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Abstract: Video compression algorithms result in a degradation of frame quality due to their lossy approach to decrease
the required bandwidth, thereby reducing the quality of video available for automatic video analysis. These
artifacts may introduce undesired noise and complex structures, which remove textures and high-frequency
details in video frames. Moreover, they may lead to decreased performance of some core applications in video
surveillance systems such as object detectors. To remedy these quality distortions, it is required to restore high-
quality videos from their low-quality counterparts without any changes to the existing compression pipelines
through a complicated nonlinear 2D transformation. To this end, we devise a fully convolutional residual
network for compression artifact removal (CAR-DCGAN) optimized in a patch-based generative adversarial
approach (GAN). We show that our model is capable of restoring frames corrupted with complex and unknown
distortions with more realistic details than existing methods. Furthermore, we show that CAR-DCGAN can
be applied as a pre-processing step for the object detection task in video surveillance systems.

1 INTRODUCTION

In automated video surveillance systems, two key
aspects impact video analytics algorithms: the
compression parameters that facilitate the acquisition
of video stream and the network characteristics that
facilitate data transmission. In the current deploy-
ment of these systems, cameras are often backhauled
via wireless links, where signal jitter and packet loss
affect video quality. Oftentimes, these transmission
channels have limited bandwidth and are allowed a
certain quota per camera. Therefore, it is necessary
to use lossy compression algorithms to encode videos
before transmission to central storage and processing
sites in order to reduce as much as possible the re-
quired bandwidth and lower communication latency.
Unfortunately, whenever a lossy algorithm is used,
undesired complex distortions will manifest. These
distortions stemming from both spatial artifacts (i.e.,
blocking, blurring, color bleeding, and ringing) and
temporal artifacts (i.e., edge floating, texture floating,
and mosquito noise) remove textures and high-
frequency details in video frames, as shown in Figure
1. There are two drawbacks to these artifacts. First,
they make video frames appear unpleasant to the
human eye. Second, they adversely impact the perfor-

mance of various vision algorithms, such as ob-
ject detectors (Aqqa et al., 2019).

Typically, lossy compression algorithms come
with a factor to control the trade-off between the
video’s file size and quality. The larger this factor,
the stronger is the video degradation stemming from
these artifacts. However, opting for low compression
rates is not always a practical solution due to band-
width constraints in video surveillance systems. This
constraint is often guaranteed by strong compression.

Most surveillance cameras use the H.264/AVC
standard (Wiegand et al., 2003) for video compres-
sion, which is a lossy compression algorithm. H.264
exploits spatial redundancy within video frames and
temporal redundancy in videos to achieve appealing
compression ratios, making it the most widely ac-
cepted standard for video encoding. A video is a
sequence of frames; a frame is divided into blocks
of square sizes (16×16, 8×8 and 4×4). H.264 is
a block-based coder/decoder that applies a series of
mathematical functions to achieve compression and
decompression (Juurlink et al., 2012).

Compression artifact removal aims to recover
high-quality videos from their low-quality com-
pressed counterparts. In the past, it has been ad-
dressed mainly without learning the denoising func-
tion from a large dataset. These techniques range
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Figure 1: Examples of compression artifacts encountered in video surveillance systems. Top row: patches cropped from
original video frames. Bottom row: patches cropped from compressed video frames. Different types of artifacts can appear
in the same region. Best viewed in color on a computer screen.

from optimizing discrete cosine transform (DCT) co-
efficients (Zhang et al., 2013) to adding additional
knowledge about images or patches based on adap-
tive distribution modeling (Liu et al., 2015). Follow-
ing the success of deep convolutional neural networks
(CNNs), few approaches have been proposed recently
to address the artifact removal problem (Aqqa and
Shah, 2020; Galteri et al., 2017; Svoboda et al., 2016;
Yu et al., 2015). These techniques leverage the repre-
sentational power of CNNs to accurately estimate the
image manifold by learning a function that performs
an image transformation from a compressed input im-
age to a restored output.

In this work, we address the problem of compres-
sion artifact removal in H.264/AVC encoded videos.
We propose a solution based on convolutional neural
networks trained on large sets of video frame patches
encoded at different bitrates, thus at different quali-
ties. In contrast to (Aqqa and Shah, 2020), our gener-
ator network is optimized in an adversarial framework
where there is no need to specify a loss function mod-
eling the quality of frame patches. We show that our
GAN can learn the conditional distribution of com-
pressed and uncompressed video frames at any com-
pression level, resulting in a better restoration. Fur-
thermore, our experiments show that it can be applied

as a reliable post-processing step for the object detec-
tion task in video surveillance systems.

In section 2, we review some of the related work.
In section 3, we detail the architecture of CAR-
DCGAN and the training approach. We describe in
section 4 the dataset, performance metrics, and im-
plementation details. Section 5 reports the results ob-
tained from our experiments. In section 6, we con-
clude our work.

2 RELATED WORK

In the past, compression artifact removal has been ad-
dressed mainly by designing hand-crafted filters re-
lying on information in the DCT domain. Recently,
few approaches have been proposed to learn the de-
noising function using deep convolutional neural net-
works (CNNs) following their success in other ma-
chine vision tasks. In the following, we will review
both kinds of methods.

Many software for handling images, videos, and
other multimedia files come with simple artifact re-
moval filters. For example, the FFmpeg framework
includes the simple post-processing (ssp) filter (Nos-
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ratinia, 1999), which applies JPEG compression to
the shifted versions of the already-compressed im-
ages, and averages the results. Foi et al. proposed the
Pointwise Shape-Adaptive DCT (SA-DCT) method
(Foi et al., 2006), in which the thresholded transform
coefficients are used to reconstruct a local estimate
of the image signal within the adaptive-shape sup-
port.Yang et al. have proposed to remove the arti-
facts introduced by quantization through a different
approach (Yang et al., 2000), which consists of apply-
ing DCT-based lapped transform on the signal already
in the DCT domain. The authors in (Li et al., 2014)
decompose images into texture and structure compo-
nents, then eliminate artifacts that are part of the tex-
ture component due to contrast enhancement. Chang
et al. (Chang et al., 2014) developed a method to re-
move blocking artifacts from JPEG compression im-
ages by finding a sparse representation over a learned
dictionary from a training set of images. While these
algorithms have shown promising results, they ex-
plicitly attempt to reverse the effect of DCT-domain
quantization optimally, and thus they are very specific
to the applied compressor. Furthermore, they tend
to overly smooth texture regions without reproducing
sharp edges and shapes of objects that machine vision
algorithms such as object detectors may be looking
for to classify an object.

A few recent approaches tackle the problem from
a different angle by learning the denoising function
using deep convolutional neural networks (DCNNs).
These methods learn a 2D transformation function
that can produce a restored version of the given de-
graded input image. Dong et al. (Dong et al., 2015)
have proposed artifact reduction CNN (AR-CNN),
which extends their super-resolution CNN (SRCNN)
architecture with feature enhancement layers follow-
ing sparse coding pipelines. They trained AR-CNN
in two stages - a shallow network is trained first, then
it is used as an initialization for a final 4 layer CNN
due to training difficulties encountered when training
the latter from scratch. Differently from AR-CNN,
Svoboda et al. (Svoboda et al., 2016) developed a
method with better results by training a feed-forward
CNN that combines residual learning and skip archi-
tecture to get a sharper reconstruction. The authors in
(Aqqa and Shah, 2020) have proposed a 34-layer fully
convolutional residual neural network (CAR-CNN) to
remove compression artifacts from H.264/AVC en-
coded videos. They trained their model by opti-
mizing a loss function that combines MSE loss and
SSIM based loss to capture both losses’ characteris-
tics, thus recovering high-frequency details without
over-smoothing the restored frame. These methods
have shown their ability to accurately estimate the im-

age manifold with more image details and semantics
thanks to not relying on local properties or DCT co-
efficient statistics.

Convolutional neural networks have successfully
shown their ability in different image transformation
problems, such as image denoising (Zhang et al.,
2017), super-resolution (Kim et al., 2016; Dong et al.,
2014), and style-transfer (Gatys et al., 2016). Zhang
et al. (Zhang et al., 2017) have presented a denoising
convolutional neural network (DnCNN) to eliminate
Gaussian noise, showing that residual learning and
batch normalization are beneficial for this task. Kim
et al. (Kim et al., 2016) addressed the problem of im-
age super-resolution using a deep architecture trained
on residual images. Ledig et al. (Ledig et al., 2017)
propose a deep residual convolutional network trained
in an adversarial fashion by optimizing a perceptual
loss that combines an adversarial loss and a content
loss. The authors state that their model can recover
photorealistic textures from heavily downsampled im-
ages. A style-transfer method of Gatys et al. (Gatys
et al., 2016) uses image representations from convo-
lutional neural network optimized for object recog-
nition while optimizing a loss that accounts for both
image content and style to keep the content of an ar-
bitrary photograph with the appearance of numerous
well-known artworks.

To the best of our knowledge, the only method
restoring compressed video frames is proposed by
Aqqa et al. (Aqqa and Shah, 2020). Differently from
their work, we propose an improved generator trained
in a generative adversarial setup. We refer to the pro-
posed method as CAR-DCGAN. We summarize our
contributions as follows:
1) We present a new attempt to address compres-
sion artifact removal in H.264/AVC encoded videos.
Unlike existing methods that directly optimize deep
CNNs using hand-crafted loss functions, we train our
generator in a generative adversarial setup using in-
put patches encoded at different compression levels.
Thus, learning a model that is quality-agnostic and
can handle videos encoded at different bitrates.
2) Motivated by the fact that H.264/AVC is a block-
based encoder, we propose a novel strategy to learn
both the generator and the discriminator over patches
of a single frame in a conditional setting to better es-
timate the frame manifold, leading to sharper recon-
struction and more realistic images.
3) We demonstrate that our conditional GAN can pro-
duce better quality than other deep learning-based
methods and can be used as a reliable pre-processing
step for object detectors in video surveillance sys-
tems.
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3 CAR-DCGAN

In the H.264/AVC compression artifact removal task,
the aim is to restore a video frame FR from a com-
pressed frame FL distorted by a lossy compression
algorithm. In RW×H×L, we define FH , FC, and FR as
real valued tensors with width W , height H and num-
ber of image channels C. During H.264/AVC video
encoding process, an uncompressed image FH is en-
coded by:

FL = E(FH ,QP) (1)

using H.264 encoder E with some quantization pa-
rameter QP. We would like to learn an inverse func-
tion Φ ≈ E−1

QP to remove compression artifacts intro-
duced by E, thus restoring FH from FL:

FH ≈ FR = Φ(FL) (2)

To this end, we define Φ(.) as a fully convo-
lutional residual network Φ(FL;θ) with parameters
θ that are learned using a Generative Adversarial
Framework. We follow the assumption ”deeper is
better,” and we propose a 34-layer fully convolu-
tional residual neural network (FCN) and is, there-
fore, able to restore images of any resolution. Further-
more, FCN architectures are suitable for performing
local nonlinear image transformations, which allows
us to train the network over smaller frame patches.
Indeed, H.264/AVC encoder/decoder operates over
smaller blocks of square sizes (32×32, 16×16, 8×8
and 4×4); thus, the artifacts we are interested in re-
moving appear at scales close to the patch size.

The GAN framework establishes two distinct
players, a generator and a discriminator, and poses
the two in an adversarial game. The generator (G)
is fed some noisy input and tasked to create “fake”
images that lay on the manifold of the real data
with maximally confusing the discriminator; simul-
taneously, the discriminator (D) is tasked with dis-
tinguishing between samples from the generator and
samples from the training data. In this work, we are
not aiming to generate new unseen frames sampled
from a distribution, but our task regards the output of
an improved version of a degraded frame, thus learn-
ing a Φ(.) function able to process compressed frames
and remove artifacts. This task can be achieved with
GANs by conditioning the training. To condition
the generative network, we feed as positive samples
FH |FL and as negative samples FR|FL, where .|. indi-
cates channel-wise concatenation. Details of the pro-
posed networks are presented in the following.

3.1 Generative Network

Inspired by (Aqqa and Shah, 2020), our generator
(G) contains only blocks of convolutional layers and
LeakyReLU non-linearities. We use layers with 32
feature maps with a 3× 3 support. All convolutional
layers are followed by a LeakyReLU activation with
a slope of 0.2 for negative inputs. After the first two
convolutional layers, we apply a chain of 16 residual
blocks using a 1 pixel padding to keep the same frame
size across all convolution layers after every convolu-
tion. Finally, to generate the enhanced frame, we use
a single kernel convolutional layer with a tanh activa-
tion to keep the output values in the [−1,1] range. An
overview of the network is depicted in Figure 2.

3.2 Discriminative Network

The architecture of the discriminator network D is
based mainly on a series of convolutional layers fol-
lowed by LeakyReLU activation. We double the num-
ber of feature maps every two layers except the last
one. The feature map’s size is decreased solely be-
cause of the effect of convolutions reaching the uni-
tary dimension in the last layer, in which we use a
sigmoid as the activation function. The discrimina-
tor is fed with frame patches rather than the whole
frame, as indicated in Figure 2, this is motivated by
the fact that the H.264/AVC encoder operates at the
block level, and those artifacts we aim to remove are
typically generated inside them. The weights ϕ of the
discriminator D are learned by minimizing:

ld =− log(Dϕ(FH |FL))− log(1−Dϕ(FR|FL)) (3)

where D(z) is taken from the sigmoid activation of
the discriminator network, with z indicating channel-
wise concatenation between the compressed input FL

and the correspondent uncompressed version FH or
restored one FR.

3.3 Adversarial Training

Differently from CAR-CNN (Aqqa et al., 2019) that
is trained using a direct supervision approach, we
exploit to train our CAR-DCGAN in an adversarial
framework given the ability of GANs to model com-
plex multi-modal distributions, thus accurately esti-
mate the image manifold. We train conditional GANs
(Mirza and Osindero, 2014) to engage the generator
to better capture the image transformation task. The
training process for our model is as follows:

1. The generator processes the given degraded frame
patch and produces an enhanced version of it.
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Figure 2: An overview of the proposed method. Top: Architecture of the generative network. It contains 16 residual blocks,
and in each convolutional layer, we indicate by n the number of filters and s the stride. Bottom: Architecture of the discrim-
initive network. The input is created by performing the channel-wise concatenation between patches of the compressed frame
FL and the correspondent uncompressed version FH or restored one FR.

2. The discriminator learns basic convolutional fil-
ters in order to distinguish between “real” frame
patches and “fake” ones.

3. The generator learns the correct bias and basic fil-
ters to remove artifacts induced by the compres-
sion process, thus confusing the discriminator.

4. The discriminator becomes more accustomed to
“real” frame patches and is able to use signals in
the conditional data to look for particular triggers
in patches.

In the following, we describe the adversarial loss used
to train the generator network.

3.3.1 Pixel-wise MSE Loss

Mean Squared Error loss (MSE) is defined as:

lMSE =
1

WH

H

∑
i=1

W

∑
j=1

(FH
i, j−FR

i, j)
2 (4)

lMSE has shown improved performance in JPEG arti-
fact removal task (Svoboda et al., 2016). However,
it doesn’t recover most of the high-frequency details
from a distorted input.

3.3.2 Perceptual Loss

Perceptual loss has been employed successfully in
many image transformation tasks such as super-
resolution and image restoration (Dosovitskiy and
Brox, 2016; Gatys et al., 2016; Galteri et al., 2017).
The main idea is to optimize the network in a feature
space rather than the pixel space, encouraging uncom-
pressed video frames and restored ones to have simi-
lar feature representations. The distance between two
video frames is computed by projecting FH and FR on
a pre-trained network feature space, hence extracting
some meaningful latent representations. The percep-
tual loss is defined as:

lP =
1

Wf H f

H f

∑
i=1

W f

∑
j=1

(φk(FH)i, j−φk(FR)i, j)
2 (5)

where H f and Wf are the height and the width of the
feature maps respectively, and φk(F) represents the
feature maps of some k-th layer of the pre-trained net-
work for an input video frame F . In this work, we use
the outputs of the pool4 layer of the VGG-19 model
(Simonyan and Zisserman, 2015) as the feature ex-
tractor.
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Bitrate=2Mb/s,	CRF=29 Bitrate=2Mb/s,	CRF=35 Bitrate=2Mb/s,	CRF=41 Bitrate=2Mb/s,	CRF=47

Bitrate=1.5Mb/s,	CRF=29 Bitrate=1.5Mb/s,	CRF=35 Bitrate=1.5Mb/s,	CRF=41 Bitrate=1.5Mb/s,	CRF=47

Bitrate=1Mb/s,	CRF=29 Bitrate=1Mb/s,	CRF=35 Bitrate=1Mb/s,	CRF=41 Bitrate=1Mb/s,	CRF=47

Uncompressed	frame

Uncompressed	patch

Figure 3: An uncompressed patch taken from a video frame and its 12 compressed versions. The compression artifacts can
be visually perceived as CRF value increases and bitrate decreases. The combination of CRF=29 and maximum bitrate of
2Mb/s results in the lowest compressed version, thus better image quality. The combination of CRF=47 and maximum bitrate
of 1Mb/s results in highest compressed version, thus worst image quality. Best viewed in color on a computer screen.

3.3.3 Adversarial Loss

We train the generator using a weighted combination
of the MSE loss, the perceptual loss and the standard
adversarial loss:

lCAR = lMSE +αlP +βladv (6)

where ladv is defined as:

ladv =− log(Dϕ(FR|FL)) (7)

that rewards maximal confusion to the discriminator.

4 EXPERIMENTAL SETUP

4.1 Dataset

Previous work for JPEG compression artifact removal
were tested on BSDS500 (Martin et al., 2001) and
LIVE1 (Sheikh et al., 2014) datasets. These datasets
contain still images with distinctly different character-
istics compared to video frames encountered in video
surveillance systems. For this reason, Aqqa et al.
(Aqqa et al., 2019) have presented a new dataset of
uncompressed videos that represent common scenar-
ios where video surveillance cameras are deployed.
The videos are 5 minutes long movie clips and were
acquired using AXIS P3227-LVE network camera

and recorded in 1080p high definition (1920×1080)
at 30fps. To the best of our knowledge, it’s the only
dataset available with original uncompressed video
stream for video surveillance systems, and therefore,
we conduct experiments on this dataset.

H.264/AVC encoding uses Constant Rate Factor
(CRF) as the default quality (and rate control) setting.
CRF achieves constant quality by compressing dif-
ferent frames by different amounts, thus varying the
Quantization Parameter (QP) as necessary to main-
tain a certain level of perceived quality. It does this
by taking motion into account similar to the encoder
on a surveillance camera. CRF ranges between 0 and
51, where lower values would result in better quality
and higher values lead to more compression. To sim-
ulate the trade-off between quality and bitrate, CRF is
used in conjunction with Video Buffer Verifier (VBV)
mode to ensure that the bitrate is constrained to a cer-
tain maximum as in real-world settings. An exhaus-
tive combination of CRF values (29, 35, 41, and 47)
and maximum bitrate values (2Mb/s, 1.5Mb/s, and
1Mb/s) are selected to create a total of 12 data variants
in this dataset. An uncompressed video frame and its
12 compressed versions available in this dataset are
shown in Figure 3.
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Table 1: Restoration Quality Comparison. Results reported for average PSNR (dB).

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s

CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

H.264 29.65 28.09 25.93 24.53 29.25 28.07 25.90 24.53 28.58 27.70 25.85 24.53

CAR-CNN (MSE) 30.07 28.36 26.65 25.27 29.61 28.36 26.64 25.17 28.88 27.98 26.62 25.05
CAR-CNN (SSIM) 29.69 28.12 26.02 24.78 29.32 28.12 25.91 24.78 28.54 27.72 25.88 24.78

CAR-CNN (SSIM+MSE) 29.76 28.19 26.07 24.81 29.38 28.18 25.96 24.81 28.60 27.78 25.93 24.81

CAR-DCGAN 28.94 27.84 25.79 24.49 28.82 28.18 25.49 24.38 27.90 27.55 25.64 24.40

Table 2: Restoration Quality Comparison. Results reported for average SSIM.

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s

CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

H.264 0.817 0.789 0.725 0.604 0.807 0.788 0.723 0.604 0.787 0.774 0.720 0.604

CAR-CNN (MSE) 0.827 0.805 0.758 0.681 0.822 0.801 0.757 0.681 0.794 0.784 0.756 0.681

CAR-CNN (SSIM) 0.845 0.829 0.777 0.689 0.837 0.819 0.763 0.689 0.817 0.794 0.761 0.687

CAR-CNN (SSIM+MSE) 0.873 0.867 0.786 0.695 0.858 0.826 0.762 0.693 0.835 0.796 0.765 0.693
CAR-DCGAN 0.791 0.784 0.729 0.603 0.782 0.771 0.707 0.591 0.770 0.767 0.713 0.588

4.2 Similarity Measures

The most wide-spread evaluation metrics for qual-
ity assessment in compression artifact removal task
are MSE and the peak signal-to-noise ratio (PSNR),
which is the MSE normalized to the maximum pos-
sible signal values expressed in decibel (dB). An-
other alternative is to use the structure similarity in-
dex (SSIM) (Wang et al., 2004), which is the mean
of the product of three terms assessing similarity in
luminance, contrast and structure over multiple local-
ized windows. For a fair comparison with CAR-CNN
(Aqqa et al., 2019), we report evaluation of PSNR and
SSIM measures across all 12 data variants.

4.3 Implementation Details

For training our networks, we use 90k video frames as
the training set and 12k for the validation set. Testing
is performed on 17k video frames for each of the 12
data variants. We have used the PyTorch framework
(Paszke et al., 2017) for our evaluations. The training
process was distributed over two Nvidia Tesla v100
GPUs with a mini-batch of 64 video frames and have
been carried on for 360 epochs. For each image, we
first rescale it to (910× 512) and then we randomly
crop a 32× 32 patch with horizontal flipping. At the
training stage, we have optimized the networks pa-
rameters with Adam (Kingma and Ba, 2015) starting
with a learning rate of 10−4 and momentum of 0.9.

5 RESULTS

The evaluation results of the mean PSNR and SSIM
across different data variants are shown in Table 1

and Table 2, respectively. The performance of our
generator CAR-DCGAN is compared with the stan-
dard H.264/AVC compression and CAR-CNN (Aqqa
and Shah, 2020), which was trained using three dif-
ferent loss functions: MSE loss, SSIM loss, and a
weighted combination of MSE and SSIM. As can be
seen in Table 1 and Table 2, the performance of our
generator is much lower than all the three variants of
CAR-CNN across all data variants from a quality in-
dex point of view. In fact, CAR-CNN was trained to
optimize MSE and SSIM hence achieving better re-
sults in PSNR and SSIM measures. Moreover, these
measures are known for better evaluating blurry re-
gions over more realistic ones, as reported in other
image transformation tasks such as super-resolution.
However, the restored video frames by our generator
are perceptually more realistic and have more finer
consistent details, as shown in Figure 4. This can be
explained by the fact that the combination of adver-
sarial loss and perceptual loss tends to generate real-
istic textures rather than the smooth and poor detailed
patches of the MSE/SSIM based generators.

5.1 Object Detection

In video surveillance systems, we are more inter-
ested in understanding how video quality affects ma-
chine vision algorithms. During video compression,
quality distortions stemmed from spatial and tempo-
ral artifacts are introduced to the video frames lead-
ing to decreased performance of object detectors,
as shown in (Aqqa et al., 2019). This degradation
in performance can be explained because compres-
sion artifacts remove textures and details in these
video frames. These high-frequency features repre-
sent edges and shapes of objects that the detector may
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CAR-CNN	(MSE) CAR-CNN	(SSIM)

CAR-CNN	(SSIM+MSE) Ground	TruthCAR-DCGAN

Compressed

Figure 4: Example of a video frame compressed at the highest compression rate (i.e., CRF=47 and Bitrate=1Mb/s) and
reconstruction results from different methods. Best viewed in color and zoomed in on a computer screen.

be looking for to classify an object.
In this experiment and for a fair comparison

with CAR-CNN, we use YOLO as the object de-
tector (Redmon et al., 2016). We adopt the same
evaluation procedure as in (Aqqa and Shah, 2020).
More specifically, the detections of YOLO on uncom-
pressed videos are considered ground-truth bound-
ing boxes and compared to its detections on recon-
structed versions of the 12 compressed variants. As
a lower bound, we also report performance on video
frames restored using H.264; results are reported in
Table 3. As we can expect, the more a video frame is
compressed by the H.264/AVC encoder, the highest
the drop in the performance of YOLO, especially at
higher CRFs, as shown in Figure 5. Even at moder-
ate compression levels (i.e., CRF=29), the detection
performance drops by at least 15.7% after restora-
tion. CAR-CNN generators are able to recover part
of the object characteristics, but the improvements
compared to the lower bound are not impressive, as
they gain around 0.08% (MSE-based), 1.7% (SSIM-
based), and 2.3% (SSIM+MSE) at the lowest com-
pression level (i.e., CRF=29 and Bitrate=2MB/s). In

fact, the over-smoothed and blurry patches recov-
ered by MSE/SSIM generators lack sharp textures
and high-frequency details that represent edges and
shapes of objects. Compared to CAR-CNN, our GAN
approach is able to restore the distorted frames in a
more effective manner yielding the best result, in-
creasing the performance by 7.7% in mAP from 0.766
to 0.843. At higher compression levels (i.e., CRF=41
and CRF=47), the variation in mAP across different
restoration methods is minimal as it becomes difficult
to recover missing details due to heavy compression.

These results assess the benefits of our patch-
based generative approach compared to traditional
methods for the H.264/AVC compression artifact re-
moval task. Although MSE/SSIM trained generators
yield better restoration performance from a quality in-
dex point of view, they are still simplistic and insuf-
ficient to capture the complexity of the image man-
ifold. On the other hand, our adversarial approach
allows the generator to accurately estimate the im-
age manifold, thus better model the artifact removal
task. Moreover, our experiments show that machine
vision algorithms can suffer heavily from artifacts in-
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Table 3: Detection performance of YOLO measured as mean average precision (mAP) at IoU=0.50 on the 12 data variants
for different reconstruction methods.

Method Bitrate = 2 Mb/s Bitrate = 1.5 Mb/s Bitrate = 1 Mb/s

CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47 CRF-29 CRF-35 CRF-41 CRF-47

H.264 0.766 0.736 0.661 0.522 0.756 0.735 0.661 0.519 0.745 0.733 0.557 0.519

CAR-CNN (MSE) 0.774 0.759 0.698 0.577 0.768 0.761 0.697 0.577 0.758 0.753 0.669 0.577

CAR-CNN (SSIM) 0.783 0.772 0.703 0.587 0.779 0.773 0.706 0.587 0.764 0.759 0.675 0.587

CAR-CNN (SSIM+MSE) 0.789 0.781 0.723 0.589 0.783 0.776 0.727 0.589 0.769 0.763 0.676 0.588

CAR-DCGAN 0.843 0.831 0.743 0.597 0.838 0.815 0.738 0.594 0.811 0.804 0.680 0.589

29 35 41 47
CRF

0.0

0.2

0.4

0.6

0.8

1.0

m
AP

H.264
CAR-CNN (MSE)
CAR-CNN (SSIM)
CAR-CNN (SSIM+MSE)
CAR-DCGAN

Figure 5: Mean Average Precision (mAP) of different re-
construction methods in regards to different CRFs. CAN-
DCGAN outperforms other methods accross all CRFs. The
variation is minimal for CRFs higher than 41.
troduced during the compression process due to an
inability to generalize from their sharp training sets.

6 CONCLUSION

We have presented a fully convolutional residual neu-
ral network for the H.264/AVC compression arti-
fact removal task in video surveillance systems. We
trained our model in a patch-based generative ad-
versarial approach to accurately learn the conditional
distribution of compressed and uncompressed video
frames, leading to better restoration than MSE/SSIM
trained networks. Our experiments show that condi-
tional GANs produce higher video frames with finer
and sharper details relevant to both human view-
ers and machine vision algorithms. Moreover, we
have shown that our approach can be used as a pre-
processing step for computer vision tasks such as ob-
ject detection in applications where quality distortions
may be present.
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