
A Lightweight Microservice-oriented Platform for Development of
Intelligent Agent-based Enterprise Applications

Aluizio Haendchen Filho1, Rafael Castaneda Ribeiro3, Hércules Antônio do Prado2,
Edilson Ferneda2 and Jeferson Miguel Thalheimer1

1Laboratory of Technological Innovation in Education (LITE), University of Vale do Itajaí (UNIVALI), Itajaí, Brazil
2Catholic University of Brasilia (UCB) QS 07, Lote 01, Taguatinga, Brasília, DF, Brazil

3Federal Center of Technological Education Celso Suckow da Fonseca Rio de Janeiro, RJ, Brazil

Keywords: Multiagent Systems, Microservice-oriented Development, Service-oriented Development.

Abstract: Excess of adherence to the agent technology standards can hinder the software development process while
the focus in good practices can lever this process. This paper presents IDEA, a lightweight microservice-
oriented platform that facilitates the development and execution of Multi-Agent Systems in the business
context. The solution design seeks for a good trade-off between usability and adherence to the agent
technology standards. The platform also enables microservices discovering, composition, and reuse.

1 INTRODUCTION

Currently, most of the organizations adopt
heterogeneous and complex information systems
enabled by low coupled components. These systems
must coordinate their components in order to provide
efficient support to business processes and consistent
information management. Enterprise and business
applications running in the Web are increasing in
complexity, involving widely heterogeneous entities,
many functions, and the interaction among several
devices.

In the industrial context, the Service Oriented
Architecture (SOA) principles have evolved from the
original service concept to a new concept of
microservices. Microservices paradigm is based on
independent and low-granular software components
that interact to build highly scalable systems (Dragoni
et al., 2017). Rooted in SOA principles, this new style
of architecture has gained strength in recent years,
and are disseminated by companies such as Netflix,
Spotify, Uber, Amazon, and PayPal (Lewis, 2015).

If Lewis et. al. (2010) already recognized SOA as
the best option available for system integration and
leverage of legacy systems, the recent advent of
microservices increased significantly this
importance. Technologies to implement SOA will
certainly evolve to address emerging needs, but its
basic principles seems to keep stable. One of the

primary benefits of SOA is the ability to cdompose
applications, processes, and assemble new
functionalities from existing services.

There are several authors researching the
application of microservices paradigm as a
framework for building modern agent-based systems
(Cabri et al., 2010; Collier et al., 2015; Crow et al.,
2018; Higashino et al., 2018). As argued by the
authors, the inability of agent’s technology for
dealing with complex communication protocols and
also with the excessive formalism of agent-oriented
methodologies contributes to inhibit their use in the
business context.

The combination of microservices-based
approaches with intelligent agents can be a way to
compose and develop intelligent solutions. Agents can
dynamically discover, orchestrate, and compose
microservices, check activities, run business processes,
and integrate heterogeneous and distributed
applications. An important aspect of microservices is
to provide conditions for the system to adapt according
to requirements or circumstances. Evolution can be
applied on time, in features they need (Silva 2017).

This paper presents IDEA, a lightweight
microservice-oriented platform for development of
intelligent agent-based applications. IDEA aims at
offering an infrastruture to facilitate the development
and execution of intelligent MAS in an easier and
faster fashion. The platform also enables
microservices discovering, composition, and reuse.

376
Haendchen Filho, A., Ribeiro, R., Antônio do Prado, H., Ferneda, E. and Thalheimer, J.
A Lightweight Microservice-oriented Platform for Development of Intelligent Agent-based Enterprise Applications.
DOI: 10.5220/0010311003760383
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 1, pages 376-383
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BACKGROUND

This section describes relevant aspects related to
resources and services, and a well-known agent
modeling methodology used in our approach.

2.1 Resources and Services

Large and medium sized organizations usually can
have hundreds and even thousands of fine-grained
procedures distributed across business applications.
Services of the most value to business experts are
constructed from lower-level services, components,
and objects that are structured to meet specific
business needs. Elimination of redundancy assemble
of new functionalities from existing services,
adaptation of systems to changing needs, and
leverage of legacy investments are the common goals
for the adoption of SOA (Lewis and Smith 2007).

As different granularity services normally fulfil
different roles, coarse, medium, or fine granularity
categories of services are considered. These
categories can be classified by type, as shown in
Figure 1 (adapted from Kulkarni and Dwivedi, 2008).

Figure 1: Services classification chart.

SOA and services in general rely strongly on the
concept of resource. Human and software agents can
discover services and provider entities by means of
the metadata used to describe a resource
(Bhuvaneswari and Sujatha 2011). The fine- and
medium-grained services need to be appropriately
described, represented, and exposed in order to be
known and visible to modelers, developers, and
business analysts involved in the composition of
medium and coarse granularity services.

The mechanisms for invocation of services such
as descriptors and discovery must comply with
established internal standards. Figure 2 shows the
services descriptors.

Figure 2: List of service descriptors.

The first two descriptors are automatically
retrieved by applying Java Class Library methods,
and the other are informed by the developer. The
Name, Return, Description, Keywords and
Implementation descriptors are stored in meta classes.

2.2 The Role Model

The role model originates from Biddle and Thomas
(1966), in which a role refers to an expected pattern
of behavior for an agent. In the Software Engineering
context, role models were applied initially for
defining a set of entities behavior in object-oriented
approaches (Cabri et al. 2010). After that, the role
model was applied for MAS design and development.

The first principle of the behavior-based approach
for MAS development is that each entity must have a
unique role, clearly defined by a coherent block of
functions or services. The importance of using roles
is emphasized by the fact that it can be adopted in
different areas of computer systems to obtain
decoupling at different levels (Cabri et al. 2010).

Ferber and Gutknecht (1998), Fasli (2003), Cabri
et al. (2003), and Zambonelli et al. (2001), among
others, stablished the basis for applying role models
in MAS development. In this work, Gaia
Methodology (Zambonelli et al., 2001) was adopted.
Gaia's main objective is to model multi-agent systems
as organizations where different roles interact. Roles
are considered only in the analysis phase.

Gaia defines roles by means of the following
attributes: (i) Responsibilities, that specify the agents
functionalities in order to perform the related roles;
(ii) Permissions are a set of rights that mainly refer to
the agent data access level; (iii) Activities are internal
computations of agents, which may involve calling

A Lightweight Microservice-oriented Platform for Development of Intelligent Agent-based Enterprise Applications

377

services, or functions that do not requires interaction
with other agents; and (iv) Protocols which specify
how an agent performing its role can interact with
other agents.

Gaia methodology enables an organizational view
of the system. The requirements definition is made
during the analysis phase and is the first step in the
development.

3 IDEA AGENT PLATFORM

This work presents IDEA, an evolution of MIDAS
(Haendchen Filho, 2007), introducing the
microservice concept for MAS development. The
architecture is based on the coexistence of several
containers that communicate by means of a front-end
server. Each container provides an environment for
development and execution of agents. Figure 3 shows
the generic architecture.

Figure 3: IDEA generic architecture.

The architecture consists of three layers: (i)
Middleware, represented by the entities Broker,
Proxy, Catalog, Manager, and Blackboard; (ii)
Services; and (iii) Agents. The middleware layer
facilitates the development by abstracting complex
developer procedures. It provides communication,
concurrency, lifecycle management, and discovery.
The Agents and Services layers enables the
development of agent-based applications.

The Agent Container (AC1) represents the
containers where applications can be instantiated. The
communication between Agent Layer and Service
Layer is done by the Proxy, in the middleware layer.
For short, the agent does not need to know who is the
service provider, a feature that ensures transparency
and decoupling from the implementation. Services
can be created independently, and agents can use and
coordinate these services in their workflow.

Agent Server (AS) is responsible for
implementing the platform integration rules,

synchronizing the containers, maintaining a catalog
of all services, and calling remote services. There is
no Proxy in AS because its role of creating agent
instances and invoke services is performed only in the
containers.

AC and AS have three interfaces: (i) HTTP for
inter-platform communication between the front-end
server AS and the AC containers; (ii) an API
interface, which enables the communication with
external applications via REST/SOAP protocols; and
(iii) a WEB-Interface for platform management and
configuration by developers.

3.1 Middleware Layer

3.1.1 Management Model

Playing the roles defined by the management model,
the Manager Agent is the most complex agent in the
architecture. It collaborates with the other agents and
has its responsibilities distributed along five
packages: manager, screens, listeners, tasks and
execution. Figure 4 shows a partial view of its internal
structure.

Figure 4: Partial view of the manager model.

The manager acts as a gateway receiving/sending
request. It is also responsible for the initialization of
the network server, platform agents, and applications
agents. It collaborates (i) with the Catalog agent to
create service wrapper objects, (ii) with the Broker to
synchronize verification requests, and (iii) with the
Proxy, handling requests for queuing messages.
Manager Screen is a management class for accessing
the graphical user interfaces.

The purpose of the execution is to allow more
intuitive and flexible operations to be carried out in
the process of building a service request. In addition,
it creates an execution pool with queuing and request

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

378

execution. This package encompasses three classes:
(i) ServiceWrapper, making very simple the
construction of a service request by enabling the
specification of parameters without concerns about
their sequence, location or type conversion; (ii)
Logger, which implements a log file that is used to
store information about the processing of requests and
statistics; and (iii) ExecutionPool, controlling the
execution pool for synchronous and asynchronous
calls.

3.1.2 Communication Model

The communication model defines the way agents
communicate and how messages traverse service
providers and requesters. Communication can occur
in synchronous or asynchronous mode.

Synchronous Communication. Communication
among agents in the synchronous mode can occur in
three ways: extra-, inter- and intra-platform. Extra-
platform messages are performed via REST-SOAP
and is received by the Manager class placed in
manager, as shown Figure 5. It manipulates messages
extracting the XML message or parameters into a
native protocol. After that, it delegates the request for
the current business process (or entity).

Figure 5: Extra-platform communication.

Inter-platform communication occurs when an
agent placed in an AC container requests a service
from another agent located in a remote container. The
request is sent to the Proxy, that processes and checks
whether it the service can be made available locally.
Otherwise, it forwards the message to the Broker
agent (in the container), that drives it to the AS. In
AS, the Broker agent identifies the service provider
container and forwards the message. Intra-platform
communication are the messages exchanged among
agents in the same container. They always are done
via Proxy that identifies the provider, creates the
instance, and invoke the service.

Asynchronous Communication. Blackboard
(Erman et al., 1980) is one of the most used

information exchange techniques in symbolic
cognitive systems. It acts as sensors that perceive
changes in the environment, addressing them to those
agents that implement the MessageListener and
ContextListener interfaces (Figure 6).

Figure 6: The blackboard architecture.

Board class is responsible for listeners registering.
When the blackboard is initialized, all agents are
registered as potential listeners, using their name as
an identifier. Agents can register with interest groups,
sending messages to everyone, to groups or to an
individual agent. During the resolution of a problem,
the actions taken by the agents gradually modify the
data structure, and the state of the solution. Board also
makes a data structure visible for all agents.

The Message class offers a set of services to keep
messages coming to the blackboard and its respective
log. Agents can access this log file and retrieve data
structured by group, date, subject, and so on.
Controller class is responsible for monitoring and
notifying agents or groups of agents about changes in
the blackboard. It acts as a sensor for agents,
capturing changes in the data structure and notifying
interested agents or groups of agents.

3.1.3 Service Model

Playing the roles defined by the Service Model, the
Proxy agent acts as a representative of the service
provider. It is responsible for processing service
requests. It plays a key role because it acts as a bridge
between agents and the presentation and data layers.
It reduces the complexity of the code and avoids the
implementation of controller classes to mediate the
two layers. Figure 7 shows the structure of the Proxy
agent, composed by two classes: Proxy and Factory.

Factory class plays an important role in making
the architecture flexible and adaptable. It performs
procedures of reconfiguration and dynamic creation
of instances. Reconfiguration makes possible for a
class running on the JVM to be replaced at run time.
Thus, new agents can be inserted dynamically into the
platform without to change the Factory class code.

A Lightweight Microservice-oriented Platform for Development of Intelligent Agent-based Enterprise Applications

379

Figure 7: Service model architecture.

3.1.4 Resource Model

Resource is a fundamental concept that underpins
much of the SOA and services. A resource description
are metadata that makes possible for a human or
software agent to discover service and provider
entities (Bhuvaneswari and Sujatha, 2011). Figure 8
shows the internal structure of the Catalog, composed
by catalog and metainfo packages. The Catalog class
(in the catalog) is a gateway, able to handle service
requests from agents via Proxy.

Figure 8: Model architecture of Catalog agent.

In the metainfo package, services are organized in
a hierarchical parent/child entity set. Each element of
the structure is represented by a metaclasse
implemented as an entity. It stores specifications of
data sources in the DataSourceInfo entity, about the
service in the ServiceInfo entity, and so on. The
resources are described in the Services.xml file.

3.2 Services Layer

Unlike agents, services are purely reactive entities,
which have no thread of execution, although they can
execute concurrently. Services may be developed in
different granularities, as shown Section 2.1. The
abstract class Services can be used as a wrapper,
capable of encapsulating data access objects, domain-
specific functionality, legacy applications, parts of
business processes and other procedures. It is

common these services to be implemented for
database access or other procedures.

3.3 Agents Layer

In the agent layer, the abstract class Agents defines an
algorithm skeleton, including concrete and abstract
methods. The concrete methods provide a set of
already implemented functions, such as the interfaces
for interacting with the architecture, the procedures
that start the agent execution thread, and the basic
signatures for the agents’ lifecycle management.
More than simple entry-points, the abstract classes
empower the agents with facilities, such event-based
listeners, and implements a blackboard interface.
Agents offers two interfaces for external
communication: (i) a provider interface, by which the
agent can receive services call or collaboration
requests; and (ii) a requester interface, by which the
agent can request external services.

4 PRACTICAL SAMPLE

In order to validate the IDEA platform, some multi-
agent systems have been developed, like VLE-MAS
(Thalheimer, 2020), a Virtual Learning Environment
(VLE). VLE-MAS works in an abstraction layer
above the operational layer of the different platforms
for distance learning, such as Moodle. The goal was
to use intelligent software agents to make current
VLEs more proactive, dynamic, and interactive.
Agents monitor the environment, organize data, send
warning signals to tutors, teachers, and promote
interactivity with students.

Figure 9 presents the VLE-MAS architecture,
including: (i) the IDEA platform; (ii) a data webhouse
for representing the data models; (iii) VLE Multi-
Agent System composed by a set of collaborative
agents; and (iv) the Moodle virtual environment.

The VLE-MAS is composed by the following
collaborative agents: (i) Tracing Agent (TAg), that
manages the data structure; (ii) Interface Agent (IAg),
that performs interactions with human actors; (iii)
Knowledge Agent (KAg), for generating predictions
and prescriptions; (iv) Pedagogical Agent (PAg),
which performs content management, learning
objects and trails; and (v) Student, Tutor and
Professor, represent virtual instances of these human
actors. TAg is presented in this sample.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

380

Figure 9: Generic architecture of the VLE-MAS system.

Gaia methodology, adapted to the context of
services, was applied for analysis and design. Figure
10 presents the role model of TAg agent. Tag’s
responsibilities are divided into three groups: (i)
Extracting and Monitoring; (ii) Storing; and (iii)
Interacting. It is possible to observe the differences in
granularity of services. Each group represents a
coarser granularity or composite service, built over a
set of finer granularities microservices. Permissions,
collaborations and interactions, in the right-side
column, state the data the agent is allowed to access.

Figure 10: TAg’s role model chart.

The TAg’s responsibilities are modeled with the
HEFLO tool (https://app.heflo.com). It has strong
adherence to the Business Process Model and
Notation (BPMN). It is intuitive and allows to
represent complex process details in an
understandable language in the business context.

Figure 11 shows a workflow of the Notifying
Triggers service, as well as collaboration and
interaction among agents and entities. The workflow
starts when the student logs in the Moodle. After
logged, the Proxy creates a student instance and sends
its ID to the TAg. Next, TAg receives a trigger
message from DBPool and writes this message in the

Blackboard. The IAg is notified, reads the message
and performs an interactive activity with the tutor,
completing the flow. DBPool is an entity of IDEA
responsible for managing access to databases.

Figure 11: Notifying Triggers service workflow.

Figure 12 presents the GUI wizard for VLE-MAS
application, including agents and the services
implemented by TAg.

Figure 12: GUI wizard displaying the TAg services.

For services reusing, clients need to know much
more than a simple service name or the address of the
service provider. Developers perceives a service as an

A Lightweight Microservice-oriented Platform for Development of Intelligent Agent-based Enterprise Applications

381

interface, including their necessary parameters. GUI
wizard provides filters for selecting services by
attributes like name, function, and keywords,
facilitating its location. In the left side, specifications
of the selected service are displayed.

5 RELATED WORKS

JADE (Bellifemine et al. 2001) is a platform that aims
to facilitate MAS development. The architecture is
based on the coexistence of several Java virtual
machines, having the communication between
different virtual machines done via Java RMI. Each
virtual machine is a basic agent container, which
provides an environment for running agents and
allows multiple agents to run concurrently on the
same host. Even though it was created almost twenty
years ago, JADE remains a reference. Its architecture
follows the reference model FIPA (2000), being
composed by three main agents in the infrastructure
layer: (i) Management System Agent, that performs
supervision and control over the access and use of the
platform; (ii) Communication Channel Agent, the
connection among agents inside/outside the platform;
and (iii) Directory Facilitator, that provides the
yellow pages service, which can be accessed by
agents and viewed by developers.

WADE (Banzi et al. 2008; Banzi et al. 2017) is a
software platform based on JADE that provides
support for the execution of tasks defined according
the workflow metaphor. WADE is a trademark of the
Telecom Italia SpA. Its key component is the
WorkflowEngineAgent class that extends the basic
Agent class of the JADE library embedding a small
and lightweight workflow engine. Besides normal
behaviors, a WorkflowEngineAgent is able to execute
workflows represented according to a WADE
specific formalism. The approach enables to combine
the expressiveness of the workflow metaphor with
programming languages like Java.

JaCaMo (Boissier et al., 2020) is a framework for
Multi-Agent Programming that combines three well-
known technologies: (i) Jason, for autonomous agents
programming; (ii) Cartago, for environment artifacts
programming; and (iii) Moise, for multiagent
organizations programming. A MAS is designed and
programmed as a set of agents which work and
cooperate inside a common environment. Agents
operating in this context follow the organizational
constraints defined by means of artifacts which
provide the agents’ functionalities and the operations
giving access to these functionalities.

Python Agent DEvelopment (PADE) (Melo et al.,
2019), is an open-source platform implemented in
Python and conceived for MAS implementation on
power systems. It is compliant with specifications of
FIPA and eases the development of solutions to
power systems based on MAS. By means of PADE,
developers are building smarter power grid systems.
Smart grids employ digital technology and are based
on highly collaborative and responsive decision-
making strategies.

6 DISCUSSION AND
CONCLUSIONS

IDEA offers several facilities and some important
advantages in comparison with the presented
approaches. First, none of the approaches are service
oriented, making difficult to adapt and reuse for
different levels of granularity. Second, it is more
difficult to design a MAS having to tackle with
composition and reuse details, instead of designing
only to meet a specific function.

For each agent service, JADE requires the
creation of a specific behavior intraclass that
describes programmatically the interface. A new
service request involves the handling of a controller
class, which needs to be programmed to manage the
communication among the application layers.
Depending on the system size, this class tends to
become extremely complex and liable to errors.

For both JADE and WADE, the specification of a
FIPA-ACL message structure specification is not
trivial. It involves a set of tags for different
communicative acts, expressions, and so on. IDEA
provides simplicity to the process of creating, sending
and receiving messages. It requires a much simpler
level of coordination for handling requests than the
approaches associated with the concept of messages
and theirs protocols.

The availability of a workflow engine in WADE,
as a JADE extension, makes the solution able to
perform workflows representing behaviors. However,
the already pointed limiting characteristics in the
FIPA core remain and can inhibit the large-scale use
in the context of business application.

Although its ability for enabling the development
under four layers of abstraction, JaCaMo is not easily
understandable. It presents a high level of difficulty
that does not match with the simplicity required for
developing large scale MAS. A particular difficulty is
understanding its conceptual model.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

382

PADE is tailored to work with advanced power
grids. So, it falls out of the enterprise and business
application context, central for the ideas presented
here.

Beyond the comparative advantages provided by
IDEA, it is important to notice that none of them
mention the ability to dynamically configure agents
and services. Intuitively, the asynchronous
communication model via blackboard used by IDEA
may be more efficient than those used in the analyzed
approaches. Handling asynchronous messages via
blackboard enables generating message logs, creating
a knowledge base that can be very useful for applying
machine learning techniques. In addition, it facilitates
the sending of broadcast messages, messages to group
of agents, or messages to a specific agent.

The main contribution of this work is a
microservice-oriented platform to facilitate and speed
up the MAS development in the business context. The
solution design seeks for a good trade-off between
usability and adherence to the standards. Excess of
adherence to standards can hinder the development
while to focus in good practices can lever this
process. As future works, the creation of a layer for
IOT handling and make IDEA an open-source
project.

REFERENCES

Banzi, M., Caire, G., Gotta, D., Pota, M. 2017. WADE -
Workflows and Agents Development Environment.
https://jade.tilab.com/wadeproject/.

Banzi, M., Caire, G., Gotta, D., 2008. WADE: A software
platform to develop mission critical applications
exploiting Agents and Workflows. In AAMAS 2008, 7th
International Joint Conference on Autonomous Agents
and Multiagent Systems: Industrial Track.

Bellifemine, F., Poggi, A., Rimassa G., 2001. JADE: a
FIPA compliant agent development environment. In
AGENTS '01, Fifth international Conference on
Autonomous Agents. ACM Press.

Boissier, O., Bordini, R. H, Hübner, J., Ricci A., 2020.
Multi-Agent Oriented Programming: programming
MAS using JaCaMo, MIT Press.

Bouman, R., Dongen, J. V., 2009. Pentaho Solutions:
Business Intelligence and Data Warehousing with
Pentaho and MySQL, Wiley Publishing.

Bhuvaneswari, N. S., Sujatha, S., 2011 Integrating SOA
and Web Services, River Publishers.

Cabri G., Leonardi L., Ferrari L., Zambonelli F., 2010.
Role-based software agent interaction models: a survey.
The Knowledge Engineering Review, 25(4):397-419.

Cabri G., Leonardi L., Zambonelli F., 2003. BRAIN: a
framework for flexible role-based interactions in

multiagent systems. In CoopIS, 2003 Conference on
Cooperative Information Systems.

Collier, R. W., Russell, S. E., Lillis, D., 2015. Reflecting on
Agent Programming with AgentSpeak. In PRIMA
2015, 18th International Conference Principles and
Practice of Multi-Agent Systems.

Crow, T., Luxton-Reilly, A., Wuensche, B., 2018.
Intelligent tutoring systems for programming
education. In ACE ’18, 20th Australasian Computing
Education Conference, p. 53-62.

Dragoni, N., Giallorenzo, S., Lluch, A., Montes, F.,
Mustafin, R., Safina, L. 2017. Microservices:
Yesterday, today, and tomorrow. In Present and
Ulterior Software Engineering. Springer. p. 195–216.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., Reddy, D. R.,
1980. The Hearsay-II Speech Understanding System:
Integrating Knowledge to Resolve Uncertainty. ACM
Computing Survey 12:213-253.

FIPA, 2000. FIPA Reference FIPA-OS V2.1.0, Nortel
Networks Corporation.

Haendchen Filho, A., Prado, H. P., Lucena, C.J.P. 2007. A
WSA-based architecture for building multiagent
systems. Proceedings of the 6th international joint
conference on Autonomous agents and multiagent
systems, AAMAS 2007.

Higashino, M., Kawato, T., Kawamura, T., 2018. A Design
with Mobile Agent Architecture for Refactoring A
Monolithic Service into Microservices. Journal of
Computers, 13(10).

Kulkarni, N., Dwivedi, V. 2008. The role of service
granularity in a successful SOA realization – A Case
Study. In 2008 IEEE Congress on Services.

Lewis, G. A., Smith, D. B., 2007. Four pillars of Service-
Oriented Architecture. The Journal of Defense
Software Engineering, Carnegie Mellon University,
Software Engineering Institute.

Lewis, G. A., Smith, D. B., Kontogiannis, K., 2010. A
Research Agenda for Service-Oriented Architecture:
Maintenance and Evolution of Service-Oriented
Systems. Technical Note, CMU/SEI-2010-TN-003.

Melo, L. S., Sampaio, R. F., Leão, R. P. S., Barroso, G. D.,
Bezerra, J. R., 2019. Python‐ based multi‐ agent
platform for application on power grids. International
Transactions on Electrical Energy Systems, 29(6).

Silva, B. D, 2017. Dossiê: Modelo de Confiança para
Sistemas Multiagentes. PhD Dissertation – Pontifícia
Universidade Católica do Paraná, v. 1, 2017. 134 p.

Thalheimer, J. M., 2020. A tracing agent in the context of
collaborative agents for monitoring and managing the
data structure in virtual learning environments. MSc
Thesis. UNIVALI. (in Portuguese).

Zambonelli, F., Jennings, N. R., Wooldridge, M., 2001.
Organisational Abstractions for the Analysis and
Design of Multi-agent Systems. In P. Ciancarini, M.J.
Wooldridge, Agent-Oriented Software Engineering,
LNCS, 1957:235-251, Springer-Verlag.

A Lightweight Microservice-oriented Platform for Development of Intelligent Agent-based Enterprise Applications

383

