
A Very Large Scale Neighborhood Approach to Pickup and Delivery
Problems with Time Windows

Renaud De Landtsheer, Thomas Fayolle, Fabian Germeau and Gustavo Ospina
CETIC Research Centre, Charleroi, Belgium

Keywords: VLSN, PDPTW, Local Search, Routing Optimization, OscaR.cbls.

Abstract: When solving optimisation problem in the presence of strong constraints, local search algorithms often fall
into local minima. One approach that helps escaping local minima is using Very Large Scale Neighborhoods
(VLSN). We applied VLSN to the pick-up and delivery problem with time windows (PDPTW). Unfortunately,
VLSN can be rather slow: it requires to build a large graph of moves (the VLSN graph) and explore the graph
to identify cycles in it. Most of the execution time is spent building the graph. Once a cycle is found, large parts
of the graph are invalidated, hence the time spent building these portions of the graph is wasted. We introduce
a generic speed improvement of the VLSN algorithm. The idea is to build the VLSN graph gradually and
to perform the cycle search regularly throughout the construction of the graph, so that if the searched cycles
are discovered, large portions of the graph under construction are not explored at all. Roughly speaking, on a
specific standard PDPTW instance (LC1 2 1), only 43% of the graph needs to be built, and the sped up VLSN
procedure only takes 53% of time taken by the original one.

1 INTRODUCTION

Pickup and delivery (Dumas et al., 1991) is a classi-
cal routing optimization problem where a set of de-
liverables (goods or people) must be transported from
different origins to different destinations using one or
several vehicles. The pick-up & delivery with time
windows (PDPTW) is a variant where a time window
is associated with each pick-up and delivery. We typ-
ically want to minimize the distance covered by the
vehicles.

Local search is a combinatorial optimization tech-
nique that starts with a given solution, and repeatedly
improves it by applying small changes to the current
solution. These small changes are identified by ex-
ploring neighbourhoods, representing sets of standard
modifications to be applied on the current solution,
and selecting one that improves the quality of the cur-
rent solution. The main drawback of local search is
that it regularly ends up at solutions where no im-
provement can be found in the neighbourhoods, al-
though there might be better solutions to the consid-
ered optimization problem. These sub-optimal solu-
tions are called local minima. Local minima appear
either because the objective function has an irregular
profile, or because strong constraints prevent the local
search from following the slope of the objective func-

tion towards the global optimum as it makes some so-
lutions unacceptable.

Avoiding local minima, or at least trying to con-
verge towards a high-quality one is one of the main
issues to be solved when using local search. To this
end, several approaches are usually deployed, includ-
ing: (1) finding smart neighbourhoods that experience
fewer local minima — for instance, in routing opti-
mization, we can consider the 3-opt neighbourhood
which experiences fewer local minima than the 1-opt
neighbourhood; (2) using metaheuristics that perturb
the monotonic descent such as restart, simulated an-
nealing and tabu search (Glover and Kochenberger,
2003).

Very Large-Scale Neighbourhood (VLSN) is a
generic technique that belongs to the first category.
VLSN performs many small modifications in an
atomic fashion, and efficiently searches for the proper
combination of these small modifications that com-
bines in a fruitful fashion, that is: they are together
feasible and improve the objective function. These
modifications are themselves the result of base neigh-
bourhoods. VLSN is specifically trying to avoid lo-
cal minima in problems structured into compartments,
where items must be placed. Optionally, compart-
ments might need to be optimized internally as well.
VLSN requires that the global objective function is

De Landtsheer, R., Fayolle, T., Germeau, F. and Ospina, G.
A Very Large Scale Neighborhood Approach to Pickup and Delivery Problems with Time Windows.
DOI: 10.5220/0010315902730280
In Proceedings of the 10th International Conference on Operations Research and Enterprise Systems (ICORES 2021), pages 273-280
ISBN: 978-989-758-485-5
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

273



the sum of the objective functions attached on each
compartment; it supports strong constraints as long as
the compartments do not interact with each other. The
notions of compartments and items can be instantiated
to problem-specific concepts.

This generally matches routing optimization prob-
lems, where compartments are vehicles, items are
routing nodes, the objective function is generally the
sum of a per-vehicle objective function and vehi-
cles can be re-optimized independently of each other.
We will therefore use the vocabulary from routing
throughout the paper although VLSN can also be ap-
plied to problems with the same compartment struc-
ture, such as bin packing by instantiating compart-
ments and items to bin and items.

VLSN has two major bottlenecks: (1) it is very
complex to implement, even though some generic
implementations are proposed, notably in (Mouthuy
et al., 2011); (2) although it has the potential to deliver
high quality solutions, it might be somewhat slow, up
to the point that classical metaheuristics might some-
times be preferred to VLSN (Mladenovic et al., 2012).

This paper presents a generic domain-independent
implementation of VLSN and apply it to PDPTW, we
propose a generic speed improvement of VLSN, and
present preliminary benchmarks of VLSN on stan-
dard PDPTW instances (Lim, 2008). The generic im-
plementation of VLSN and PDPTW are available in
the open source OscaR.cbls framework (OscaR Team,
2012).

This paper is structured as follows: Section 2
presents PDPTW and some basic neighbourhoods
solving it, the problem of local minima induced by
strong constraints, and VLSN as a way to tackle this
problem; Section 3 presents how VLSN can be instan-
tiated to solve PDPTW problems; Section 4 presents
a generic speedup technique to make VLSN faster;
Section 5 presents some benchmarks of our VLSN ap-
proaches on classical benchmark instances; Section 6
concludes.

2 BACKGROUND

This section introduces PDPTW, the problem of local
minima and VLSN. For more in-depth information
about VLSN, please refer for instance to (Mouthuy
et al., 2011). The work is carried in the context of the
OscaR.cbls optimization framework, so all code snip-
pets follow the OscaR.cbls approach and are written
in Scala (Scala, 2020).

2.1 PDPTW

Let us consider a pickup & delivery routing prob-
lem with time windows PDPTW: a fleet of v vehi-
cles, each one starting from a different depot, has to
transport a set of passengers. Each passenger must
be loaded by any vehicle at some pick-up point and
must be delivered at some delivery point dp. The to-
tal number of points is n and includes pick-up, de-
livery points and vehicle depots. Vehicles can carry
at most c passengers at the same time, and there is
some matrix containing the distance for any couple
of points, including the vehicle depots, pick-up and
delivery points. There is also a time window associ-
ated with each point: if the vehicle arrives to a point
too early wrt. the time window of the point, it must
wait; if the vehicle arrives too late, the considered so-
lution is infeasible. The decision variable is the route
of each vehicle, and the objective functions include:
the route length of each vehicle, and a global penalty
for passengers that could not be transported.

In this paper, we do not consider how constraints
and objective functions are evaluated, we exclusively
focus on the search procedure. We therefore suppose
that some computationally efficient model is avail-
able. It inputs the decision variables that are the routes
of each vehicle. It outputs the route length per vehi-
cle, the penalty for non-transported passengers and a
boolean variable telling whether any route violates the
strong constraints.

From an implementation perspective, a neigh-
bourhood is a bunch of nested loops that iterate over
the parameters of the move and try the move for
all combination of parameters. For instance an in-
sert point neighbourhood tries to insert a point into
the route of vehicles; it has two parameters, hence
two nested loops: the inserted point, and the position
where it is inserted.

A neighbourhood also inputs an objective function
and an acceptation function and returns either that no
move could be found or that a suitable move could
be found; this also carries the resulting value for the
given objective function and the move itself. Neigh-
bourhoods restore the values of the decision variable
to the value when the exploration started. The move
must be committed to take effect. When several pos-
sible moves are possible, the neighbourhood returns
the one that decreases the most the objective function,
among the acceptable moves.

We define some neighbourhoods for the PDPTW:

• routePD(pd,vehicle): insert the pick-up point ppd
and its related delivery points dpd into the route of
the vehicle, all positions are explored for ppd and
dpd in this route as far as ppd is before dpd .

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

274



• movePD(pd,targetVehicle): moves the pick-up
point ppd and its related delivery point dpd from
their current positions and vehicle to the route of
the target vehicle, all positions are explored for
ppd and dpd in this route as far as ppd is before
dpd .

• removePD(pd): removes the pick-up point ppd
and its related delivery points dpd from their cur-
rent position, making the pair unrouted;

• optimizeVehicle(vehicle): optimizes the route of
the vehicle by performing some move within the
vehicle itself.

2.2 Additional Local Minima Due to
Strong Constraints

We can define a standard search procedure that repeat-
edly explores these neighbourhoods; however, it will
encounter many local minima. Typically, it will at-
tempt to insert points into the route of the available
vehicles and move points within the routes. As the
number of routed pick-up-delivery pairs grows, in-
creasingly more moves are blocked by the strong con-
straints.

For instance, let be two vehicles, v1 and v2 and
their respective routes, that include the pickup/de-
livery pairs (pdp) pd1 and pd2, respectively. Let’s
suppose that there is no solution to move pd1 (resp.
pd2) on vehicle v2 (resp. on vehicle v1) because
it will induce a time window violation, but there is
a solution to move pd1 on v2 if pd2 is moved on
v1. The strong constraint will forbid neighbourhoods
movePD(pd1,v2) and movePD(pd2,v1) to find any
acceptable move if the moves are performed indepen-
dently, although these moves, once combined, are ac-
tually acceptable wrt. the strong constraints and im-
prove the overall objective function.

2.3 Escaping from Local Minima via
Composite Moves

We focus here on escaping from the local minima
created by the strong constraints by performing com-
posite moves. In the case of the PDPTW mentioned
above, we can directly search for a chain of movePD,
possibly with a routePD, and removePD at the ex-
tremities. These are two typical ways to search for
such composite moves:

• in a depth first way, without any backtracking,
leading to ejection chains (Pesch and Glover,
1997; Curtois et al., 2018): it basically moves
a pick-up-delivery pair to another vehicle, at the

cost of ejecting a pick-up-delivery pair of this ve-
hicle, which in turn has to be moved to yet another
one etc. until we can move the ejected pick-up-
delivery pair on a vehicle without needing to eject
any other pdp pair. Selecting the vehicle and/or
the ejection chain can be based on some heuris-
tics or random decisions. This approach is how-
ever incomplete; it might fail to identify a feasible
and existing composite move.
• through a complete exploration of composite

moves. This is naively achieved through a search
approach with backtracking. This is inherently
inefficient because we are facing a combinatorial
explosion problem.
VLSN achieves the same results as depth-first

search with backtracking, and avoids the combinato-
rial explosion.

2.4 Finding Composite Moves with the
VLSN

The VLSN algorithm is illustrated in Figure 1. It re-
peatedly performs two main steps:

(1) Explore the base neighbourhoods, and build a
directed graph called the VLSN graph, where nodes
are nodes of the routing problem, and any directed
edge from s to t has two attributes: a move, and a
weight. The move is about moving the node s to the
vehicle of node t, under the assumption that node t
has been moved elsewhere by performing a move as-
sociated by an edge leaving node t. The weight is the
delta that is achieved on the objective function by per-
forming the move. Moves that would violate strong
constraints are not allowed, so the related edge is not
incorporated in the VLSN graph.

(2) Find cycles in this VLSN graph such that the
sum of the weight encountered on this cycle is nega-
tive. Finding such cycle is a NP-complete problems,
but efficient heuristics have been proposed, so that in
practice the majority of the time is spent building the
VLSN graph (Orlin et al., 1993).

After performing these two steps, an optional op-
timization is performed on vehicles that have been
modified by the moves performed by the VLSN . We
can use, for instance, a 2-opt neighbourhood here.

Figure 2 shows the procedure that explores moves
with ejections. This is the most time-consuming part
of the procedure and the one that justifies our contri-
bution. It is a triple loop. The two outer loops iterate
over all nodes and remove them from their vehicle. To
do so, it has a remove operation that performs the re-
move and return a reinsert operation that will re-insert
the removed node at its initial location. The inner iter-
ates on all nodes from other vehicles and tries to move

A Very Large Scale Neighborhood Approach to Pickup and Delivery Problems with Time Windows

275



while(true){
// Explore the base neighbourhoods
// and build the VLSN graph
val graph = buildVLSNGraph()
// Find cycles in this VLSN graph
val cycles = searchForCycles(graph)
if(noCycleFound) return
// perform the identified moves
for(move <- cycles) move.commit()
// optimize the vehicles
// that have been modified
for (vehicle <-

impactedVehicles(cycles)) {
optimizeVehicle(vehicle)

}
}

Figure 1: generic VLSN algorithm.

these nodes to the first vehicle. To do so, it instanti-
ates a basic neighbourhood and specifies the node to
move and the targeted vehicle. If such move is possi-
ble, an edge is added to the VLSN graph. This edge
starts at a VLSN node representing the moved node,
ends at a VLSN node representing the removed node,
and is decorated with the delta on the objective func-
tion of the target vehicle and the basic move found by
the neighbourhood.

To build the graph faster, a cache can store edges
of a VLSN graph from one iteration, so they can
be reloaded into the VLSN graph of the next itera-
tion without performing neighbourhood exploration
for the cached edges. We do not present the details
on this cache here for the sake of conciseness. Check
(Mouthuy et al., 2011) for more details.

VLSN graphs are quite dense, with many edges
wrt. the number of nodes. For instance, the LC1 2 4
instance discussed in Section 5 has around 150 nodes
and, after a start-up phase, between 8,000 and 11,000
edges (check Figure 6). We can reasonably consider
that there are O(n) nodes and O(n2) edges in the
VLSN graph.

3 INSTANTIATING VLSN TO
PDPTW

Instantiating VLSN to PDPTW is about defining the
basic neighbourhoods introduced in Section 2 and
instantiating the VLSN algorithm with these neigh-
bourhoods as parameters. This section presents how
these basic neighbourhoods can be easily assembled
as cross-product of standard routing neighbourhoods
(De Landtsheer et al., 2016) and how the VLSN algo-
rithm is instantiated with them.

VLSN is instantiated by representing pick-up-

val graph = emptyGraph(nodes,vehicles)
for(vehicle <- vehicles){
for(removedPoint<-vehicle){
val reinsert=remove(removedPoint)
// removes the node
// from the vehicle route
// and returns
// a procedure that re-inserts it
for(otherPoint<-vehicles-vehicle){
// try moving all nodes that are on
// another vehicle’s route
// onto the vehicle’s route;
// all move are accepted
// even if they worsen the route
// as long as strong constraints
// are enforced
val n = moveNeighborhood(

otherPoint,vehicle)
.acceptAll

val startObj = vehicle.obj
n.getMove(vehicle.obj) match{
case NoMoveFound => ;
case MoveFound(move,objAfter)=>
// a move is possible,
// so and edge is added
// to the VLSN graph
graph.addEdge(
fromNode = otherPoint
toNode = removedPoint
move = move,
delta=objAfter-startObj)

}
}
//re-insert the node that was removed
reinsert()

}
}

Figure 2: Building the VLSN graph: exploring moves with
ejection.

delivery pairs by their pick-up points exclusively. The
VLSN algorithm is only aware of these nodes, and
all basic neighbourhoods must take this convention
into account and move a pick-up-delivery pair when
they are told to move the pick-up node. From that on,
the basic neighbourhood defined in Section 2.1 can be
used.

We explain in more detail how insertPDP is de-
fined by means of combinators. The movePDP is like
the insertPDP, and the removePDP is trivial.

The insertPDP procedure is shown in Figure 3. It
creates a neighbourhood to insert a pick-up-delivery
pair, among a set of non-routed ones, into the route of
a specified vehicle. This neighbourhood construction
is a cross-product of two InsertNodeVLSN neighbour-
hoods: one that inserts pick-ups, and one that inserts
the related delivery. The cross-product is built using
the dynAndThenneighborhood combinator supported

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

276



by OscaR.cbls. The dynAndThen has two parameters:
(1) a neighbourhood (here InsertNodeVLSN, instan-
tiated to insert only pickup points), that is explored
first, and (2) a function that given a move from the first
neighbourhood, generates a second neighbourhood.

For each neighbour explored by the neighbour-
hood, the dynAndThen combinator calls the function
with a description of the move currently explored
by the first neighbourhood. This function generates
a second neighbourhood, which is explored starting
from the current neighbour of the first neighbourhood,
creating a two-level search tree. The function gener-
ating the second neighbourhood is the proper place to
implement pruning; here, it checks that time window
constraints are still valid; if not, there is no need to try
inserting the delivery point since time window con-
straints would be violated anyway after inserting the
delivery point (Germeau et al., 2018).

The insertPDPVLSN neighbourhood can be quite
time consuming to explore, since the neighbourhood
can explore many positions both for the pick-up and
the delivery point even with the presented pruning on
time window constraints.

4 SPEEDING UP VLSN
THROUGH GRADUAL GRAPH
EXPLORATION

In this section, we present the incremental VLSN
(iVLSN), a variant of the VLSN algorithm that builds
the VLSN graph gradually and regularly perform the
cycle search procedure.

The graph built by the VLSN algorithm is very
large since the number of edges is O(n2). As ex-
plained in Section 1, VLSN requires that the global
objective function is the sum of the objective func-
tions of all the vehicles. One of the consequences is
that each vehicle can be reached by at most one cycle
when searching for cycles in the VLSN graph. This
means that only a small part of the graph is useful
(about O(v) edges, v being the number of vehicles).
Furthermore, none of the edges related to a vehicle in-
volved in that cycle can be stored in the cache and re-
used for the next iteration of the VLSN algorithm, be-
cause their impact on the target vehicle of the associ-
ated move must be re-evaluated, as the contents of the
vehicle have changed. This makes VLSN graph con-
struction a very time-consuming task and can causes
the VLSN algorithm to be rather slow.

In the iVLSN algorithm, The VLSN graph being
built is split into two parts: identification of poten-
tial edges, and exploration or filtering of the poten-

def insertNodeVLSN(
node:Int,
predecessors:Iterable[Int]) =

insertPoint(
() => Some(node),
() => _ => predecessors,
selectInsertionPointBehavior

= Best(),
vrp=myVRP,
positionIndependentMoves = true)

def insertPDPVLSN(vehicle:Int):
Int => Neighborhood = {

val route =
myVRP.getRouteOfVehicle(vehicle)

pickup:Int => {
val delivery =

associatedDelivery(pickup)
dynAndThen(
insertNodeVLSN(
pickUp,route),

(insertMv: InsertPointMove) =>
if (twConstraint.isViolated) {
NoMoveNeighborhood

} else {
val p = insertMv.predecessor
val nodesInRouteAfterPickup =

pickUp::trimRoute(route,p)
insertNodeVLSN(
delivery,
nodesInRouteAfterPickUp)

})
}

}

Figure 3: A neighborhood that inserts PDP pairs into exst-
ing routes, built as a cross-product of two basic ”insert-
Point” neighbourhoods, with pruning.

tial edges. The potential edges are identified once
and for all, and the exploration is performed in frac-
tions. Every time the exploration is called, it explores
a fraction of the remaining potential edges. Explor-
ing a potential edge means performing the associated
neighborhood exploration to know if the associated
move is feasible and compute the gain on the objec-
tive function. A cycle detection algorithm is executed
between each exploration. Whenever the cycle detec-
tion finishes by detecting a cycle, all vehicles involved
in the cycle are marked as “dirty”, and all the nodes in
these vehicles are marked as “dirty” as well. Potential
edges reaching “dirty” nodes are not explored, which
implies a potential gain in the speed of the iVLSN al-
gorithm with respect to the standard VLSN.

A Very Large Scale Neighborhood Approach to Pickup and Delivery Problems with Time Windows

277



instance pdp v obj run time (s)
VLSN iVLSN VLSN iVLSN ratio VLSN iVLSN ratio

LC1 2 1 106 21 21 2751,02 2846,57 1,03 4,03 3,37 0,83
LC1 2 2 105 21 21 3073,23 2957,60 0,96 6,73 4,75 0,71
LC1 2 3 103 19 19 2843,31 2916,15 1,03 11,98 7,23 0,60
LC1 2 4 105 20 20 2899,35 2865,18 0,99 27,61 14,64 0,53
LC1 4 1 211 42 41 7495,28 7293,53 0,97 16,46 10,56 0,64
LC1 4 2 211 42 41 7560,14 7522,12 0,99 34,66 18,99 0,55
LC1 4 3 210 40 39 7693,29 7597,88 0,99 71,49 35,35 0,49
LC1 4 4 208 39 38 7472,94 7439,01 1,00 149,93 61,09 0,41
LC1 8 1 420 83 82 26348,18 25700,49 0,98 80,74 43,07 0,53
LC1 8 2 423 84 81 26631,66 26051,93 0,98 168,09 81,18 0,48
LC1 8 3 417 80 78 27296,86 26929,49 0,99 289,46 119,73 0,41
LC1 8 4 416 73 71 25308,23 25183,71 1,00 690,71 224,44 0,32
LC1 10 1 527 103 101 43639,52 42981,64 0,98 157,25 83,16 0,53
LC1 10 2 523 103 100 45872,24 44753,14 0,98 307,36 145,21 0,47
LC1 10 3 524 98 95 44909,41 44286,61 0,99 631,19 248,87 0,39
LC1 10 4 519 92 86 42564,03 41187,36 0,97 1332,51 430,09 0,32

Figure 4: Comparing VLSN and iVLSN.

5 BENCHMARKS

This section presents the benchmarks of our VLSN
approach on standard PDP problems (Lim, 2008),
with and without gradual enrichment, and compares
them to the best known values. We selected a set of
instances of various sizes. Each benchmark is run 13
times with the standard VLSN algorithm and 13 times
with the iVLSN algorithm.

The official benchmarks are about: first, minimiz-
ing the number of vehicles, and second, minimizing
the total distance. VLSN is not meant to minimize
the number of vehicles, so this is not a relevant di-
mension. Yet, we report these numbers as well for the
sake of completeness.

Figure 4 presents a comparison of the VLSN and
iVLSN algorithms on the selected benchmarks. As al-
ready mentioned, these approaches are not about min-
imizing v, so the related columns are not relevant but
mentioned for completeness. obj reports the median
value for the objective function over the 13 runs with
the ratio and run time reports the median run time for
the algorithms, in seconds with the ratio. We observe
two things: (1) the run time is improved by the in-
cremental approach, as initially intended. However,
the run time ratio does not seem to be strongly related
to v or pdp. iVLSN achieves a speedup factor of 3
in the best case. (2) there is a slight improvement in
quality of the solution in iVLSN, which was not a pri-
mary goal of this algorithm. We conclude that iVLSN
seems to be a relevant improvement over VLSN when
applied on PDPTW problems.

The benchmarks have been run on a Dell lap-

top featuring Windows 10, an INTEL R© coreTM i7
with 4 physical cores (thus 8 logical cores) running
at 2.2GHz and 16Gb of RAM. The benchmarks were
performed in a single thread.

Figure 5 compares VLSN and iVLSN against the
best values for the selected benchmarks, fetched from
(Lim, 2008) in September 2020. We observe that
VLSN and iVLSN do not reach the quality of the best-
known solution.

We compare the inner behaviour of VLSN and
iVLSN on a single run of the algorithms on the
LC1 2 4 problem instance in Figure 6. At each itera-
tion of the algorithm, it reports for both algorithms (1)
the number of edges in the VLSN graph and (2) num-
ber of such edges that were fetched from the cache
and (3) the number of edges that were explored. In
this problem instance, VLSN and iVLSN took nearly
the same number of iterations: 34 and 39, respec-
tively.

At any time, iVLSN explores fewer edges than
VLSN. In total, iVLSN explores 43% of the edges
explored by VLSN. The total run time of iVLSN is
53% of the time taken by VLSN. The gain in time is
not as high as the gain in number of edges because
the iVLSN executes the cycle detection algorithm per
iteration and performs a few more iterations in this
case.

After a start-up phase, where the VLSN injects
many pick-up-delivery pairs into the route, the total
number of edges explored by the VLSN decreases
throughout the search because the cache is more and
more effective. The iVLSN has the opposite be-
haviour; it explores more and more edges throughout

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

278



instance best known VLSN iVLSN
v obj best v obj of best v best obj best v obj of best v best obj

LC1 2 1 20 2704.57 21 2849,32 2704,68 22 2895,67 2704,68
LC1 2 2 19 2764.56 24 3362,84 2892,52 20 2817,33 2817,33
LC1 2 3 17 3127.78 21 3201,37 2772,29 19 2921,03 2772,29
LC1 2 4 17 2693.41 20 2899,35 2718,60 19 2716,54 2715,60
LC1 4 1 40 7152.06 44 7733,35 7285,22 42 7426,48 7152,27
LC1 4 2 38 8007.79 41 7369,02 7365,83 45 8184,20 7176,45
LC1 4 3 32 8678.23 42 8060,48 7550,04 39 7493,85 7436,44
LC1 4 4 30 6451.68 39 7493,27 7263,72 36 7191,33 7121,61
LC1 8 1 80 25184.38 86 27189,09 25874,91 82 25687,15 25184,82
LC1 8 2 76 30603.57 83 26203,90 26095,75 80 25589,06 25589,06
LC1 8 3 63 26430.39 80 27456,01 26812,03 77 26697,61 25769,06
LC1 8 4 59 22686.08 72 25297,93 24935,62 68 24367,39 24283,83
LC1 10 1 100 42488.66 103 43639,52 42489,22 103 43913,51 42489,22
LC1 10 2 94 44548.51 103 46200,78 44422,54 101 44247,74 43018,71
LC1 10 3 79 44692.86 97 44466,82 43880,41 96 44364,91 43483,82
LC1 10 4 73 37515.04 93 43615,39 41989,41 86 41082,67 40494,08

Figure 5: Comparing VLSN and iVLSN against the best known solutions.

Figure 6: Comparing internal metrics of VLSN and iVLSN on LC1 2 4.

the search, because cycles become harder to find.
The iVLSN algorithm generates a VLSN graph

with fewer edges than the graph generated by the
VLSN algorithm, except for the very last value of
each algorithm, where these two numbers are equals
because the iVLSN must build the full graph to check
that no cycle exist in it.

Finally, more edges are fetched from the cache by
VLSN than iVLSN, simply because iVLSN just does
not populate the graph as much as VLSN, hence less
edges can be stored in the cache.

More benchmarks must be performed to compare
the iVLSN algorithm against the best results reported
in (Li and Lim, 2001). So far, we hope that iVLSN

can constitute a decent time/quality trade-off for small
problem instances such as the LC1 2 X instances,
considering that the best solutions for these instances
are generally generated with a run time of 15 minutes
(Curtois et al., 2018).

6 CONCLUSION

This paper presented a VLSN approach to the
PDPTW problem. The approach could be applied
easily using a generic VLSN algorithm, instantiated
with PDP-specific neighbourhoods. The latter are
built as cross-products of standard routing neighbour-

A Very Large Scale Neighborhood Approach to Pickup and Delivery Problems with Time Windows

279



hoods.
A generic approach is proposed to speed up the

VLSN algorithm, based on incremental computa-
tion. It proceeds through a gradual enrichment of
the VLSN graph instead of a full construction of the
graph prior to cycle search. This provides a no-
table speed improvement on the PDPTW as illustrated
through the benchmarks. A marginal quality improve-
ment was also observed.

VLSN algorithms experience local minima, like
any local search methods. On the considered bench-
mark instances, it could not reproduce the best known
result for the standard PDPTW benchmarks (Lim,
2008). Yet for the small problem instance, it was
not too far off the best known value, with a relatively
small response time. More benchmarks must be per-
formed to compare the VLSN approach against the
best results reported in (Lim, 2008). So far, we hope
that VLSN can constitute a decent time/quality trade-
off at least for small problem instances.

To further improve the quality of the solutions,
VLSN requires additional meta-heuristics. They can
either be added around it, such as restarts, or added
within it, for instance by accepting composite moves
based on a simulated annealing acceptance criterion
(Mouthuy et al., 2011).

To further speed up VLSN, several approaches
might be considered, including:

• parallelizing the construction of the VLSN to ex-
ploit multiple hardware cores; the construction it-
self is easy to parallelize because each edge of
the VLSN graph is evaluated independently to
the others and requires some neighborhood explo-
ration with a minimal amount of work, so this may
compensate the overhead of parallelization.

• making the cycle detection algorithm incremental,
so that it would only search for cycles involving
at least one edge that was added since its previous
execution.

• fine tune the number of edges that are explored
between each run of the cycle detection algorithm.
there is trade off to set as too many edges and lots
of them are not useful, too few, and fewer cycles
will be detected with an increased time overhead
caused by the cycle detection algorithm.

ACKNOWLEDGEMENTS

This research was supported by the SAMOBIGrow
CWALITY research project from the Walloon Region
of Belgium (nr. 1910032).

REFERENCES

Curtois, T., Landa-Silva, D., Qu, Y., and Laesanklang, W.
(2018). Large neighbourhood search with adaptive
guided ejection search for the pickup and delivery
problem with time windows. EURO Journal on Trans-
portation and Logistics, 7(2):151–192.

De Landtsheer, R., Guyot, Y., Ospina, G., and Ponsard,
C. (2016). Recent developments of metaheuristics,
chapter Combining Neighborhoods into Local Search
Strategies. Springer.

Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The
pickup and delivery problem with time windows. Eu-
ropean Journal of Operational Research, 54(1):7 – 22.

Germeau, F., Guyot, Y., Ospina, G., Landtsheer, R. D., and
Ponsard, C. (2018). Easily building complex neigh-
bourhoods with the cross-product combinator. In Pro-
ceedings of ORBEL’32.

Glover, F. and Kochenberger, G. (2003). Handbook of
Metaheuristics. International Series in Operations Re-
search & Management Science. Springer US.

Li, H. and Lim, A. (2001). A metaheuristic for the pickup
and delivery problem with time windows. In Proceed-
ings 13th IEEE International Conference on Tools
with Artificial Intelligence. ICTAI 2001, pages 160–
167.

Lim, L. . (2008). Li & lim pdptw benchmark.
https://www.sintef.no/projectweb/top/pdptw/.

Mladenovic, N., Urosevic, D., Hanafi, S., and Ilic, A.
(2012). A general variable neighborhood search
for the one-commodity pickup-and-delivery travelling
salesman problem. Eur. J. Oper. Res., 220(1):270–
285.

Mouthuy, S., Hentenryck, P. V., and Deville, Y.
(2011). Constraint-based very large-scale neighbor-
hood search. Constraints, 17:87–122.

Orlin, J. B., Ahuja, R. K., and Magnanti, T. L. (1993).
Network flows: Theory, algorithms, and applications.
Prentice Hall.

OscaR Team (2012). OscaR: Operational research in
Scala. Available under the LGPL licence from
https://bitbucket.org/oscarlib/oscar.

Pesch, E. and Glover, F. (1997). Tsp ejection chains. Dis-
crete Applied Mathematics, 76(1):165 – 181. Second
International Colloquium on Graphs and Optimiza-
tion.

Scala (2020). The Scala programming language.
http://www.scala-lang.org.

ICORES 2021 - 10th International Conference on Operations Research and Enterprise Systems

280


