Towards Verifying a Blocks World for Teams GOAL Agent

Alexander Birch Jensen

a

DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Richard Petersens Plads, Building 324, DK-2800 Kongens Lyngby, Denmark

Keywords:

Abstract:

Agent Programming, Formal Verification, Agent Logic, GOAL.

We continue to see an increase in applications based on multi-agent system technology. As the technology

becomes more widespread, so does the requirement for agent systems to operate reliably. In this paper, we
expand on the approach of using an agents logic to prove properties of agents. Our work describes a transfor-
mation from GOAL program code to an agent logic. We apply it to a Blocks World for Teams agent and prove
a correctness property. Finally, we sketch future challenges of extending the framework.

1 INTRODUCTION

It is of key importance to provide assurance of the
reliability of multi-agent systems (Dix et al., 2019).
However, demonstrating the reliability of such sys-
tems remains a challenge due to their often complex
behavior, usually exceeding the complexity of proce-
dural programs (Winikoff and Cranefield, 2014).

Popular approaches to programming agents have
been inspired by the agent-oriented programming
paradigm (Shoham, 1993). Examples include JADE
for the Java-platform and GOAL that is inspired by
logic programming (Bellifemine et al., 2001; Hin-
driks et al., 2001). A notable difference between the
two is that GOAL implements a BDI model (Rao and
Georgeff, 1991) whereas JADE is a middleware that
facilitates development of multi-agent systems under
the FIPA standard (Poslad, 2007). In this paper, we
will focus our efforts towards the GOAL agent pro-
gramming language as its compact formal semantics
gives a solid foundation for the development of veri-
fication mechanisms.

An approach to verifying agents GOAL is pro-
posed in (de Boer et al., 2007) using a verification
framework. The framework is a complete program-
ming theory for GOAL — it gives the semantics of
the GOAL language and a temporal logic proof theory
for proving properties of agents. We extend this ap-
proach by describing a transformation from program
code to the agent logic.

We apply the verification framework to an in-
stance of a Blocks World for Teams (BW4T) prob-

a2 https://orcid.org/0000-0002-7298-2133

Jensen, A.
Towards Verifying a Blocks World for Teams GOAL Agent.
DOI: 10.5220/0010268303370344

lem (Johnson et al., 2009). We start from program
code and transform it to an agent logic from which
we prove its correctness.

The paper is structured as follows. Section 2 re-
lates to existing work in the literature. Section 3 in-
troduces GOAL and the BW4T environment. Sec-
tion 4 describes a proof theory for GOAL. Section 5
presents a transformation method from GOAL pro-
grams to agent logic. Section 6 describes how to ver-
ify agents in the agent logic. Finally, Section 7 gives
concluding remarks.

2 RELATED WORK

The work in this paper relates to our work on formal-
izing GOAL and the verification framework in a proof
assistant (Jensen, 2021). Unlike this paper, it does
not consider the practical aspects of programming the
agents and transforming program code to an agent
logic. Instead, the paper explores the use of a proof
assistant as a tool for verification of agents based on
an agent logic. In (Jensen et al., 2021), we consider
how a theorem proving approach can contribute to
demonstrating reliability for cognitive agent-oriented
programming.

The verification framework notation and theory
have some resemblance to Misra’s UNITY (Misra,
1994), in particular the ensures operator. How-
ever, a notable difference is that we are working to-
wards verifying a cognitive agent language whereas
UNITY is for verification of general parallel pro-
grams. The UNITY framework has been mecha-

337

In Proceedings of the 13th International Conference on Agents and Atrtificial Intelligence (ICAART 2021) - Volume 1, pages 337-344

ISBN: 978-989-758-484-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

nized in the higher-order logic theorem prover Is-
abelle/HOL (Nipkow et al., 2002; Paulson, 2000).

In (Alechina et al., 2010) theorem-proving tech-
niques are applied to verify correctness properties of
simpleAPL agents (simpleAPL is a simplified ver-
sion of 3APL (Hindriks et al., 1999)). In this work
agents execute actions based on plans and planning
rules whereas GOAL agents decide their next action
in each state based on decision rules.

A different approach to verifying agent system is
through model-checking where one attempts to ver-
ify desired properties over possible states of the sys-
tem. A propositional logic variant of the verifica-
tion framework, as we are considering here, is in
many ways similar to model-checking: we explore
and prove formulas about the possible states of the
agent program. However, once we start to consider
possible ways to generalize the theory to higher-order
logics, we could see some advantages over finite-
state models; although this remains speculative and
it is not yet clear how this can be achieved. (Den-
nis and Fisher, 2009) has worked towards techniques
for analyzing implemented multi-agent system plat-
forms based on BDI. With a starting point in model-
checking techniques for AgentSpeak (Bordini et al.,
2006), these are extended to other languages includ-
ing GOAL. From a recent review of logic-based ap-
proaches for multi-agent systems by (Calegari et al.,
2020), it is clear that model-checking has retained its
position as the primary tool for practical verification
of multi-agent systems.

3 BACKGROUND

This section briefly introduces the GOAL program-
ming language and the BW4T environment.

3.1 GOAL Programming Language

Below we give a brief introduction to the GOAL pro-
gramming language; for further details we direct the
reader to (Hindriks, 2009; de Boer et al., 2007).

A multi-agent system (MAS) in GOAL is speci-
fied by a configuration file (*.mas2g). It specifies the
environment to connect to, if any; and which agents
to start and when. The agent specification may state
a number of modules (*.mod2g) to be used by the
agent. An initialization module may be used to set up
the initial beliefs and goals of the agent. The belief
and goal base constitutes the agent’s mental state. An
event module may be used to update the agent’s men-
tal state, usually also based on environment percep-
tion. Lastly, a main module specifies decision rules

338

for action selection by a number of rules of the form
if condition then action. The condition is
over the mental state of the agent where bel (query)
performs a Prolog-like query on the belief base. Like-
wise, goal (query) queries the goal base. The avail-
able actions with the pre- and postconditions are spec-
ified in an action specification (*.act2g); usually the
available actions are made available by the environ-
ment, but internal actions may be defined. Each mod-
ule may specify knowledge bases, most commonly
Prolog files (*.pl), that specify available belief predi-
cates and usually also auxiliary functions.

We now turn to the semantics of the language. A
rule is applicable if its condition holds and is then said
to be enabled; its precondition should also be met as
defined in the action specification. The default behav-
ior is to select the first applicable rule. The execution
is performed in cycles as follows:

1. Process any new events.

2. Select an action based on the decision rules.

3. Perform the selected action.

4. Update state based on pre- and postconditions.

As such, (1) is associated with the event module and
processing of received messages from the environ-
ment, (2) with the main module; (3) sends a request
to the environment and (4) updates the agent’s mental
state based on the action specification. GOAL applies
the blind commitment strategy in which a goal is only
dropped when it has been completely achieved (Rao
and Georgeff, 1993).

3.2 The BW4T Environment

In the BWA4T environment, the goal is to collect
blocks located in different rooms in a particular se-
quence of colors. Pathfinding between rooms is han-
dled by the environment server. For now, we restrict
ourselves to a single-agent instance. Table 1 shows
the relevant subset of the available percepts and ac-
tions of the BW4T environment.

Following the Russell & Norvig categorization
of environments (Russell and Norvig, 2020), BW4T
can for our configuration be categorized as a single-
agent, partially observable, deterministic environ-
ment. This categorization plays an essential part in
enabling modelling of the environment in the verifi-
cation framework. We will assume the environment
to be fully observable which in turn is ensured by run-
ning on a predefined map.

We have designed a simple, deterministic custom
map that will be our example instance. Figure 1
shows the initial state of the example map where the

Towards Verifying a Blocks World for Teams GOAL Agent

Table 1: Relevant percepts and actions for our agent in the BW4T environment.

Percepts

in (RoomId)

The agent is in the room <RoomId>.

atBlock (BlockId)

The agent is at the block <BlockId>.

holding(BlockId)

The agent is holding the block <BlockId>.

Actions

goTo (RoomId)

The agent moves to the room <RoomId>.

goToBlock (BlockId) | The agent moves to the block <BlockId> in

the current room.

pickUp (BlockId)

The agent picks up the block <BlockId>.

putDown

goal is to collect a single red block (indicated in the
bottom left corner).

LeftHallC FrontRoomC1 FrontRoomC2 FrontRoomC3 RightHallC

LeftHallD FrontDropZone RightHallD

Figure 1: The example map in the initial state.

3.3 Distributed Files

This section describes important details about the im-
plementation of the BW4T agent in GOAL.
The source code is publicly available online:

https://people.compute.dtu.dk/aleje/public/

To run the program, the BW4T map file should
be copied to the maps subfolder in a BW4T environ-
ment installation. It will then become available in the
map selector when running the environment server. If
using Eclipse for GOAL!, the remaining files can be
imported to a new example BW4T project.

The MAS file connects to the environment and
creates a single agent entity. The initialization sets
up the agent’s initial mental state. It is not inherently
possible for agents to perceive block positions before
entering rooms and is thus hardcoded to ensure full
observability. The event module updates the agent’s

Uhttps://goalapl.atlassian.net/wiki/

The agent puts down the block it is carrying.

belief base in each execution cycle with regard to rel-
evant percepts. The main module states the decision
rules used by the agent to select an appropriate ac-
tion in each cycle. The knowledge base is a Prolog
file that in our case simply defines the belief predi-
cates and their arities. Finally, the BW4T map file is
a custom map configuration that sets up the example
situation used throughout this paper.

4 PROOF THEORY FOR GOAL

A temporal logic is constructed on top of GOAL. It
differs from regular definitions of temporal logic by
having its semantics derived from the semantics of
GOAL and by incorporating the belief and goal opera-
tors. Hoare triples are used to specify effect of actions
on mental states. A Hoare triple {@} p > do(a) {y}
for a conditional action a, where the truth of p deter-
mines if a is enabled, holds if @ is true in the mental
state before execution of a and is true in the mental
state following the execution of a.

4.1 Basic Action Theory

A basic action theory specifies the effects of agent ca-
pabilities by associating Hoare triples with effect ax-
ioms. Effect axioms are Hoare triples that state the ef-
fects of actions. By means of an enabled predicate for
each action, the conditions on actions are also speci-
fied. Additionally, the theory specifies what does not
change following execution of actions by associating
Hoare triples with frame axioms. Effect and frame
axioms should be specified by the user — in our case
effect axioms are the result of the program code trans-
formation as described in Section 5. It may also be
useful to prove invariants of the program help with
proofs. Frame axioms and invariants have a close re-
lation: frame axioms express stable properties and in-
variants are stable properties that also hold initially.

339

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

4.2 Proof System

We now consider a Hoare system for GOAL. The
proof rules are as defined in (de Boer et al., 2007)
and are listed in Table 2.

The rule for infeasible actions allows derivation of
frame axioms for actions on mental states in which
they are not enabled. The rule for conditional ac-
tions allows us to prove a Hoare triple for a condi-
tional action from that of a basic action. We use the
notion basic action when referring to an action but
not its decision rule. The three remaining rules are
structural rules that allow us to combine Hoare triples
(the conjunction and disjunction rule) and strengthen-
ing the precondition and weakening the postcondition
(the consequence rule).

For further studies of the Hoare system, we direct
the reader to Section 4 in (de Boer et al., 2007) in
which the Hoare system is proved sound and com-
plete with respect to the semantics of Hoare triples on
mental state formulas.

S TRANSFORMATION

In order to make the link between GOAL program
code and the verification framework, we describe how
to perform a mechanical transformation from GOAL
code to the agent logic. Due to current limitations of
the framework, we have to assume the following:

(1) Single agent assumption: only the agent executes
actions.

(2) The environment is deterministic: an action has a
deterministic outcome.

(3) The agent has complete knowledge about the ini-
tial state of the environment and its initial beliefs
and goals are completely specified.

(4) Action execution is instantaneous (no durative ac-
tions).

Assuming a single agent to be the only actor in the
environment plays into the fact that the environment
is not modelled in the framework. Percept handling
and environment interactions is a general issue in
verification frameworks that has not been addressed
effectively: any non-agent interaction must be inte-
grated into the agent’s beliefs and capabilities. For
instance, in the BW4T environment, an agent is not
initially aware of the position of blocks; the agent be-
comes aware only when it enters the room in which
the blocks are located. It is not clear how to deal with
such interactions: we need to apply some level of do-
main knowledge to integrate this interaction; in our

340

case the simplest approach is to add the block loca-
tions to the agent’s knowledge. A similar problem
occurs when dealing with non-determinism in the en-
vironment: we have no way of dealing with dynamic
changes, not necessarily known to the agent, and it is
not clear how to model this either.

In order to make the transformation as mechanical
as possible, we impose restrictions on the structure of
the GOAL code:

(1) The main module (for decision-based action se-
lection) should only have rules of the form if ¢
then a where @ is a query to the mental state and
a is an action in the environment.

(2) The preconditions of an action should specify the
minimal condition under which the action is en-
abled (action specification).

(3) Rules for environment interaction should be anno-
tated with an action name (event module).

Let us elaborate on these restrictions. The restric-
tions on the form of the action decision rules are sim-
ply in place to allow a straightforward translation that
plays well with the specification of Hoare triples. A
minimal action specification is at the core of the phi-
losophy of GOAL: changes to the mental state should
be based on perceived changes in the environment
whenever possible. As such, this is more of a recom-
mendation than a restriction that also eases the trans-
lation process. Lastly, the annotation of code for en-
vironment interaction in the event module is to make
the process as mechanical as possible — recall that
events are handled before the main module in each
cycle. We need to translate environment interaction
to the pre- and postconditions of actions. Thus, we
need to be able to associate these condition with an
action specification.

5.1 BWAT Transformation

We now apply the transformation method to the goTo
action for our BW4T agent.

Hoare triples are derived from the GOAL code by
transforming the relevant parts of the action specifica-
tion and the event and main module. To avoid branch-
ing in the proof shown later, we have ensured that de-
cision rules are mutually exclusive.

Consider first the action specification goTo:

define goTo (X) with
pre { true }
post { true }

The effects of actions are perceived through changes
in the environment and are left empty (simply true).
The precondition specifies the minimal conditions for

Towards Verifying a Blocks World for Teams GOAL Agent

Table 2: The proof rules of our Hoare system.

Infeasible actions:

Rule for conditional actions:

{oAv}a{e'}

@ — —enabled(a)

{9} a{o}

(PA~Y) — ¢

/

¢ —0

{9} wrdo(a) {¢'}
{9} a{v}

/

v —

Consequence rule:

Conjunction rule:

Disjunction rule:

action execution — here, it is always possible to go to
another room. This yields the following skeleton for
our final Hoare triple:

{true} enabled(goTo(X)) > do(goTo(X)) {true}

Note that enabled is not yet specified.
Below is the code annotated with goTo from the
event module:

% act-goTo

if bel(in (X)), not (percept (in(X))) then
delete (in (X)) .

if percept (in(X)), not (bel(in(X))) then
insert (in (X)) .

Since the agent has full control, we can model the
changes to the environment brought about by actions
by mapping code in the event module to pre- and post-
conditions of actions. The annotation act-goTo tells
us that it is related to the goTo action. The first rule
has the pattern bel (Q), not (percept (Q)) used for
removing outdated beliefs. The second rule pattern
inserts a new belief, thus yielding:

{B(in(Y) A—in(X))}
enabled(goTo(X)) > do(goTo(X))
{B(in(X) A=in(Y))}

Since B(in(X) A —in(X)) is never true, we implic-
itly ensure that X # Y holds. The final step of deriv-
ing the Hoare triple is to transform code from the main
module to the specification of enabled(goTo(X)). That
is, the condition under which the action should be en-
abled for the agent. The decision rule for goTo is as
follows:

if goal(collect (C))
not (holding (_))

not (bel (in (Y),
then goTo (X

r

, color (_
color (_,
)

O~
=3

{01} a{wi}

{9} a{y'}
{02} a{y2}

{¢1} a{y}

{o1 A @2} a{yiAw}
{92} a{y}

{01V} a{v}

GOAL allows use of _ for variables we do not care
about. We cannot do this in our logic so we introduce
variable symbols:

enabled(goTo(X)) +— G(collect(C))A

B(—holding(U) A color(V,C,X)))

A=B(in(Y) A color(W,C,Y))

Before we are done, the Hoare triple should be
instantiated with propositional symbols. Consider the

following initial state (capturing the initial state of the
example map):

Bcolor(bg, red,r1) ABin(rg) A Geollect(red)

In the above, ry is the initial position of the agent (the
drop zone).

The derived Hoare triples must be instantiated
with propositional symbols. Below is the effect ax-
iom for goTo for going from ry to ry:

{B(in(ro) A—in(r1))} G(collect(red)) N
B(—holding(b,) A color(by,red,r1)) A\
—B(in(ro) A color(by,red, ry)) > do(goTo(ry))
{B(in(r1) A=in(ro))}

The shown instantiation of the effect axiom will
be useful for the correctness proof we go through in
Section 6. While not apparent from the example, we
have a special case for the goTo action when going
back to the the drop zone ry. The agent only needs to
go to the drop zone to put down blocks. Putting down
a (correct) block in the drop zone means the environ-
ment considers the block to be collected. Thus, we
only show the enabled equivalence for goTo(rp):

enabled(goTo(ry)) +— B(holding(U) N —in(ry))
We perform similar transformations for every ac-
tion. We are still considering ways to fully automate

the process, potentially by imposing additional re-
strictions on the structure of the GOAL code.

341

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

5.2 Automating the Transformation

The transformation method is not yet something that
can be fully automated. In this section, we expand
on why this is the case, and how it can be fully auto-
mated.

One of the main issues is that the verification
framework abstracts from a core feature of GOAL
programming: interacting with the environment. In
particular, the processing of events is problematic.
The verification framework assumes that only the ac-
tions of agents may change the state of the environ-
ment. While this may be feasible for our use of the
BWA4T environment, the proper approach is to per-
ceive changes in the environment. In order to map the
expected effect of performing an action, we need to
be able to associate event processing with actions di-
rectly. This requires some domain knowledge from
the programmer and should therefore be specified.
Alleviating this will likely require that the verifica-
tion framework is able to model the environment. We
still need to be able to state some model of the envi-
ronment, i.e. what are the expected results of actions
— if we know that the environment provides an ac-
tion for moving the agent, but we have no idea what
it does, then we are stuck.

Another issue is the assumption of full observ-
ability for the agent. This causes us to push domain
knowledge to the initial mental state of the agent. This
issue very much ties into the issue of not modelling
the environment. Also here, the solution seems to be
to push the domain knowledge into a model of the en-
vironment and have the agent perceive it.

6 PROVING CORRECTNESS

The proof of correctness consists of proofs of ensures
formulas. The operator is defined as:

@ensuresy := (¢ — (Quntily)) A (¢ — Q)

Informally, ¢ ensures y means that ¢ guarantees the
realization of . In sequence they prove that the agent
reaches its goal in a finite number of steps.
The operator @ — W is the transitive, disjunctive
closure of ensures:
¢ ensures O—=Y XN— VY
o=y o=y
VY ...0n—Y
(@1V...Ven) =y
The operator differs from ensures as ¢ is not re-
quired to remain true until y is realized.
The proof of a formula @ ensures y requires
that we show that every action a satisfies the

342

Hoare triple {¢ A=y} a {@V vy} and that there is at
least one action @’ which satisfies the Hoare triple

{on-y}d {y}.
6.1 BWAJ4T Agent Correctness Proof

In order to prove the correctness of an agent, we need
to show that it reaches a desired state from its initial
state. Using the operator defined above, this means
that we need to prove @ — Yy where ¢ is the ini-
tial state and W is the desired state. As stated, this
can be split up into a number of ensures proof steps
where we consider each intermediate state and prove
the transitions between them.

It is often useful to expand our base of derived
Hoare triples yielded by the transformation. Proving
program invariants that are useful in multiple steps
of the proof is an effective strategy to minimize the
workload. We claim the following invariant inv-in to
hold:

B (Vr, ' ((in(r) Ar# 1) — =in(r')))

The invariant states that the agent can only be in one
place at any point in time. Invariants must be proved
in the proof theory — due to space we do not show
the proof here.

We find that the correctness property for the
BWA4T agent is: from its initial state, the agent must
reach a state where it believes the red block to be col-
lected:

Bceolor(bg, red,r1) ABin(ro) A
Gceollect(red) — Bcollect(red)

The full proof outline is a sequence of ensures
statements that lead to the desired mental state as
shown in Figure 2. This sequence is explicitly stated
and of course ties into the belief that there exist ac-
tions that will satisfy each step.

In the proof outline in Figure 2 the changes to the
mental state in each step are underlined. The proof
outline consists of 5 steps. Each step indicates the
transition from one mental state to another caused by
the execution of an action. The fact that our decision
rules for actions are mutually exclusive makes each
step easier to prove: at each of the five steps only a
single action is enabled. In other words we only need
to consider a single execution trace.

The proof is completed by proving each of the 5
steps. If we consider step (1) this means that we need

Towards Verifying a Blocks World for Teams GOAL Agent

(1) Bceolor(by,red, ri) ABin(ry) A —=Bholding(b,) N Geollect(red)

ensures

Bceolor(b,,red, r1) ABin(r)) A —Bholding(b,) N Geollect(red)

(2) Bceolor(by,red, i) ABin(ry) A—Bholding(b,) N Geollect(red)

ensures

Bcolor(by,red, r1) ABin(r1) A —~Bholding(b,) A BatBlock(b,) N Geollect(red)

(3) Bcolor(bg,red,r1) ABin(ri) A—Bholding(b,) A BatBlock(b,) A Geollect(red)

ensures

Bceolor(b,,red, ri) A Bin(r1) ABholding(b,) A Geollect(red)

(4) Bceolor(by,red, ri) ABin(r1) ABholding(b,) A Geollect(red)

ensures

Bcolor(b,,red, ri) A Bin(ry) ABholding(b,) A Geollect(red)

(5) Beolor(by,red,ry) ABin(rg) ABholding(b,) A Geollect(red)

ensures
Bcollect(red)

Figure 2: Proof outline consisting of five steps.

to prove, for every action a:

{Bcolor(b,,red,r1) ABin(rg) A ~Bholding (b,)\

Gcollect(red) N —(Bcolor(b,,red,r1) ABin(r;)

A —Bholding(b,) N Geollect(red)) }

a

{Bcolor(b,,red,r)) ABin(ro) A—Bholding(b,)\

Gcollect(red) V Beolor(by, red,r1) ABin(ry)

A —=Bholding(b,) N Geollect(red)}

For at least one action d’, in our case goTo(r), we
are further required to prove:

{Bcolor(by,red,ri) ABin(ry) A ~Bholding (b,)\

Geollect(red) N—(Bcolor(by,red, ri) ABin(ry)

A —Bholding(b,) A Geollect(red)) }

/
a

{Bcolor(by,red,r) ABin(r) AN —=Bholding(bs) N
Geollect(red) }

Each of these Hoare triples are proved by applying
the proof rules of Table 2. The effect axioms are de-
rived from the described transformation method while
the frame axioms, describing what does not change,
as of now have to be supplied manually by the user.
Due to space limitations example derivations are left

out; they may be found online as a separate appendix
file (see Section 3.3).

7 CONCLUSION

We have presented an approach for verification of an
implemented GOAL agent program for Blocks World
for Teams using a verification framework. We have
described a method for transforming GOAL program
code into expressions of an agent logic for which a
temporal logic proof theory is used to prove properties
of agents. We exemplified the process from code to
proof using a simple BW4T problem.

Reflecting on the agent logic approach, a notable
characteristic of agent logics is their close ties to agent
programming. In our case, the logic is directly linked
to implemented GOAL program code. On the quest
to make agent verification more approachable for pro-
grammers of agent systems, closing the gap between
practice and theory is of key importance. In our fu-
ture work with the framework there are some key
challenges to address. We have only experimented
with rather limited scenarios and it will be interest-
ing to see how well it scales for more complex sce-
narios. We need to consider means to relax the con-

343

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

straint that the agent must have complete knowledge;
this constraint severely hinders the usability of the ap-
proach. Furthermore, we need to be able to model
environments in the framework. Further challenges
appear due to our rather basic notion of actions; this
notion ought to be extended to also consider non-
determinism and real-time constraints (e.g. an action
must be fully executed before a deadline). Lastly, we
have of course the challenge of modelling systems
with more than just a single agent. There have been
efforts towards agent logics for multiple agents, such
as by (Bulling and Hindriks, 2009), but the the logical
languages are rather limited.

We observe that the current state-of-the-art is to
apply model-checking tools for verification of agent
software (Luckcuck et al., 2019). Efforts towards en-
hancing the practicality of tools for verifying agents
systems are ongoing. We believe that approaches us-
ing agent logics, with further work, have potential
and could offer an alternative to model-checking ap-
proaches. Achieving this will require further research,
in particular towards enhancing practicalities.

ACKNOWLEDGEMENTS

I would like to thank Koen Hindriks for discussions
and comments on drafts of this paper. I would also
like to thank Asta H. From and Jrgen Villadsen for
comments on drafts of this paper.

REFERENCES

Alechina, N., Dastani, M., Khan, A. F.,, Logan, B., and
Meyer, J.-J. (2010). Using Theorem Proving to Verify
Properties of Agent Programs, pages 1-33. Springer.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). JADE: a
FIPA2000 compliant agent development environment.
pages 216-217.

Bordini, R. H., Fisher, M., Visser, W., and Wooldridge, M.
(2006). Verifying Multi-agent Programs by Model
Checking. Autonomous Agents and Multi-Agent Sys-
tems, 12:239-256.

Bulling, N. and Hindriks, K. V. (2009). Towards a Verifica-
tion Framework for Communicating Rational Agents.
MATES, pages 177-182.

Calegari, R., Ciatto, G., Mascardi, V., and Omicini, A.
(2020). Logic-based technologies for multi-agent sys-
tems: a systematic literature review. Autonomous
Agents and Multi-Agent Systems, 35.

de Boer, F. S., Hindriks, K. V., Hoek, W., and Meyer, J.-J.
(2007). A verification framework for agent program-
ming with declarative goals. Journal of Applied Logic,
5:277-302.

344

Dennis, L. A. and Fisher, M. (2009). Programming Verifi-
able Heterogeneous Agent Systems. In Programming
Multi-Agent Systems, pages 40-55. Springer.

Dix, J., Logan, B., and Winikoff, M. (2019). Engineer-
ing Reliable Multiagent Systems (Dagstuhl Seminar
19112). Dagstuhl Reports, 9(3):52-63.

Hindriks, K. V. (2009). Programming Rational Agents in
GOAL, pages 119-157.

Hindriks, K. V., Boer, F., Hoek, W., and Meyer, J.-J. (1999).
Agent programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2:357-401.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. (2001). Agent Programming with Declar-
ative Goals. In Intelligent Agents VII Agent The-
ories Architectures and Languages, pages 228-243.
Springer.

Jensen, A. B. (2021). Towards Verifying GOAL Agents in
Isabelle/HOL. In ICAART 2021 - Proceedings of the
13th International Conference on Agents and Artifi-
cial Intelligence. SciTePress. To appear.

Jensen, A. B., Hindriks, K. V., and Villadsen, J. (2021). On
Using Theorem Proving for Cognitive Agent-Oriented
Programming. In ICAART 2021 - Proceedings of the
13th International Conference on Agents and Artifi-
cial Intelligence. SciTePress. To appear.

Johnson, M., Jonker, C., Riemsdijk, B., Feltovich, P. J., and
Bradshaw, J. (2009). Joint Activity Testbed: Blocks
World for Teams (BWA4T). ESAW, pages 254-256.

Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., and
Fisher, M. (2019). Formal Specification and Verifi-
cation of Autonomous Robotic Systems: A Survey.
ACM Comput. Surv., 52(5).

Misra, J. (1994). A Logic for Concurrent Programming.
Technical report, Formal Aspects of Computing.
Nipkow, T., Paulson, L., and Wenzel, M. (2002). Is-
abelle/HOL — A Proof Assistant for Higher-Order

Logic. Springer.

Paulson, L. (2000). Mechanizing UNITY in Isabelle. ACM
Trans. Comput. Logic, 1(1):3-32.

Poslad, S. (2007). Specifying Protocols for Multi-Agent
Systems Interaction. TAAS, 2.

Rao, A. S. and Georgeff, M. P. (1991). Modeling Ratio-
nal Agents within a BDI-Architecture. In Proceedings
of the Second International Conference on Principles
of Knowledge Representation and Reasoning, KR’91,
pages 473-484. Morgan Kaufmann Publishers Inc.

Rao, A. S. and Georgeft, M. P. (1993). Intentions and Ratio-
nal Commitment. In Proceedings of the First Pacific
Rim Conference on Artificial Intelligence (PRICAI-
90). Citeseer.

Russell, S. and Norvig, P. (2020). Artificial Intelligence: A
Modern Approach (4th Edition). Pearson.

Shoham, Y. (1993). Agent-oriented programming. Artificial
Intelligence, 60(1):51-92.

Winikoff, M. and Cranefield, S. (2014). On the Testability
of BDI Agent Systems. Journal of Artificial Intelli-
gence Research, 51:71-131.

