Coordination Valuation

Let G = (V,E) be graph and C ⊆V be a coalition, we
define

ni(C) = |{ jk ∈ E : j ∈C,k /∈C, i j, ik ∈ E}|,∀i ∈C.

The coordination coalition valuation function (Voice
et al., 2012a) is

v : 2V → R,v(C) = ∑
i∈C

ni(C),∀C ⊆V.

This function accounts for all cliques of three agents,
two of them being inside the coalition, while the third

A Branch and Price Algorithm for Coalition Structure Generation over Graphs

393



is outside. It is designed to offer coalitions that in-
clude agents that have common neighbors from out-
side. We will generalize this definition by includ-
ing the weight of the 3-clique as the product of the
weights on its edges. Hence, we consider first w :
E→ R+ to be a weight on the edges of G. Second, if
v = (v1,v2, . . . ,vn) is the characteristic vector for the
generic coalition C, then its coordination value is

vm(C) =
n

∑
i=1

vi

n

∑
j=1

v j

n

∑
k=1

wi jwikw jk(1− vk),

We get the original coordination valuation function by
taking w to be the edge characteristic function (i. e.,
wi j = 1, if i j ∈ E, and 0 otherwise).

We note here that the generalization may have the
following interpretation: consider a graph that have
probabilities on its edges representing the reliability
of the corresponding communication links - suppos-
ing that the edges works independently. By multiply-
ing these probabilities for the edges of a 3-clique one
gets the probability that the members of the group can
communicate to each other.

The sub-problem (13) becomes:

max

(
n

∑
i=1

n

∑
j=1

n

∑
k=1

wi jwikw jkviv j(1− vk)+ ∑
i∈V

πivi

)
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1,∀ j ∈ J

vi ∈ {0,1},∀i ∈V

Using the method of Glover and Wolsey (1974, 1975),
we will transfom the cubic objective function into a
linear one; by introducing the variables

zi = vi

n

∑
j=1

v j

[
n

∑
k=1

wi jwikw jk(1− vk)

]
,∀i ∈V.

the above problem becomes

max

(
n

∑
i=1

zi +
n

∑
i=1

πivi

)
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1,∀ j ∈ J,

n

∑
j=1

v j

[
n

∑
k=1

wi jwikw jk(1− vk)

]
+βivi− zi ≤ βi,∀i ∈V

n

∑
j=1

v j

[
n

∑
k=1

wi jwikw jk(1− vk)

]
− zi ≥ 0,∀i ∈V

zi ≥ 0,∀i ∈V

βivi− zi ≥ 0,∀i ∈V

vi ∈ {0,1},∀i ∈V

zi ∈ R,∀i ∈V

where βi =
n

∑
j=1

 ∑
k:wi jwikw jk>0

wi jwikw jk

.

5 BRANCH AND PRICE
ALGORITHM

In this section we give the details of our branch and
price algorithm. At each node of the branching tree
we first build the current LP relaxation in two steps:
(1) we reduce the variables number by taking account
of the branching variables along the path to the root,
and (2) we add the necessary variables to the parent
node LP relaxation by the means of column genera-
tion method.

Step (1) is implemented by effectively fixing to 0
the variables xh such that Ch∩U 6=∅ (or, equivalently,
Ch∩C j 6=∅, for some branching variable x j set to 1),
and removing the branching variables xi set to 0. The
fixing procedure can be achieved by looking in each
equation (2) that contains a branching variable set to
1. In this way any branching variable set to 1, that cor-
responds to a medium sized coalition, has the effect
of drastically reducing the size of the corresponding
mathematical programming model.

While step (1) is basically the same for both valu-
ation functions, step (2) depends on the specific sub-
problem. Step (2) consists in repeatedly solving the
corresponding sub-problem while the optimum ob-
jective function value is strictly positive. The imple-
mentation, however, requires this value to be positive
within some tolerance. If this step would not have
been subjected to numerical restriction, then the algo-
rithm would have been an exact method.

Our branching rule chooses a variable, x j, from
the optimal solution in the current node of the branch-
ing tree having a value around 0.5 (e. g. x j ∈
(0.35,0.65) - if possible). Our branch and bound does
not need upper bounds because in almost all cases a
feasible solution occurs very early (for the edge-sum
and the correlation functions) - mostly after perform-
ing one of the first type (1) steps. The overall effect is
that the branching tree has a medium size: we limited
the number of branching tree size to 40, but this bound
was hardly reached for the first two valuations. Sup-
pose that the current node in the branching tree has
a subset of already covered agents, U =

⋃
j∈J:x j=1

C j,

and U ′ =V \U . For the three valuation functions the
sub-problems become:
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max

(
∑

i∈U ′
∑
j∈U ′

wi jviv j + ∑
i∈U ′

πivi

)
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1, if C j ⊆U ′

vi ∈ {0,1},∀i ∈U ′,

max

[
1
2 ∑

i∈U ′
∑
j∈U ′

(w+
i j −w−i j)viv j+

+ ∑
i∈U ′

(
1
2 ∑

j∈V
w−i j +πi

)
vi

]
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1, if C j ⊆U ′,

vi ∈ {0,1},∀i ∈U ′,

and

max

(
∑

i∈U ′
zi + ∑

i∈U ′
πivi

)
∑

i/∈C j

vi + ∑
i∈C j

(1− vi) ≥ 1, if C j ⊆U ′,

∑
j∈U ′

(
n

∑
k=1

wi jwikw jk

)
v j− ∑

j∈U ′
∑

k∈U ′
wi jwikw jkv jvk+

+β′ivi− zi ≤ β′i,∀i ∈U ′

∑
j∈U ′

(
n

∑
k=1

wi jwikw jk

)
v j− ∑

j∈U ′
∑

k∈U ′
wi jwikw jkv jvk−

−zi ≥ 0,∀i ∈U ′

zi ≥ 0,∀i ∈U ′

β′ivi− zi ≥ 0,∀i ∈U ′

vi ∈ {0,1},∀i ∈U ′

zi ∈ R,∀i ∈U ′.

6 NUMERICAL RESULTS

In this section we evaluate the performance of our al-
gorithm. A major part of the running time of our algo-
rithm is concentrated in the root node of the branching
tree, where step (2) adds hundreds of new variables to
the root model, hence hundreds of sub-problems to
solve (but the solver quickly finds optimal solutions
to these QKPf problems), while for the other nodes
the number of sub-problems drastically reduces.

The algorithm has been written in Java and run on
an Intel(R) Core (TM) i5-7500 CPU 3.40GHz com-
puter with 8GB RAM, under Ubuntu 18.04.4 LTS.

The linear and quadratic programming problems were
solved using Gurobi 9.0 under an Academic License.

Since there are no benchmarks in the literature for
edge-sum, correlation or coordination valuation func-
tions, the algorithm has been tested on randomly gen-
erated problems. Our test problems were built using
the Gilbert model (each edge has a fixed probability of
being present in the graph, independently of any other
edges - probability 1 gives a complete graph). The
weights are independently generated using a Gaus-
sian distribution N(0,0.2) (a certain similar valuation
function occurs in (Rahwan et al., 2009a). The pa-
rameters of the benchmark file indicate the probabil-
ity that an edge belongs to the graph (”p”), the number
of agents (”n”), and the instance number (”s”).

Table 1: Solutions and computational times for different in-
stances (Edge-sum valuation).

Instance
s0 s1 s2 s3 s4

Benchmark p = 0.8,n = 40
LP solution 17.87 21.49 20.10 19.32 18.16
ILP solution 17.86 21.35 20.10 19.29 18.13
Overall time (s) 744 1,684 673 756 850
Root time (s) 529 924 673 615 557
Per node (s) 248 122 673 151 179
# of nodes 3 15 1 5 5
# of integer sol. 1 1 1 1 1
# of variables 318 856 292 320 319
Gap 0.05% 0.65% 0.00% 0.19% 0.16%
Benchmark p = 0.8,n = 45
LP solution 22.60 22.58 21.48 23.88 21.50
ILP solution 22.41 22.49 21.46 23.88 21.50
Overall time (s) 6,372 4,381 2,898 2,726 4,345
Root time (s) 3,488 2,875 1,779 2,726 4,345
Per node (s) 159 398 193 2,726 4,345
# of nodes 40 11 15 1 1
# of integer sol. 5 7 2 1 1
# of variables 1,600 2,222 801 1,114 1,399
Gap 0.84% 0.39% 0.09% 0.00% 0.00%
Benchmark p = 1.0,n = 35
LP solution 17.15 16.42 19.40 15.50 19.06
ILP solution 17.15 16.38 19.25 15.38 19.01
Overall time (s) 323 425 1,603 594 937
Root time (s) 323 325 561 375 397
Per node (s) 323 85 45 84 104
# of nodes 1 5 35 7 9
# of integer sol. 1 1 2 2 1
# of variables 204 274 1,232 335 516
Gap 0.00% 0.24% 0.77% 0.77% 0.26%
Benchmark p = 1.0,n = 40
LP solution 25.28 23.99 22.40 21.94 18.34
ILP solution 25.28 23.78 22.40 21.94 18.25
Overall time (s) 3,874 2,988 2,444 3,264 3,395
Root time (s) 3,874 143 2,444 3,264 1,620
Per node (s) 3,874 332 2,444 3,264 147
# of nodes 1 9 1 1 23
# of integer sol. 1 3 1 1 4
# of variables 299 536 264 276 870
Gap 0.00% 0.88% 0.00% 0.00% 0.49%
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Table 2: Solutions and computational times for different in-
stances (Correlation valuation).

Instance s0 s1 s2 s3 s4
Benchmark p = 0.4, pSign = 0.6,n = 50
LP solution 321.0 339.4 324.0 332.0 336.2
ILP solution 321 339 324 332 336
Overall time (s) 2,893 7,108 4,197 4,458 6,487
Root time (s) 2,893 2,947 4,197 4,458 3,284
Per node (s) 2,893 473.8 4,197 4,458 1,297
# of nodes 1 15 1 1 5
# of integer sol. 1 1 1 1 2
# of variables 1,072 3,071 1,168 1,139 4,399
# of disc. coal. 239 554 6 131 3,207
Gap 0.00% 0.11% 0.00% 0.00% 0.20%
Benchmark p = 0.6, pSign = 0.6,n = 40
LP solution 291.0 298.0 289.0 311.0 313.5
ILP solution 291 298 289 311 313
Overall time (s) 880 1,558 1,379 1,039 3,289
Root time (s) 880 1,558 1,379 1,039 2,352
Per node (s) 293 1,558 1,379 1,039 657
# of nodes 3 1 1 1 5
# of integer sol. 1 1 1 1 1
# of variables 843 1,031 527 531 1,241
# of disc. coal. 78 64 7 9 127
Gap 0.00% 0.00% 0.00% 0.00% 0.16%
Benchmark p = 0.6, pSign = 0.6,n = 45
LP solution 369.0 374.0 383.0 380.0 378.0
ILP solution 369 374 383 380 378
Overall time (s) 6,646 8,009 6,140 5,241 6,176
Root time (s) 5,105 8,009 6,140 5,241 6,176
Per node (s) 2,215 8,009 6,140 5,241 6,176
# of nodes 3 1 1 1 1
# of integer sol. 1 1 1 1 1
# of disc. coal. 19 13 3 20 3
# of variables 1,380 1,230 846 1,264 657
Gap 0.00% 0.00% 0.00% 0.00% 0.00%
Benchmark p = 0.8, pSign = 0.6,n = 35
LP solution 304.0 294.5 299.0 307.0 298.0
ILP solution 304 294 299 307 298
Overall time (s) 988 1,254 1,557 1,077 952
Root time (s) 988 808 1,557 1,077 952
Per node (s) 988 139 1,557 1,077 952
# of nodes 1 9 1 1 1
# of integer sol. 1 1 1 1 1
# of variables 634 1,072 705 583 389
# of disc. coal. 4 10 0 1 1
Gap 0.00% 0.16% 0.00% 0.00% 0.00%
Benchmark p = 0.8, pSign = 0.6,n = 40
LP solution 395.0 380.5 385.0 394.0 387.0
ILP solution 395 380 385 394 387
Overall time (s) 4,227 6,533 6,523 9,721 7,775
Root time (s) 4,227 3,782 6,523 9,721 7,775
Per node (s) 4,227 1,306 6,523 9,721 7,775
# of nodes 1 5 1 1 1
# of integer sol. 1 1 1 1 1
# of variables 840 1,728 851 886 735
# of disc. coal. 0 25 2 5 0
Gap 0.00% 0.13% 0.00% 0.00% 0.00%

We slightly generalized the correlation function by
supposing that some edges don’t have signs at all, i.
e., allowing an incomplete underlying graph. The ran-

Table 3: Solutions and computational times for different in-
stances (Coordination valuation).

Instance
s0 s1 s2 s3 s4

Benchmark p = 0.3,n = 35
LP solution 45.32 57.07 56.61 97.68 44.13
ILP solution 35.44 44.88 46.04 76.35 40.43
Total time (s) 1,852 3,234 8,458 6,450 5,119
Root time (s) 826 1,904 3,065 2,734 866
Per node (s) 45.2 78.89 206.31 157.4 124.9
# of nodes 41 41 41 41 41
# of int. sol. 4 3 2 3 2
# of vars. 4,165 2,275 15,566 3,298 2,152
# disc. coal. 3,462 1,710 14,995 2,555 254
Benchmark p = 0.4,n = 30
LP solution 69.08 90.62 79.88 51.72 88.14
ILP solution 54.92 90.34 79.52 51.43 87.92
Total time (s) 1,376 5,925 1,779 2,274 4,419
Root time (s) 727 3,014 1,143 1,202 2,312
Per node (s) 33.6 144.5 53.7 55.5 107.8
# of nodes 41 41 41 41 41
# of int. sol. 3 4 4 2 3
# of vars. 1,294 1,117 1,133 1,237 1,095
# disc. coal. 729 548 650 675 585

dom graphs were generated using the same model and
an edge has a ”+” or a ”−” sign with a prescribed
probability. The parameters of a benchmark file for
this valuation indicate the probability that an edge be-
longs to the graph (”p”), the probability of the plus
sign (”pSign”), the number of agents (”n”), and the
instance number (”s”).

The parameters of a benchmark file for coordina-
tion valuation indicate the probability that an edge be-
longs to the graph (”p”), the number of agents (”n”),
and finally the instance number (”s”). The probabili-
ties (weights) on the edges are randomly generated as
standard uniform variates.

Tables 1, 2, and 3 show the results of our numer-
ical tests; they contain the optimum value in the root
(LP problem), the (most of the time) optimum value
of the ILP problem found by branch and price al-
gorithm, the overall running time, the running time
for finding and solving the root LP problem, the run-
ning time per node, the number of nodes of the tree,
the total number of variables added during the exe-
cution, the number of nodes fathomed by integrality
(where the best integral solution improves the objec-
tive function), the number of disconnected coalitions
(which must be bypassed), and the gap between the
LP and the ILP optimum values where is the case.
For the edge-sum valuation the instances generated
with p = 0.8 or 1.0 the algorithm found no variables
corresponding to disconnected coalitions. The run-
ning time increases as the edge probability (hence the
density) of the graph increases, but the number of dis-
connected coalitions decreases.
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7 CONCLUSIONS

We addressed the problem of coalition structure gen-
eration over graphs for three valuations functions
where the set of feasible coalitions is restrained to
those that induce connected sub-graphs. Our goal was
to test the efficiency of the column generation method
and the branch and bound algorithm (i. e. the branch
and price algorithm) which needed to be truncated at
least for one of the valuations (the coordination).

Our algorithm is one of the first to present compet-
itive results for more than 40 agents for some of the
most frequently used valuation functions, using only
a regular PC. For half of the tests the root LP problem
has an integer solution and for all of them the gap is
less than one percent. For the first two valuations the
branching trees (with few exceptions) are small and
most of the running time is concentrated in the root
and in the nodes corresponding to variables set to zero
or variables set to one but associated with small sized
coalitions. For the edge-sum and the correlation val-
uations conducting the branching rule to find medium
or large sized coalitions variables seems to be of sec-
ondary interest since the resulting trees are small in
size. for the coordination valuation the branching rule
must privilege the variables set to 1 disregarding the
size of the corresponding coalition. One of the con-
clusions of the numerical experiments is that the re-
sults depends on the magnitude of the weights. For
the low density instances the number of disconnected
coalitions could be high since the rejection procedure
for such coalitions could not included in the mathe-
matical programming model.

We listed only the results using the quadratic mod-
els for solving the sub-problem, however the linear
models have a good potential which deserves future
exploring work (Lagrangian relaxation, special treat-
ment of the high degeneracy etc). Future work should
also be directed towards getting rid of the main burden
of our algorithm: find specific methods for solving
QKPf. Another direction of future research could be
a cut generation method (inequalities defining facets
of a subjacent polyhedral relaxation) that tightens the
LP relaxations towards a branch and cut algorithm.
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