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Abstract: A class of nonstationary Bernoulli distribution is considered in terms of Bayes decision theory. In this nonsta-
tionary class, the Bernoulli distribution parameter follows a random walking rule. Even if this general class is
assumed, it is proved that the posterior distribution of the parameter can be obtained analytically with a known
hyper parameter. With this theorem, the Bayes optimal prediction algorithm is proposed assuming the 0-1 loss
function. Using real binary data, the predictive performance of the proposed model is evaluated comparing to
that of a stationary Bernoulli model.

1 INTRODUCTION

Binary data is popular subject for data analysis and
is a topic of frequent research (Cox, 1970). From
the perspective of Bayesian statistics, the stationary
Bernoulli distribution and the stationary binomial dis-
tribution are frequently used to deal with binary data
(Press, 2003) (Bernardo and Smith, 2000) (Berger,
1985). For Bayesian posterior parameter estimation
under the stationary Bernoulli and binomial distribu-
tions, one of the most reasonable approaches is to as-
sume the beta distribution as the prior of the param-
eter. This assumption drastically reduces the compu-
tational cost of obtaining the posterior distribution of
the parameter using the Bayes theorem, and this prior
is called the natural conjugate (Bernardo and Smith,
2000) (Berger, 1985).

In contrast, there have been many approaches to
generalize the stationarity of the parameter by consid-
ering certain aspects of the nonstationarity of the pa-
rameter. In general, assuming the nonstationarity of
parameters requires additional parameters compared
to the stationary model. Furthermore, if the Bayesian
approach is used, it is often difficult to save computa-
tional cost when obtaining the posterior of the param-
eter. This point depends on the class of nonstationar-
ity of the parameter, and one important result is the
SPSM, Simple Power Steady Model (Smith, 1979), to
the best of author’s knowledge. Under SPSM, it is
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guaranteed that the posterior of the parameter can be
obtained analytically. Similar aspects were discussed
from the generalized perspective of the Kalman filter
(Harvey, 1989). Some researchers have tried to apply
this result to the discrete probability distributions and
proposed predictive algorithms (Koizumi et al., 2009)
(Koizumi, 2020) (Koizumi et al., 2012) (Yasuda et al.,
2001). Koizumi et al. assumed a nonstationary Pois-
son distribution and proposed the Bayes optimal pre-
diction algorithm under the known nonstationary hy-
per parameter (Koizumi et al., 2009). Koizumi re-
cently generalized this prediction algorithm to the
credible interval prediction (Koizumi, 2020). They
obtained better predictive performance compared to
a stationary Poisson distribution with real web traffic
data. They also assumed a nonstationary Bernoulli
distribution to predict SQL injection attacks in the
field of network security (Koizumi et al., 2012). How-
ever, they defined an incorrect class of nonstationary
parameters. Furthermore, they did not show any proof
that the posterior parameter distribution was analyti-
cally obtained under their nonstationary model. Ya-
suda et al. assumed a similar nonstationary Bernoulli
distribution and proposed the Bayes optimal predic-
tion algorithm under the known nonstationary hyper
parameter (Yasuda et al., 2001). However, they did
not present any proof that the posterior parameter dis-
tribution can be obtained analytically under the non-
stationary model again.

In this paper, a class of nonstationary Bernoulli
distribution is proposed. This class has only one ad-
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ditional hyper parameter to express the nonstationar-
ity of the Bernoulli parameter. Moreover, the pre-
diction problem is considered under the proposed
nonstationary Bernoulli distribution. Bayes decision
theory (Weiss and Blackwell, 1961) (Berger, 1985)
(Bernardo and Smith, 2000) is a powerful theoret-
ical framework to define the prediction error. In
terms of Bayes decision theory, the predictive esti-
mator that minimizes the average predictive error is
called the Bayes optimal prediction. Considering this
point, this paper proposes the Bayes optimal predic-
tion algorithm under a certain class of nonstation-
ary Bernoulli distribution, if the nonstationary hyper
parameter is known. The predictive performance of
the proposed algorithm was evaluated with real bi-
nary data. When considering real data, the above-
mentioned hyper parameter should be estimated. For
this purpose, this study takes the empirical Bayesian
approach, and the objective parameter is estimated by
the approximate maximum likelihood estimation with
numerical calculation.

The remainder of this paper is organized as fol-
lows. Section 2 provides the basic definitions of
the nonstationary Bernoulli distribution, and some
lemmas and corollaries in terms of the hierarchical
Bayesian modeling approach. Section 3 begins with
the basic definitions in terms of Bayes decision the-
ory, then proves the main theorems of the proposed
nonstationary Bernoulli distribution, discusses the hy-
per (nonstationary) parameter estimation, and pro-
poses the Bayes optimal prediction algorithm. Sec-
tion 4 gives some numerical examples with real bi-
nary data. Section 5 discusses the results. Section 6
concludes this paper.

2 HIERARCHICAL BAYESIAN
MODELING WITH
NONSTATIONARY BERNOULLI
DISTRIBUTION

2.1 Preliminaries

Let t = 1,2, . . . be a discrete time index and Xt = xt
be a discrete random variable at t. Assume that
xt ∈ {0,1} and Xt ∼ Bernoulli(θt) where 0 ≤ θt ≤ 1
is a nonstationary parameter. Then the probability
function of the nonstationary Bernoulli distribution
p
(
xt
∣∣ θt
)

is defined as the following:

Definition 2.1. Nonstationary Bernoulli Distribution

p
(
xt
∣∣ θt
)

= θ
xt
t (1−θt)

1−xt , (1)

where 0≤ θt ≤ 1. 2

Definition 2.2. Function for Θt ,At and Bt
Let Θt = θt ,At = at , and Bt = bt be random vari-

ables where At and Bt are mutually independent, then
a function for Θt is defined as,

Θt =
At

At +Bt
, (2)

where 0 < at , 0 < bt . 2

Definition 2.3. Nonstationarity of At ,Bt
Let Ct = ct ,Dt = dt be random variables, then the

nonstationary functions for At and Bt are defined as,
At+1 = CtAt , (3)
Bt+1 = DtBt , (4)

where 0 < ct < 1, 0 < dt < 1 and they are sampled
from the following two types of Beta distributions:

Ct ∼ Beta [kαt ,(1− k)αt ] , (5)
Dt ∼ Beta [kβt ,(1− k)βt ] , (6)

where k is a real valued constant and 0 < k ≤ 1 . 2

Definition 2.4. Conditional Independence for At ,Ct
(or Bt ,Dt ) under αt (or βt )

p
(
at ,ct

∣∣ αt
)

= p
(
at
∣∣ αt
)

p
(
ct
∣∣ αt
)
, (7)

p
(
bt ,dt

∣∣ βt
)

= p
(
bt
∣∣ βt
)

p
(
dt
∣∣ βt
)
. (8)

2

Definition 2.5. Initial Distributions for A1,B1

A1 ∼ Gamma(α1,1) , (9)
B1 ∼ Gamma(β1,1) , (10)

where 0 < α1 and 0 < β1. 2

Definition 2.6. Initial Distributions for C1,D1

C1 ∼ Beta [kα1,(1− k)α1] , (11)
D1 ∼ Beta [kβ1,(1− k)β1] . (12)

2

Definition 2.7. Gamma Distribution for q Gamma
distribution of Gamma(r,s) is defined as,

p
(
q
∣∣ r,s

)
=

sr

Γ(r)
qr−1 exp(−sq) , (13)

where 0< q, 0< r, 0< s, and Γ(r) is the gamma func-
tion defined in Definition 2.9. 2

Definition 2.8. Beta Distribution for q
Beta distribution of Beta(r,s) is defined as,

p
(
q
∣∣ r,s

)
=

Γ(r+ s)
Γ(r)Γ(s)

qr−1 (1−q)s−1 , (14)

where 0 < q < 1, 0 < r, 0 < s. 2

Definition 2.9. Gamma Function for q

Γ(q) =
∫ +∞

0
yq−1 exp(−y)dy , (15)

where 0 < q . 2
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2.2 Lemmas

Lemma 2.1. Transformed Distribution for At
For any t ≥ 1, the transformed random variable

At+1 = CtAt in Definition 2.3 follows the following
Gamma distribution:

At+1 ∼ Gamma(kαt ,1) . (16)

2

Proof of Lemma 2.1.
See APPENDIX A. 2

Lemma 2.2. Transformed Distribution for Bt
For any t ≥ 1, the transformed random variable

Bt+1 = DtBt in Definition 2.3 follows the following
Gamma distribution:

Bt+1 ∼ Gamma(kβt ,1) . (17)

2

Proof of Lemma 2.2.
The proof is exactly same as Lemma 2.1, replac-

ing At+1 by Bt+1, Ct by Dt , and αt by βt .
This completes the proof of Lemma 2.2. 2

Lemma 2.3. Transformed Distribution for Θt
For any t ≥ 2, the transformed random variable

Θt =
At

At+Bt
in Definition 2.2 follows the following

Beta distribution:

Θt ∼ Beta(kαt−1, kβt−1) . (18)

2

Proof of Lemma 2.3.
See APPENDIX B. 2

Corollary 2.1. Transformed Initial Distribution for
Θ1

The transformed random variable Θ1 = A1
A1+B1

in
Definition 2.2 follows the following Beta distribution:

Θ1 ∼ Beta(α1,β1) . (19)

2

Proof of Corollary 2.1.
From Definition 2.5,

A1 ∼ Gamma(α1,1) ,
B1 ∼ Gamma(β1,1) .

If Lemma 2.3 is applied to the above A1 and B1, then
the following holds.

Θ1 ∼ Beta(α1,β1) . (20)

This completes the proof of Corollary 2.1. 2

3 PREDICTION ALGORITHM
BASED ON BAYES DECISION
THEORY

3.1 Preliminaries

Definition 3.1. Loss Function

L(x̂t+1,xt+1) =

{
0 if x̂t+1 = xt+1 ;
1 if x̂t+1 6= xt+1 .

(21)

2

Definition 3.2. Risk Function

R(x̂t+1,θt+1)

=
1

∑
xt+1=0

L(x̂t+1,xt+1) p
(
xt+1

∣∣ θt+1
)
, (22)

where p
(
xt+1

∣∣ θt+1
)

is from Definition 2.1. 2

Definition 3.3. Bayes Risk Function

BR(x̂t+1)

=
∫ 1

0
R(x̂t+1,θt+1) p

(
θt+1

∣∣ xxxt)dθt+1 . (23)

2

Definition 3.4. Bayes Optimal Prediction
The Bayes optimal prediction x̂∗t+1 is obtained by,

x̂∗t+1 = argmin
x̂t+1

BR(x̂t+1) . (24)

2

3.2 Main Theorems

Theorem 3.1. Posterior Distribution for θt
Let the prior distribution of parameter θ1 of

the nonstationary Bernoulli distribution in Defini-
tion 2.1 be Θ1 ∼ Beta(α1,β1). For any t ≥ 2,
let xxxt−1 = (x1,x2, . . . ,xt−1) be the observed data se-
quence. Then, the posterior distribution of Θt

∣∣ xxxt−1

can be obtained as the following closed form:

Θt
∣∣ xxxt−1 ∼ Beta(αt ,βt) , (25)

where the parameters αt , βt are given as,
αt = kt−1α1 +

t−1
∑

i=1
kt−ixi.;

βt = kt−1β1 +
t−1
∑

i=1
kt−i (1− xi) .

(26)

2
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Proof of Theorem 3.1.
For any t ≥ 2, the posterior of parameter distri-

bution p
(
θt
∣∣ xxxt−1

)
remains in the closed form Θt ∼

Beta(αt ,βt) if Xt ∼ Bernoulli(θt) in Definition 2.1
and Θ1 ∼ Beta(α1,β1) in Corollary 2.1 according to
the nature of conjugate families (Bernardo and Smith,
2000, 5.2, p.265) (Berger, 1985, 4.2.2, p.130).

Furthermore, assuming that xt−1 is the observed
data, {

αt = αt−1 + xt−1;
βt = βt−1 +1− xt−1 ,

(27)

holds by conjugate analysis (Bernardo and Smith,
2000, Example 5.4, p.271). This is the proof of Eq.
(25).

In this paper, nonstationary parameter model is as-
sumed. Therefore, if both Lemma 2.1, and Lemma
2.2 are recursively applied to Eq. (27), then,{

αt = k (αt−1 + xt−1) ;
βt = k (βt−1 +1− xt−1) ,

(28)

holds.
Finally, Eq. (26) is obtained if Eq. (28) is recur-

sively applied until the initial conditions α1,β1 from
both Definition 2.5 and Corollary 2.1 appear.

This completes the proof of Theorem 3.1. 2

Remark 3.1.
For the second terms of the right hand sides of Eq.

(26), each observed data xi is exponentially weighted
by kt−i where i = 1,2, . . . , t − 1. This structure is
called the EWMA, Exponentially Weighted Moving
Average (Harvey, 1989, 6.6, p.350).

Theorem 3.2. Predictive Distribution

p
(
xt+1

∣∣ xxxt) =


βt+1

αt+1+βt+1
if xt+1 = 0;

αt+1
αt+1+βt+1

if xt+1 = 1 ,
(29)

where αt+1 and βt+1 are in Eq. (26) . 2

Proof of Theorem 3.2.
See APPENDIX C. 2

Theorem 3.3. Bayes Optimal Prediction

x̂∗t+1 =

 0 if αt+1 < βt+1 ;

1 if αt+1 > βt+1 ,
(30)

2

Proof of Theorem 3.3.
In terms of Bayes decision theory (Weiss

and Blackwell, 1961) (Berger, 1985) (Bernardo
and Smith, 2000), the Bayes optimal prediction
x̂t+1 = x̂∗t+1 maximizes the predictive distribution
p
(
xt+1

∣∣ xxxt
)

if 0−1 loss function in Definition 3.1 is

defined. Since x̂∗t+1 ∈ {0,1} and Theorem 3.2 holds,
this maximization can be done by comparing just two
cases. Therefore,

x̂∗t+1 = argmax
xt+1

p
(
xt+1

∣∣ xxxt)
=

 0 if αt+1 < βt+1 ;

1 if αt+1 > βt+1 ,

This completes the proof of Theorem 3.3. 2

3.3 Hyper Parameter Estimation with
Empirical Bayes Method

Since a hyper parameter 0 < k≤ 1 in Definition 2.3 is
assumed to be known, it should be estimated in prac-
tice. One of estimation methods can be the maximum
likelihood estimation with numerical approximation
in terms of empirical Bayes approach. This is,

k̂ = argmax
k

L(k) , (31)

where 0 < k ≤ 1 and,

L(k)

= p
(
x1
∣∣ θ1,k

)
p(θ1)

t

∏
i=2

p
(
xi
∣∣ xxxi−1,k

)
=

t

∏
i=1

(
βi

αi +βi

)1−xi
(

αi

αi +βi

)xi

. (32)

Note that Eq. (32) is obtained by applying Theorem
3.2.

Therefore, its log-likelihood function logL(k) is,

logL(k)

=
t

∑
i=1
{(1− xi) [logβi− log(αi +βi)]

+xi [logαi− log(αi +βi)]} . (33)

Eqs. (31) and (33) can not be solved analytically and
then the approximate numerical method should be ap-
plied.

3.4 Proposed Bayes Optimal Prediction
Algorithm

Based on main Theorems in Subsection 3.2, the fol-
lowing Bayes optimal prediction algorithm is pro-
posed.

Algorithm 3.1. Proposed Bayes Optimal Algorithm

1. Estimate hyper parameter k from training data by
approximate maximum likelihood estimation with
Eqs. (31) and (33).
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2. Set t = 1 and define α1 > 0,β1 > 0 in Definition
2.5 in order to set the initial prior of parameter
distribution Θ1 ∼ Beta(α1,β1) in Corollary 2.1.

3. With test data sequence xxxt , update the pos-
terior of nonstationary parameter distribution
p
(
θt+1

∣∣ αt+1,βt+1,xxxt
)

with Eq. (26) in Theorem
3.1.

4. Calculate the predictive distribution p
(
xt+1

∣∣ xxxt
)

in Theorem 3.2.
5. Obtain the Bayes optimal prediction x̂∗t+1 in The-

orem 3.3.
6. If t < tmax, then update t→ t +1 and back to 3.
7. If t = tmax, then terminate the algorithm.

2

4 NUMERICAL EXAMPLES

This section shows numerical examples to evaluate
the performance of Algorithm 3.1. Subsection 4.1 ex-
plains both the training and test data specifications.
Training data is applied to estimate the hyper param-
eters: k in Definition 2.3 and α1,β1 in Definition 2.5,
where the latter is used for the prior of parameter Θ1
to predict test data. Test data were applied to evalu-
ate the predictive performances of the proposed algo-
rithm.

4.1 Binary Data Specifications

Table 1 and 2 show the training and test data specifi-
cations, respectively. These binary data were obtained
from the daily rainfall data in Tokyo from January
1, 2018 to December 31, 2019 (Japan Meteorologi-
cal Agency, 2020). Note that the threshold of binary
data is defined by the following rule: ith daily rainfall:
xi = 1 if its amount is greater than 0.5 mm, otherwise
xi = 0.

Table 1: Training Data Specifications.

Items Values

From: January 1, 2018
To: December 31, 2018
Total Days: 365

Table 2: Test Data Specifications.

Items Values

From: January 1, 2019
To: December 31, 2019
Total Days: 365

4.2 Evaluations for Bayes Optimal
Predictions

This subsection mainly evaluates two aspects of the
Bayes optimal predictions from both the proposed
nonstationary and conventional stationary Bernoulli
distribution models. The first is the predictive per-
formance between two models with non-informative
priors. The second is that with informative priors.

4.2.1 Prediction Results with Non-informative
Priors

Before evaluating the predictive performance, the hy-
per parameter k̂ is estimated using Eq. (31) from train-
ing data. This is the approximate maximum likeli-
hood estimation with numerical calculation. The re-
sults are shown in Table 3.

Table 3: Estimated Hyper Parameter from Training Data.

Item Value

k̂ 0.971

In this evaluation, the hyper parameters α1 and β1 of
the prior distribution p

(
θ1
∣∣ α1,β1

)
are assumed to be

non-informative. This initial prior should be a uni-
form distribution. The defined values of the hyper pa-
rameters are shown in Table 4.

Table 4: Defined Hyper Parameters for Non-informative
Priors of Test Data.

α1 β1

1.000 1.000

Using k̂,α1, and β1 from Tables 3 and 4, the predictive
errors for the proposed and stationary Bernoulli mod-
els ∑

365
i=1 L(x̂i,xi) are calculated with test data. The

results are shown in Table 5.

Table 5: Predictive Errors with Test Data for Proposed and
Stationary Models with Non-informative Priors.

Items Proposed Stationary

∑
365
i=1 L(x̂i,xi) 173 187

4.2.2 Prediction Results with Informative Priors

In this evaluation, the hyper parameters α1 and β1 of
the prior distribution p

(
θ1
∣∣ α1,β1

)
are assumed to be

informative. In this case, the empirical Bayesian ap-
proach is adopted. Both α1 and β1 are obtained from
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the posterior distribution of p
(
θt
∣∣ xxxt ,αt ,βt

)
from the

training data, and these are used as the initial prior of
p(θ1

∣∣ α1,β1) to predict the test data. These values
are listed in Table 6.

Table 6: Defined Hyper Parameters for Informative Priors
of Test Data.

α1 β1

16.429 34.612

Using k̂,α1, and β1 from Tables 3 and 6, the predic-
tive errors are calculated for both models with the test
data. The results are shown in Table 7.

Table 7: Predictive Errors with Test Data for Proposed and
Stationary Models with Informative Priors.

Items Proposed Stationary

∑
365
i=1 L(x̂i,xi) 178 179

5 DISCUSSIONS

Table 5 shows that the total loss of the proposed
nonstationary Bernoulli model is smaller than that of
the stationary model, with accuracies of 52.6% and
48.8%, respectively. Moreover, the time series of the
posterior probability p(θt = 1

∣∣ xxxt) 1 is calculated and
plotted in Figure 1. In Figure 1, the vertical axis is
the posterior probability, the horizontal axis shows the
indices of days, the red line is the time series of the
posterior probabilities from the proposed model, and
the blue line is that from the stationary model. From
Figure 1, it can be observed that the posterior from the
proposed model drifts more drastically than that of the
stationary model. Thus, the extra hyper parameter k
in the proposed model must work relatively well with
a non-informative prior.

However, if the AIC, Akaike Information Crite-
rion (Akaike, 1973) values for both models are cal-
culated with test data, the values in Table 8 are ob-
tained. From the perspective of model selection the-
ory, the smaller the AIC value, the more appropriate
the model is under the observed data. Table 8 indi-
cates that the stationary model is more appropriate
than the proposed model with test data. However,
as mentioned above, the proposed model is superior
to the stationary model in terms of predictive perfor-
mance. Thus, the result of the first evaluation with
a non-informative prior cannot be explained by AIC

1Each value is the daily probability of rainfall.

with the specific test data in this paper.

days
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Figure 1: Posterior Probability Plot of p
(
θt = 1

∣∣ xxxt) with
Non-informative Priors.

Table 8: AIC values for Proposed and Stationary Models
with Non-informative Priors.

Items Proposed Stationary

AIC -500.476 -505.316

In contrast, according to Table 7, the difference in
the predictive performance for both models becomes
smaller than that of the first evaluation. In fact, the
result is almost a draw, with accuracies of 51.2% and
51.0%, respectively. Moreover, Figure 2 shows the
time series of the posterior rainfall probability for
both models. Note that an informative prior is as-
sumed in this evaluation. From Figure 2, the first 50
points of the time series of the proposed model (red
line) are more stable than those of the proposed model
in Figure 2. This difference can be interpreted as the
effect of informative priors. However, the predictive
performance becomes worse in the proposed model.
In this case, it can be considered that the setting of the
informative prior weakens the effect of the estimated
nonstationary hyper parameter k̂. From Figure 2, the
entire blue plot of the stationary model becomes more
stable than that of the stationary model in Figure 1. In
this case, the posterior of the stationary model almost
converges, and its predictive performance is improved
effectively as shown by the comparison of the results
from Tables 5 and 7.

Table 9 shows the AIC values for both mod-
els. From the perspective of AIC, the value of the
proposed model with the informative prior become
slightly smaller than that of the proposed model with
the non-informative prior. For the stationary model,
this difference becomes larger. Thus, the theory of
AIC explains the predictive performance of the sta-
tionary model well. However, the same situation does
not hold true for the proposed model.
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Figure 2: Posterior Probability Plot of p
(
θt = 1

∣∣ xxxt) with
Informative Priors.

Table 9: AIC values for Proposed and Stationary Models
with Informative Priors.

Items Proposed Stationary

AIC -505.776 -522.896

6 CONCLUSIONS

This paper proposes a class of nonstationary Bernoulli
distribution and the Bayes optimal prediction algo-
rithm under the known nonstationary hyper parame-
ter. The proposed class has only one extra hyper pa-
rameter compared to the stationary Bernoulli distribu-
tion, and it is proved that the posterior distribution of
the Bernoulli parameter is obtained analytically. Fur-
thermore, the predictive performance of the proposed
algorithm is evaluated using real binary data. As a
result, a certain advantage for predictive performance
is discovered by comparing the results to those of the
stationary Bernoulli model; however, this point can-
not be explained in terms of model selection theory.

As important factor in the abovementioned ad-
vantage is the additional nonstationary hyper param-
eter in the proposed model. Because the empirical
Bayesian approach is used in this study and the ad-
ditional hyper parameter is estimated by the approx-
imate maximum likelihood estimation, the objective
likelihood function should be analyzed in detail. This
point will be left for future work.
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APPENDIX

A: Proof of Lemma 2.1

Suppose t = 1, A1 = a1 and C1 = c1 are defined as,

A1 ∼ Gamma(α1,1) , (34)
C1 ∼ Beta [kα1,(1− k)α1] , (35)

according to Definition 2.5 and Definition 2.6, respec-
tively.

Since A2 = C1A1 from Definition 2.3, and At and
Ct are conditional independent from Definition 2.4,
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the joint distribution of p(c1,a1) becomes,
p(c1,a1)

= p
[
c1
∣∣ kα1,(1− k)α1

]
p
(
a1
∣∣ α1,1

)
=

Γ(α1)

Γ(kα1)Γ [(1− k)α1]
ckα1−1

1 (1− c1)
(1−k)α1−1

·
aα1−1

1
Γ(α1)

exp(−a1)

=
ckα1−1

1 (1− c1)
(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]
aα1−1

1 exp(−a1) .

Now, denote the two transformation as,{
v = a1c1;
w = a1 (1− c1) ,

(36)

where 0 < v, 0 < w.
Then, the inverse transformation of Eq. (36) be-

comes, {
a1 = v+w;
c1 =

v
v+w ,

(37)

The Jacobian J1 of Eq. (37) is,

J1 =

∣∣∣∣∣∣
∂a1
∂v

∂a1
∂w

∂c1
∂v

∂c1
∂w

∣∣∣∣∣∣=
∣∣∣∣∣∣

1 1

w
(v+w)2 − v

(v+w)2

∣∣∣∣∣∣
= − 1

v+w
=− 1

a1
6= 0 .

Then, the transformed joint distribution p(v,w) is ob-
tained by the product of p(c1,a1) and the absolute
value of J1.

p(v,w)

= p(c1,a1)
∣∣− 1

a1

∣∣
=

( v
v+w

)kα1−1 ( w
v+w

)(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]

·(v+w)α1−1 exp [−(v+w)] · 1
v+w

=
vkα1−1w(1−k)α1−1

Γ(kα1)Γ [(1− k)α1]
exp [−(v+w)] .(38)

Then, p(v) is obtained by marginalizing Eq. (38) with
respect to w,

p(v) =
∫

∞

0
p(v,w)dw

=
vkα1−1 exp(−v)

Γ(kα1)Γ [(1− k)α1]

·
∫

∞

0
w(1−k)α1−1 exp(−w)dw

=
vkα1−1 exp(−v)

Γ(kα1)Γ [(1− k)α1]
·Γ [(1− k)α1]

=
1

Γ(kα1)
vkα1−1 exp(−v) . (39)

Eq. (39) exactly corresponds to Gamma(kα1,1) ac-
cording to Definition 2.7. Recalling v = a1c1 from
Eq. (36) and A2 =C1A1 from Definition 2.3,

A2 ∼ Gamma(kα1,1) .

Thus if t = 1, then At+1 ∼ Gamma(kαt ,1) holds.
For t ≥ 2, by substituting αt = kαt−1, At = at and

Ct = ct are defined as,

At ∼ Gamma(αt ,1) , (40)
Ct ∼ Beta [kαt ,(1− k)αt ] . (41)

Eqs. (40) and (41) correspond to Eqs. (34) and (35),
respectively. Therefore the same proof can be applied
for the case of t ≥ 2 and it can be proved that,

∀t,At+1 ∼ Gamma(kαt ,1) .

This completes the proof of Lemma 2.1. 2

B: Proof of Lemma 2.3

From Lemma 2.1 and 2.2,

∀t ≥ 2,At ∼ Gamma(kαt−1,1) ,
∀t ≥ 2,Bt ∼ Gamma(kβt−1,1) .

According to Definition 2.2, two random variables At
and Bt are independent. Therefore, the joint distribu-
tion pf p(at ,bt) becomes,

p(at ,bt)

= p
(
at
∣∣ kαt−1,1

)
p
(
bt
∣∣ kβt−1,1

)
=

[
akαt−1−1

t exp(−at)

Γ(kαt−1)

]
·

[
bkβt−1−1

t exp(−bt)

Γ(kβt−1)

]

=
akαt−1−1

t bkβt−1−1
t

Γ(kαt−1)Γ(kβt−1)
exp [−(at +bt)] .

Denoting the two transformations,{
λ = at +bt ;
µ = at

at+bt
, (42)

where 0 < λ, 0 < µ.
The inverse transformation of Eq. (42) becomes,{

at = λµ;
bt = λ(1−µ) . (43)

Then, the Jacobian J2 of Eq. (43) is,

J2 =

∣∣∣∣∣∣∣
∂at
∂λ

∂at
∂µ

∂bt
∂λ

∂bt
∂µ

∣∣∣∣∣∣∣=
∣∣∣∣∣∣

µ λ

1−µ −λ

∣∣∣∣∣∣
= −λ =−(at +bt) .
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Then, the transformed joint distribution p(λ,µ) is ob-
tained by the product of p(at ,bt) and the absolute
value of J2 as the following,

p(λ,µ)
= p(at ,bt) ·

∣∣−(at +bt)
∣∣

=
(λµ)kαt−1−1 [λ(1−µ)]kβt−1−1

Γ(kαt−1)Γ(kβt−1)
exp(−λ) ·λ

=
µkαt−1−1 (1−µ)kβt−1−1

Γ(kαt−1)Γ(kβt−1)
λ

kαt−1+kβt−1−1 exp(−λ) .

(44)

Then, p(µ) is obtained by marginalizing Eq. (44) with
respect to λ,

p(µ)

=
∫

∞

0
p(λ,µ)dλ

=
µkαt−1−1 (1−µ)kβt−1−1

Γ(kαt−1)Γ(kβt−1)

·
∫

∞

0
λ

kαt−1+kβt−1−1 exp(−λ)dλ

=
µkαt−1−1 (1−µ)kβt−1−1

Γ(kαt−1)Γ(kβt−1)
·Γ(kαt−1 + kβt−1)

=
Γ(kαt−1 + kβt−1)

Γ(kαt−1)Γ(kβt−1)
µkαt−1−1 (1−µ)kβt−1−1 .

(45)

Eq. (45) exactly corresponds to Beta(kαt−1,kβt−1)
according to Definition 2.8.

Recalling µ = at
at+bt

from Eq. (42) and Θt =
At

At+Bt
from Definition 2.2,

∀t ≥ 2,Θt ∼ Beta(kαt−1,kβt−1) ,

holds.
This completes the proof of Lemma 2.3. 2

C: Proof of Theorem 3.2

Since the predictive distribution is Binomial-Beta
distribution (Bernardo and Smith, 2000, p.117),
p
(
xt+1

∣∣ xxxr
)

becomes,

p
(
xt+1

∣∣ xxxt)
=

∫ 1

0
p
(
xt+1

∣∣ θt+1
)

p
(
θt+1

∣∣ xxxt)dθt+1

= c · Γ(αt+1 + xt+1)Γ(βt+1 +1− xt+1) ,

where c = Γ(αt+1+βt+1)
Γ(αt+1)Γ(βt+1)Γ(αt+1+βt+1+1) .

If xt+1 = 0, then,

p
(
xt+1

∣∣ xxxt)
=

Γ(αt+1 +βt+1)

Γ(αt+1)Γ(βt+1)Γ(αt+1 +βt+1 +1)
· Γ(αt+1)Γ(βt+1 +1)

=
Γ(αt+1 +βt)

Γ(αt+1)Γ(βt+1)(αt+1 +βt+1)Γ(αt+1 +βt+1)

· Γ(αt+1)βt+1Γ(βt+1) (46)

=
βt+1

αt+1 +βt+1
.

Note that Eq. (46) in obtained by applying the follow-
ing property of Gamma function: Γ(q+1) = qΓ(q).

If xt+1 = 1, then,

p
(
xt+1

∣∣ xxxt)
=

Γ(αt+1 +βt+1)

Γ(αt+1)Γ(βt+1)Γ(αt+1 +βt+1 +1)
· Γ(αt+1 +1)γ(βt+1)

=
Γ(αt+1 +βt+1)

Γ(αt+1)Γ(βt+1)(αt+1 +βt+1)Γ(αt+1 +βt+1)

· αt+1Γ(αt+1)Γ(βt+1)

=
αt+1

αt+1 +βt+1
.

This completes the proof of Theorem 3.2 . 2
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