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Abstract: The identification of the vocation of an unknown heavy-duty vehicle is valuable to parts’ manufacturers.
This study proposes a methodology for vocation identification that is based on clustering techniques. Two
clustering algorithms are considered: K-Means and Expectation Maximization. These algorithms are used
to first construct the operating profile of each vocation from a set of vehicles with known vocations. The
vocation of an unknown vehicle is then determined by using one-versus-all or one-versus-one assignment.
The one-versus-one assignment is more desirable because it scales with an increasing number of vocations
and requires less data to be collected from the unknown vehicles. These characteristics are important to
parts’ manufacturers since their parts may be installed in different vocations. Specifically, this paper compares
the one-versus-one bracket and the one-versus-one round-robin tournament assignments to the one-versus-all
assignment. The tournament assignments are able to scale with an increasing number of vocations. However,
the bracket assignment also benefits from a linear time complexity. The results show that despite its scalability
and computational efficiency, the bracket vocation identification model has a high accuracy and a comparable
precision and recall. The NREL Fleet DNA drive cycle dataset is used to demonstrate these findings.

1 INTRODUCTION

The ability to identify the vocation of a heavy-duty
vehicle from drive cycle data collected during the ve-
hicle’s daily operation is valuable to many parts’ man-
ufacturers in order to track the end-use of the vehi-
cle. Electronic components and sensors are becoming
increasingly pervasive in vehicles. This led to new
sources of data. In fact, both OEMs and parts’ manu-
facturers now have access to a large stream of opera-
tional data that can be acquired during maintenance or
configuration updates, with the vehicle owner’s con-
sent. However, as opposed to OEMs, parts’ manufac-
turers do not typically have knowledge of the actual
use, application or vocation of the vehicle. Moreover,
the same part can be deployed in a large number of
varying vocations. The classification of vehicle us-
age and underlying parts into vocations benefits the
component designers who likely do not have complete
awareness of how the vehicle will be used. This clas-
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sification may be obvious in the OEM service chan-
nel where direct physical interaction with the vehicle
allows the identification of the vocation of the vehi-
cle and consequently of the components and chassis
(e.g., refuse truck, cement mixer, dump truck, coach
bus, transit bus, etc.) However, this information is not
directly accessible to the parts’ manufacturer. Voca-
tion classification can be used to: 1) detect when the
component is not being used in a manner consistent
with the intended vocation (e.g., a coach bus operat-
ing as a transit bus) or 2) identify field issues that are
specific to the operational use of a given component
in the vehicle. These issues can then be addressed via
field action (e.g., part configuration updates) or future
design improvements to the component.

This paper presents a methodology for identifying
the vocation of an unknown heavy-duty vehicle using
features collected from the vehicle’s daily drive cy-
cles. The methodology follows a two-step approach.
First, the profile of each vocation is established us-
ing a set of vehicles with known vocations. Second,
the daily drive cycles collected from the unknown ve-
hicle are compared to all vocation profiles and the
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most likely vocation is selected. The methodology is
demonstrated using two widely used clustering algo-
rithms K-means (KM) (Chakraborty et al., 2020) and
expectation maximization (EM) (Shin et al., 2019).
However, it can be extended to other clustering al-
gorithms such as particle swarm optimization (PSO)
(Kennedy and Eberhart, 1995).

Most classification algorithms are best at handling
two classes (Athimethphat and Lerteerawong, 2012):
a positive and a negative class. These binary classi-
fiers have been extended to multiclass models using
the one-versus-all (Scholkopf and Smola, 2001) and
the one-versus-one methodology (Daengduang and
Vateekul, 2017). The one-versus-all consists of an en-
semble of classifiers where each classifier is trained to
correctly predict one positive class while considering
all the remaining classes as negative. This method
has a linear complexity with respect to the number of
vocations. The one-versus-one is also an ensemble of
classifiers. However, a classifier is developed for each
pair of classes leading to a quadratic complexity.

Vocation identification for heavy duty-vehicles is
a multiclass application and the proposed methodol-
ogy was inspired by the one-versus-one classification
approach which can accommodate a large number of
vocations. The daily measurements of the unknown
vehicle are compared to two vocations at a time in
a tournament bracket. However, as opposed to the
traditional one-versus-one classification, a vocation is
eliminated in each round making the approach lin-
early scalable with respect to the number of vocations.
The proposed methodology is applied to 5 vocations
from the NREL fleet DNA (NREL, 2019) dataset.

2 RELATED WORK

The purpose of a classifier is to assign a given data
record to one of the pre-defined classes. Since voca-
tions are known a-priori in our study, using a classifier
with supervised learning would be expected. Some
of the widely recognized classification algorithms in-
clude support vector machine (SVM) (Scholkopf and
Smola, 2001), random forest (RF) (Breiman, 2001),
and neural networks. Most of these algorithms are in-
herently two-class (binary) classifiers. However, they
have been extended to accommodate multiclass ap-
plications. For instance, SVM was applied to multi-
class classifiers using one-versus-one and one-versus-
all ensemble learners (Scholkopf and Smola, 2001).
Similarly, neural networks can use multiple nodes in
the output layer where each node corresponds to a
class (Sagi and Rokach, 2018). RF can also support
multiple classes if multiway trees are used instead of

binary decision trees (Murphy and Pazzani, 1991).
The purpose of a clustering algorithm is to: a)

identify clusters with similar records, b) select a rep-
resentative member for each cluster and c) adequately
assign a record to a cluster. These three aspects vary
from one clustering algorithm to the next. As opposed
to a classifier, the first step is performed using unsu-
pervised learning. For example, KM defines the sim-
ilarity between two records according to a distance
measure. The smaller the distances the more similar
are the records. Other similarity criteria that are opti-
mized to specific applications are proposed in (Kane-
maru et al., 2013), and (Wang et al., 2020).

Once a cluster is identified, a representative mem-
ber, called the centroid is selected and refined itera-
tively as members are added to or removed from the
cluster. The centroid is typically calculated by averag-
ing across all the members of the cluster. Other clus-
tering algorithms, such as PSO, derive their efficiency
from the selection of appropriate centroids. Centroids
are mapped to particles in PSO. Each particle moves
in the feature space and its velocity is updated based
on the best position that the particle has found so far
and the current global best position across all parti-
cles.

The assignment of a record to a cluster also varies
from one clustering algorithm to the next. For KM,
each record is assigned to exactly one cluster based
on the distance between the record and the centroid of
the cluster. This assignment is referred to as a “hard”
assignment. EM uses a “soft” assignment (Wahba,
2002). That is, each record has a probability of be-
longing to each cluster.

Other important aspects of clustering algorithms
include the relationship among the clusters and the
appropriate number of clusters. Most clustering algo-
rithms assume that all clusters are at the same level.
This type of clustering is referred to as partitioning
(Ester et al., 1996). This is also the type of clustering
being used in this paper. In contrast, hierarchical clus-
tering (McInnes and Healy, 2017) allows some clus-
ters to be a subset of others.

Clustering has been used in several vehicular ap-
plications. For example, it was used in (Kanemaru
et al., 2013) for sharing of traffic congestion informa-
tion. Each cluster of vehicles was used to represent a
given traffic flow thereby allowing the vehicle at the
head of the flow to inform the vehicle at the tail of
the flow of any traffic congestion. In (Wang et al.,
2020), clustering was used to detect anomalous cab
trajectories. Each of the above applications innovate
by proposing a customized similarity measure for the
target application.

The fleet DNA dataset used in this study was in-
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troduced and extensively analyzed in (Duran et al.,
2018). Indeed, dimension reduction was performed
on the dataset using principal component analysis
(PCA) and cross-correlation to identify the eight most
expressive features in the dataset. These were found
to be aerodynamic speed, characteristic acceleration,
percent of total cycle distance accumulated at speeds
below 55 mph, percent of total cycle time duration
accumulated at vehicle speeds of 0 mph, number of
vehicle stops per mile, mean (nonzero) driving speed,
maximum driving speed and standard deviation of
(nonzero) driving speed. Using these eight features,
the study found that the first 6 components of PCA
were able to describe 99% of the variance in the data.
KM was also used to cluster all the drive cycles in the
fleet DNA dataset into three clusters.

The above study by NREL helped guide the
methodology proposed in this paper. That said, the
present paper addresses a different problem. The
NREL study (Duran et al., 2018) aims at identifying
a limited number of representative drive cycles across
all US commercial fleets. The aim of the present pa-
per is to identify the specific vocation of an unknown
vehicle. The methodology is also different since it
demonstrates the use of a clustering algorithm for vo-
cation identification. In fact, while targeting a differ-
ent application, the methodology proposed in this pa-
per shares this aspect with the approach for the detec-
tion of anomalous cab trajectories proposed in (Wang
et al., 2020). The algorithm proposed in this paper
enhances this methodology by showing that a one-
versus-one bracket assignment can be efficiently ap-
plied to a large number of classes.

3 METHODOLOGY

The proposed methodology creates a model that iden-
tifies the vocation of an unknown vehicle. In the
next subsections, we describe the dataset, the train-
ing phase of the model which establishes the operat-
ing profile of each vocation, and the three vocation
assignment algorithms.

3.1 Dataset

Each vehicle in the Fleet DNA dataset is represented
by a set of records where every record is an aggre-
gation of the drive cycle measurements over a single
day. The features of the records used in this study
are shown in Table 1. Their definitions are available
in (Duran et al., 2018) and references therein. For
convenience, some of these definitions are reproduced
below:

• Total Average Speed: Average speed over the trip
(including zero speed points).

• Driving Average Speed: Average speed over the
trip not including the zero speeds.

• Zero Seconds: Number of seconds at zero speed.

• Average Kinetic Power Density Demand: Mean
of the kinetic power density demand (with respect
to mass).

Table 1: Feature list.

Feature
1 Max Speed (mph)
2 Total Average Speed (mph)
3 ∗Total Speed Standard Deviation (mph)
4 Driving Average Speed (mph)
5 Driving Speed Standard Deviation (mph)
6 Zero Seconds (s)
7 Distance Total (miles)
8 Total Stops (count)
9 ∗Average Kinetic Power Density De-

mand (W/kg)
10 ∗Cumulative Instantaneous Kinetic En-

ergy Density (J/kg)
11 ∗Characteristic Acceleration (m/s2)
12 ∗Aerodynamic Speed (m/s)
13 Max Acceleration ( f t/s2)
14 Average Acceleration ( f t/s2)
15 ∗Max Deceleration ( f t/s2)

The list of the 15 features shown in Table 1 was
selected among the 350 available variables in the orig-
inal dataset using dimension reduction. Some of the
variables in the original data identify the vehicle, the
deployment or the vocation. These were used to label
the data. A large number of variables were removed
because they had a linear or an inverse relationship
with another variable (e.g., Characteristic Acceler-
ation and Characteristic Deceleration, Average Ac-
celeration and Average Deceleration). Variables re-
lated to potential energy (e.g., Cumulative Instanta-
neous Potential Energy Density and Average Poten-
tial Power Density Demand) were also removed be-
cause they are more dependent on the road elevation
than on the vocation of the vehicle. Moreover, daily
records with Zero Seconds > 18,000s were also re-
moved from all the vehicles because this is an indi-
cation that the vehicle was not in operation for more
than 5 hours in the given day.

The Fleet DNA dataset includes eight vocations:
Bucket Trucks, Class 8 Tractors, Delivery Vans, De-
livery Trucks, Transit Buses, Refuse Trucks, School
Buses, and Service Vans. The latter three vocations
were eliminated because they did not include suffi-
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cient data. For the remaining vocations, the vocation
identification model followed a training/testing split
at the vehicle level. This prevents information leakage
that may result from allowing records from the same
vehicle to participate in both the training and the test-
ing of the model. After assigning a vehicle to either
training or testing, 13 records were randomly sampled
without replacement from each vehicle. Each random
selection was considered as a separate vehicle. This
effectively allows a given vehicle to appear multiple
times in either the training or testing vehicle pools.
However, the underlying drive cycle will always be
unique as per the sampling policy. Moreover, to keep
the training records balanced across vocations, 10 ve-
hicles were selected per vocation for training. The
remaining vehicles were used for testing. This split
approach led to variations in the number of vehicles
available for testing across the vocations (Table 2). In
total, 50 vehicles are used for training and 81 are used
for testing across the 5 vocations.

Table 2: Number of test vehicles in each vocation.

Vocation Total num.
of vehicles

Num.
of test
vehicles

Bucket Truck (BT) 12 2
Class 8 Tractor (CT) 43 33
Delivery Truck (DT) 29 19
Delivery Van (DV) 26 16
Transit Bus (TB) 21 11

Each vocation represents a group of vehicles that
perform similar tasks. A detailed description of each
vocation in the fleet DNA is provided in (NREL,
2019). Some of the vocations (e.g., Transit Bus) have
a distinct operational profile while others have an op-
erational profile that can be confounded with the re-
maining vocations. Delivery Vans (DV) and Delivery
Trucks (DT) are expected to have similar operating
profiles since the main difference between these two
vocations is the vehicle weight, with DT vehicles be-
ing typically heavier than DV vehicles. Bucket Trucks
(BT) perform tasks at the job site and will possibly
spend less time driving from one point to another.
Thus, compared to DT, DV and TB vehicles, the op-
erational profile of BT vehicles should show lower
distances traveled and lower average speeds. Class
8 Tractors (CT) are typically used to haul a trailer
from a source (e.g., distribution center) to a destina-
tion (e.g., customer site). Therefore, CT vehicles are
expected to travel long distances over highways com-
pared to DT or DV vehicles. However, according to
the vocation characteristics in (NREL, 2019), the CT
vocation consists of various types of class 7 and 8 ve-
hicles that can be used for different tasks ranging from

food delivery to long-hauling tasks. This variation ex-
plains some of the results discussed in Section 4.

3.2 Model Development

The training is executed for each vocation indepen-
dently. It starts by randomly selecting a set of ini-
tial centroids for the target vocation from the avail-
able training data. During each iteration, records from
the training data are compared to each centroid of the
vocation. After processing all records, the centroids
are updated and a new training iteration begins. The
records and centroids are denoted as follows:

• ri = (ri[1],ri[2], ...,ri[n]) represents a record
where each element ri[.] of the input vector ri is
the value of one of the input features and n is the
total number of features.

• Cv = {cv1,cv2, ...,cvm} is the set of centroids of
vocation v where each centroid represents a clus-
ter of the vocation v∈V= {BT,CT,DV,DT,T B}.
The total number of centroids, m, for each voca-
tion in this study is fixed.

Under the KM algorithm, each record is assigned
to exactly one cluster which is selected according to
the minimum distance between the record and the
centroids of all clusters. In the case of EM, the as-
signment of a record to a cluster follows a probabilis-
tic measure. This measure is derived using Bayes’
rule, with the assumption that each feature has a nor-
mal distribution and that all the features are indepen-
dent. At the end of each training iteration of either
the KM or EM algorithms, the centroids of the clus-
ters are updated according to the record assignment
derived during the iteration.

3.3 Feature Reduction

Even though the starting dataset was manually re-
duced from 350 parameters to 15 features as de-
scribed in Section 3.1, a minimalist model is desir-
able in order to limit the deployment cost of the voca-
tion identifier and promote its applicability in produc-
tion. This minimalist model should only include the
features that are necessary and practical for vocation
identification. Feature reduction was performed using
the wrapper induction method (Khalid et al., 2014).
During each iteration of the feature reduction process,
the standard deviation of each target feature is eval-
uated for each cluster and the feature is removed if
the resulting value is below a certain pre-set threshold
across all the clusters. One feature was considered
per iteration until none of the features had a standard
deviation below this threshold. In addition, features
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that are easier to collect (e.g., vehicle speed) were fa-
vored over features that may not be readily available
(e.g., characteristic acceleration and kinetic energy
density). In the remainder of the paper, the model
with the full feature set is labeled FFmodel and the
reduced feature model is labeled RFmodel.

3.4 Vocation Assignment

Once the model is trained, it is exposed to a record ri
from an unknown vehicle. That is, for each vocation
v and centroid cv j of v, the conditional probability
P(cv j|ri) is calculated. In the case of KM, this prob-
ability measure is binary. The record is then assigned
to the vocation - vT (ri) - with the largest probability
according to the following equation:

vT (ri) = argmax
v∈V

{
argmax
1≤ j≤m

{P(cv j|ri)}

}
. (1)

Equation 1 is used for a single daily record from an
unknown vehicle. When the unknown vehicle has
multiple records, each record can be assigned to a dif-
ferent vocation and a consensus is needed to select
the winning vocation. Let R = {r1,r2, ...,rp} repre-
sent the set of records of the unknown vehicle. The
winning vocation of the unknown vehicle is the vo-
cation that is assigned the highest number of records.
This process is defined by the following equation:

vocT (R) = argmax
v∈V

{
p

∑
i=1

vT (ri) = v

}
. (2)

Equations 1 and 2 show the traditional one-versus-
all (T ) assignment where all the vocations compete
for the same vehicle at once. This assignment has an
important limitation since the wrong vocations may
weaken the chances of the correct vocation by acquir-
ing several of the records of the unknown vehicle.
This aspect is particularly important for the current
application because the number of vocations can be
large and the number of daily records available for
each unknown vehicle is small.

vR(ri,a,b) = argmax
v∈{a,b}

{
argmax
1≤k≤m

{P(cvk|ri)}

}
(3)

vocR(R) = argmax
v∈V

{
∑
a6=v

p

∑
i=1

vR(ri,a,v) = v

}
(4)

In order to mitigate this potential limitation, the
one-versus-one round-robin tournament (R) assign-
ment was investigated. This assignment consists of
multiple rounds where each vehicle is exposed to ev-
ery combination of two vocations. The vocation of

choice is the one that is assigned the most records
across all of the rounds for a given vehicle as defined
in (3) and (4).

Unfortunately, the round-robin assignment has a
quadratic time complexity with respect to the number
of vocations. The tournament bracket (B) also fol-
lows the one-versus-one assignment and consists of
multiple rounds where the unknown vehicle is only
exposed to two vocations in each round. However,
in the bracket assignment, a vocation is eliminated in
each round. The vocation that is retained is the one
that collects the highest number of records from the
unknown vehicle in the round and this vocation pro-
ceeds to the next round. The assignment concludes
when only one vocation remains.

Equation (5) shows the selection between two vo-
cations a and b for one round of the bracket assign-
ment. This equation is applied recursively in order to
determine the winning vocation as shown in (6).

wB(R,a,b) = argmax
v∈{a,b}

{
p

∑
i=1

vR(ri,a,b) = v

}
(5)

vocB(R) = wB (R,vc,wB(R,vc−1,vc−2)
)

(6)

where c is the number of vocations in V. As opposed
to the round-robin assignment, Equation (6) is only
executed c−1 times allowing the bracket assignment
to have a linear time complexity with respect to the
number of vocations.

4 RESULTS AND DISCUSSION

The one-versus-all, round-robin and bracket assign-
ments are applied to the dataset described in Table 2.
During training, the centroids of each vocation are de-
termined using 130 daily records from the vocation.
The model is then exposed to the test vehicles.

4.1 One-versus-All Assignment

Table 3 shows the confusion matrix of the one-versus-
all FFmodel with KM and EM clustering. The results
are presented in this manner in order to facilitate the
analysis of confounding vocations and the identifica-
tion of vocations with unique profiles. At the end of
the section, the aggregated accuracy, precision and re-
call of the models are discussed.

The assignment of a vehicle to a vocation follows
(2). Each row in Table 3 represents a vocation. The
entries are the number of vehicles of the target voca-
tion (row) that are assigned to a given vocation (col-
umn). The numbers in between parenthesis represent
the number of ties for each vocation. For example, the
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CT vocation has a total of 33 test vehicles (Table 2).
Using the KM algorithm, 20 out these vehicles were
correctly assigned to the CT vocation. The remain-
ing 13 vehicles were incorrectly assigned as follows:
6 to BT, 3 to DT, 2 to DV, 1 to TB and one vehicle
was a tie between DT and TB. The KM FFmodel was
able to correctly classify 51 out of the 81 test vehicles
whereas the EM FF model shows 59 true positives.

Table 3: Vocation assignment of the test vehicles using the
traditional one-versus-all KM and EM FFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 6 20 3(1) 2 1(1)

KM DT 2 0 10 4(1) 2(1)
DV 4 1 1 8 2
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 2 21(1) 4 1 4(1)

EM DT 0 0 15 4 0
DV 4 1 1 10 0
TB 0 0 0 0 11

None of the BT vehicles were assigned to a dif-
ferent vocation under the two FFmodels. Despite the
low number of test vehicles in this vocation (Table 3),
this is still an indication of the unique BT profile. TB
is another vocation with a distinct operational profile
with no vehicles incorrectly classified under both FF-
models. The large number of DT vehicles that are
assigned to the DV vocation indicates that the two vo-
cations may be similar as discussed in Section 3.1.

Table 4: Vocation assignment of the test vehicles using the
one-versus-all KM and EM RFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 4 22 2(1) 3(1) 1

KM DT 2(1) 1 11(1) 1(1) 2(1)
DV 4(2) 1 1(1) 7(1) 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 3 21(1) 4(1) 0(1) 3(1)

EM DT 1 1 14 3 0
DV 4(1) 0(1) 0 10(2) 0
TB 0 0 0 0 11

Feature reduction as described in Section 3.3 was
performed on the models. The features that were
eliminated include Total Speed Standard Deviation
and Average Kinetic Power Density Demand. The
eliminated features are indicated by a ’∗’ in Table 1.
The reduced feature model (RFmodel) includes only
9 features which can all be derived from two readily

available parameters: speed and distance traveled.
Table 4 shows the confusion matrix of the RF-

model under KM and EM. The model generated 53
and 58 true positives with KM and EM, respectively.
The number of true positives for the reduced and full
feature models are similar. However, the number of
ties is higher for the reduced feature model. This is
expected as fewer parameters are available to distin-
guish among all the vocations at the same time. The
one-versus-one assignment was introduced to help ad-
dress this limitation.

4.2 Round-robin Assignment

The KM and EM round-robin FFmodel models cor-
rectly classified 50 and 57 test vehicles, respectively
(Table 5). The number of true positives is comparable
to that of the corresponding traditional one-versus-all
model. However, the round-robin assignment does
not suffer from ties. The numbers of true positives
for the KM and EM RFmodels with round-robin as-
signment are 55 and 58, respectively (Table 6).

Table 5: Vocation assignment of the test vehicles using the
round-robin KM and EM FFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 5 17 7 2 2

KM DT 1 0 12 5 1
DV 5 1 1 8 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 2 19 4 0 8

EM DT 0 0 15 4 0
DV 4 0 2 10 0
TB 0 0 0 0 11

As in the case of the one-versus-all assignment,
EM performs better than KM for the round-robin
models. Moreover, compared to the one-versus-all
assignment, the round-robin assignment has higher
number of true positives for all vocations except for
the CT vocation. As discussed in Section 3.1, this ex-
ception may be due to the fact that the CT vocation is
actually a combination of two or more vocations.

4.3 Bracket Assignment

Tables 7 and 8 show the bracket assignment for the
FFmodel and RFmodel, respectively. Similar to the
round-robin assignment, the bracket assignment does
not suffer from ties and the number of true positives
generated by the respective models is nearly the same.
In fact, the model with the highest number of true pos-
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itives is the bracket RFmodel. While the difference in
performance may be marginal, the bracket RF model
offers several advantages: It scales linearly with re-
spect to the number of vocations; it is less susceptible
to an increasing number of vocations since only two
vocations are compared at a time; and it uses a re-
duced feature set that is readily available.

Table 6: Vocation assignment of the test vehicles using the
round-robin KM and EM RFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 4 19 6 3 1

KM DT 0 1 13 2 3
DV 2 1 2 10 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 4 20 6 1 2

EM DT 0 1 15 3 0
DV 5 0 0 11 0
TB 0 0 1 0 10

Table 7: Vocation assignment of the test vehicles using the
bracket KM and EM FFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 5 19 6 1 2

KM DT 1 0 12 5 1
DV 5 1 1 8 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 2 19 4 1 7

EM DT 0 0 15 4 0
DV 4 1 1 10 0
TB 0 0 0 0 11

Table 8: Vocation assignment of the test vehicles using the
bracket KM and EM RFmodels.

BT CT DT DV TB
BT 2 0 0 0 0
CT 4 20 5 3 1

KM DT 1 1 13 1 3
DV 2 2 1 10 1
TB 0 0 0 0 11
BT 2 0 0 0 0
CT 4 21 4 1 3

EM DT 2 1 13 3 0
DV 5 0 0 11 0
TB 0 0 0 0 11

The above results focus on the true positive as-
signments generated by each model. They show that
the bracket model delivers the same or higher number
of correct assignments compared to the other models

while being computationally more efficient than the
round-robin model and more scalable than the one-
versus-all model. In the remainder of this section, we
also show that these benefits do not come at the ex-
pense of a significantly lower precision or recall.

The average accuracy of the models across all vo-
cations is 85% or higher. The precision and recall
of these models are included in Table 9. This table
shows that for each of the three assignments, EM has
higher precision and recall than KM. The results also
show that the reduced feature models have higher pre-
cision and recall compared to the full feature models.
Finally, the model with the highest precision and re-
call (i.e., 75.3%) is the one-versus-all RF model. The
bracket RFmodel has a higher precision and recall
(71.6%) than all round-robin models.

5 CONCLUSIONS

This paper introduced a methodology for vocation
identification of heavy duty vehicles when the number
of vocations is expected to be large and the number of
records available for each unknown vehicle is small.
The profile of the vocation is first developed using a
set of training vehicles. This profile consists of a set
of centroids that represent the operating modes of the
vocation. The unknown vehicle is then assigned to a
vocation using a tournament bracket. In each round,
two vocations are compared to the unknown vehicle
and the unlikely vocation is eliminated. This assign-
ment was compared to the one-versus-all and round-
robin assignments. Two models were considered. The
first was based on 15 features. Some of these features
included complex variables which may not be acces-
sible to the parts’ manufacturer. The second model
is more practical and was limited to 9 features that
can be derived solely from speed and distance trav-
eled. Compared to the full feature model, the reduced
feature model had higher precision and recall.

Table 9: Precision (P) and recall (R) of the models with the
three different assignments.

One-versus-all Round Robin Bracket
KM EM KM EM KM EM

FFmodel
P 62.2 73.8 61.7 70.4 64.2 70.4
R 63.0 72.8 61.7 70.4 64.2 70.4

RFmodel
P 66.3 75.3 67.9 67.9 69.1 71.6
R 65.4 75.3 71.6 71.6 69.1 71.6

With the exception of the CT vocation, the number
of true positives for each vocation using the bracket
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assignment is also either the same or higher than the
true positives obtained using the one-versus-all and
the round-robin assignments. The bracket assignment
was introduced to avoid some of the drawbacks of the
one-versus-all assignment for this application. The
latter assignment inherently implies the availability of
a large number of records for the unknown vehicles
as these records are exposed to all the clusters of all
the vocations at once. The bracket assignment over-
comes this limitation by comparing two vocations at
a time and was shown in this study to have a com-
parable performance to that of the one-versus-all as-
signment. The bracket assignment was also compared
to a round-robin assignment which scales with an in-
creasing number of vocations. The results show that
the bracket assignment has higher precision and recall
but most importantly has lower time complexity.

There are several directions that are being consid-
ered for future work including exploring the possi-
bility of reducing vocation confounding by applying
weights to specific features. In addition, the proposed
vocation identification algorithm relies on features ag-
gregated daily from the duty cycle of the vehicle over
a period of 13 days. Using data points collected over
shorter sample periods will enhance the applicability
of the algorithm to a wide range of vehicles.
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