
HERO vs. Zombie: Identifying Zombie Guests in a Virtual Machine
Environment

Yael Elinav1 a , Alex Moshinky1 b, Lior Siag1 c and Nezer Jacob Zaidenberg1,2 d

1Faculty of Computer Science, College of Management, 2 Eli Weisel st., Rishon LeZion, Israel
2Faculty of IT, University of Jyväskylä, Jyväskylä, Finland

Keywords: Virtualization Sprawling, Inactive Virtual Machines, Virtual Machines, Remote Management, System
Administration, Green Computing.

Abstract: Virtual servers are important in many data-centers. Multiple guest virtual machines are consolidated on several
hosts on-site or on the cloud, and serve the organization’s computational needs. However, virtual machines
not cleared from the system, known as zombie machines, waste resources and pose a security risk. We present
a novel tool to optimize resource use by tracking down zombie machines: HERO (Host Environment Re-
source Optimization). HERO leverages multiple testing approaches and machine learning to assist system
administrators in locating “zombie” machines.

1 INTRODUCTION

Server virtualization is a crucial part of meeting mod-
ern organizations’ computing needs. Server virtual-
ization allows for higher reliability, improved flexibil-
ity, and reduced costs compared with traditional phys-
ical servers (Steinder et al., 2007). Virtualization also
improves server security by facilitating patch man-
agement (Ray and Schultz, 2009). In fact, virtualiza-
tion and related technologies such as SGX and Trust-
Zone (Zaidenberg, 2018) are key factors in Industry
4.0 security. However, the ease of adding new virtual
machines introduces new problems. Virtualization
sprawling (Suchithra and Rajkumar, 2012) is a phe-
nomenon that occurs when the virtual environment
grows to a scale too large to be managed effectively
by the system administrator. Virtualization sprawl-
ing can cause security risks (Luo et al., 2011) and
administration overhead (Carroll et al., 2011), and
causes valuable system resources to be wasted, e.g.,
from storage and RAM allocation to increased elec-
tricity use and CO2 emissions (Belanger and Case-
more, ). “Zombie” VMs (virtual machines), or co-
matose VMs,(Koomey and Taylor, 2017) are a great
contributor to this phenomenon. A zombie VM is a

a https://orcid.org/0000-0001-6722-3602
b https://orcid.org/0000-0002-0571-0066
c https://orcid.org/0000-0002-5517-5006
d https://orcid.org/0000-0003-3496-7925

virtual machine that is no longer needed yet is still
active and consuming resources. A server can turn
into a zombie for many reasons. For instance, a sys-
tem administrator may forget to eliminate an exper-
imental VM. In another example, whenever a new
system replaces an outdated VM, the outdated VM
can be discarded. However, the system team often
keeps the older system intact to ensure fast rollback
if a problem occurs (Colman-Meixner et al., 2016)
on the new system. The system team may forget to
delete these older systems long after the new sys-
tem is considered as stable as the old one. Another
cause for unattended VMs is swapping employees and
workplaces. Sometimes, VMs that belonged to for-
mer employees are left unattended as current system
staff forgot about their existence or purpose and do
not want to risk compromising operations. The num-
ber of zombies varies from company to company and
can comprise up to 30% of VMs in a given cloud en-
vironment (Mazumdar and Pranzo, 2017). Remov-
ing them can improve resource allocation at no addi-
tional cost. In addition, these servers incur consider-
able costs through increased power consumption and
security risks as discussed in (Sapp, 2014) and others
sources

This paper suggests a solution to help address the
growing problem of virtualization sprawling.

The primary purpose of our system is to discover
zombie VMs using an accurate, efficient, and reliable
method. The program that we introduce, HERO (Host

240
Elinav, Y., Moshinky, A., Siag, L. and Zaidenberg, N.
HERO vs. Zombie: Identifying Zombie Guests in a Virtual Machine Environment.
DOI: 10.5220/0010261802400245
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 240-245
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Environment Resource Optimization), tests the guest
VMs hosted by a hypervisor. HERO performs mul-
tiple tests to determine with high probability which
VMs are zombie VMs. In this paper, we describe
those tests and the weight mechanism that adjusts the
test result to the unique characteristics of the data cen-
ter in which HERO runs.

2 HERO SYSTEM OVERVIEW

We built HERO using Python3.8, collecting and pars-
ing the data using Python and shell scripts. We de-
veloped HERO for the KVM (kernel virtual machine)
(Habib, 2008) hypervisor. KVM is an open source
virtualization technology and HERO can support mul-
tiple KVM servers from one instance. All the VMs
used to write the program use the Ubuntu operating
system and run Prometheus (Padgham and Winikoff,
2002) to publish raw data via HTTP.

HERO needs to operate from a server with access
to the VMs in the KVM environment and a user to run
KVM “virsh” (Kovari and Dukan, 2012) commands.
HERO can run on a VM inside the KVM hosts. The
HERO program contains four key modules:
Discovery. This module is responsible for the discov-

ery and extraction of information about the VMs.
An additional program, Prometheus, is used to
make the information available for further pro-
cessing. This is according to Prometheus method-
ology (Padgham and Winikoff, 2005).

Inspection. This module contains all tests run on the
VMs and the resulting data. HERO uses this data
to determine what VMs might be zombies.

Action. This module contains the activities HERO
performs on suspected zombies. These activities
are listed online for the system administrator.

Training. This module reviews the data obtained
from VMs and confirmed as zombies by the sys-
tem administrator in order to adjust the weight of
each test to reflect the characteristics of the zom-
bies remaining in the cloud environment.

2.1 Discovery Module

We used Node exporte (Großmann and Schenk, 2018)
and wrote custom scripts for those metrics. The
scripts periodically read and parse the data published
by the node-exporter to allow VM testing. The files
containing the parsed data are continuously updated
and limited by size. Therefore, the files usually con-
tain data from approximately the last two weeks of
operation to ensure relevance.

2.2 Inspection Module

HERO runs several tests on every VM. The tests re-
turn a number that represents the level of confidence
that the machine is indeed a zombie VM. This grade
will be later multiplied by a weight that represents
how significant the test is (e.g., the “name test” is less
valuable than the “CPU test”). The sum of the final
grades is the score of the VM: how strongly HERO
“believes” it is a zombie. Zombie VMs can act in dif-
ferent ways and operational VMs may have several
zombie characteristics. Therefore, we chose to con-
duct a large number of tests and give them varying
significance.

2.3 Tests

It is often quite easy to verify that a server is not a
zombie. For example, port TCP-22 (ssh) traffic or
changing levels of CPU usage would indicate that a
VM is currently in use and operational. No network
traffic or close to zero CPU usage for a long period of
time would indicate that a VM is indeed a zombie.

Figure 1: HERO architecture.

A server that fails to communicate with external
sources for long periods or that reboots frequently and
fails to demonstrate the stability expected from pro-
duction servers are likely to be zombies. However,
such servers may simply be temporarily off-duty (for
example, during off-peak periods). HERO will at-
tempt to confirm which machines are zombies and
which are legitimate virtual machines merely tem-
porarily idled.

1. CPU Test: HERO checks the CPU usage of the
VM. A server that is idle most of the time is
likely not operational. CPU usage varies when
the VM only runs default services versus initiated

HERO vs. Zombie: Identifying Zombie Guests in a Virtual Machine Environment

241



programs. The test checks the 15-minute average
CPU load against a configured threshold and re-
turns the percentage of those occurrences. (Bila
et al., 2012) used similar tests to detect idle sys-
tems.

2. RAM Test: HERO checks how often the VM allo-
cates RAM. A server that is idle most of the time
is likely not operational and its RAM usage varies
when the VM only runs default services versus
initiated programs. This test works similarly to
the CPU test. A similar method was used in (Bila
et al., 2012).

3. Network Test: HERO checks how communicative
the VM is. As VMs are likely to generate network
traffic regardless how operational they are (e.g.,
ARP, broadcast, DHCP) (Georgiou et al., 2013),
this test checks if the daily incoming and outgoing
network traffic exceeds a certain threshold. The
test score is how often the VM has not commu-
nicated with another device (transmit or receive).
Some VMs may not even have a network card at
all, and cannot be reached. Such VMs are highly
likely to be zombies.

4. Uptime Test: A server having a very long uptime
means no significant upgrades or periodic main-
tenance shutdowns were performed on the server
(Kim et al., 2016). A larger-than-configured num-
ber of uptime days will result in a bad score (a
zombie candidate).

5. Frequent Booting Test: Frequent rebooting is an
abnormal behavior that will be quickly noticed
and fixed in a non-zombie VM. This test will de-
termine the number of times the VM has rebooted
in the documented period (Galante and de Bona,
2012).

6. Name Test: Suspicious names (e.g., “test,”
“check,” “abc,” “try,” “temp”) usually indicate
that a VM is temporary. Production VMs most
likely have a more meaningful name.

7. Software Version Test: HERO checks if the VM’s
software version is included in the “approved ver-
sions” list. This can be done using agents or by
examining the RAM of the inspected system using
LibVMI (Payne, 2012), NSX (Pettit et al., 2018),
or similar systems. A VM with an old version
will indicate an unmaintained and rarely upgraded
VM. This is a very important test because VMs
with older operating system versions are unlikely
to have recent security patches, meaning they can
very easily be a security threat.

2.4 Action Module

HERO provides the system administrator with a list
of suspected zombies in the environment. HERO also
provides a detailed results file for specific virtual ma-
chines. Thus, HERO allows the system administrator
to better understand how a given VM is operating and
to perform analysis on the reasons it was suspected.
After reviewing the suspected zombies, the system
administrator can list the actual zombie virtual ma-
chines. These VMs can be used as a control group for
retraining and improving the accuracy via the Train-
ing Module, and then later deactivated.

2.5 Training Module

Given that the profile of a zombie machine varies be-
tween data centers, we wanted to adapt the program
to the needs of individual data centers. One data cen-
ter may define a zombie machine as one that did not
communicate for a long time, whereas a different data
center may be interested to find machines that are
not using the CPU allocated to them. To accommo-
date HERO to different needs, we used a rule-based
training module with linear programming and a CNN-
based learning module. The system administrator can
enter a list of confirmed zombie virtual machines as a
control group. HERO will run tests both on the sus-
pected and real zombie virtual machines, and will in-
crease or decrease the weights accordingly. For each
test, HERO will check if the median test result of the
control group is higher or lower than that of the sus-
pected group for each test.

3 RESULTS

We tested HERO in a lab environment, hosting 8 zom-
bie VMs and 25 working VMs. The workload was
created by scripts that initiated random network com-
munication and used CPU and RAM for long periods.

At the first executing of HERO, with the weights
that we chose, the following results were obtained:
True Positive Rate (TPR) = 0.363 and True Negative
Rate (TNR) = 0.818, with balanced accuracy of 0.590.
After training HERO once (using training code writ-
ten by us) and raising the threshold, the following re-
sults were obtained: TPR = 0.454 and TNR = 0.863,
with balanced accuracy of 0.658. The results show
that HERO was able to learn and adjust the weights
according to our test lab environment.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

242



4 RELATED WORK AND
SYSTEMS

Currently, there are some monitoring tools that in-
spect virtual environments and only a few that ad-
dress the zombie VM problem. Here we describe a
few of them and their merits, and why they do not
completely solve the zombie problem. Some simi-
lar solution includes iCSI. ICSI(Kim et al., 2017) is a
garbage collector based on resource utilization deci-
sion model. It identifies the purpose of each VM first,
as differently purposed VMs have different utilization
patterns, and thus different way to determine inac-
tivity. It then searches for active VMs, as they have
stronger affinity towards those patterns. It preforms
network affinity analysis for the VMs marked as in-
active in order to reduce the number of VMs wrongly
marked as inactive. Another utilization-based model
(Fesl et al., 2019) adds client-VM network activity
and screen changes into consideration. This approach
says that if there are many changes to the screen, there
is a user interacting with the system. Likewise, if
there are many packets sent between the client and
the VM, it is likely that the VM is currently in use. If
both do not indicate activity, it refers to CPU, mem-
ory, and network usage to determine the level of ac-
tivity. Grabo (Cohen and Bremler-Barr, ) creates a
directed graph with edges representing dependency
between resources. The user inputs a set of core re-
sources which are used with non-cloud dependencies,
and those are used as the roots of a Mark & Sweep
process. This approach fails to consider stand-alone
VMs, which can be active, just not connected to other
resources. Pleco (Shen et al., 2016) is another exam-
ple for the graph-based approach. It creates a depen-
dency graph between applications and resources, as-
signs weight for each reference which represents how
much does the connection indicates activity, and cal-
culates confidence level for the VMs marked as in-
active. (Kim et al., 2016) Attempts to identify inac-
tive virtual machines by checking different parame-
ters. They establish that most VMs have low resource
utilization. They added login history check into their
parameters testing. Established that different VMs
have different purpose and thus different resource us-
age patterns and such each group needs to be evalu-
ated differently. Their model was trained to find ac-
tive VMs from the VMs after filtering the obvious in-
active ones. They did that because active VMs show
stronger features to determine there are active than in-
active VMs to determine they are inactive. The group
that is left is then the inactive ones. This can be cited
as a direct competing approach to HERO. (wook Baek
et al., 2014) is an implementation of similar system.

This one simply has a mechanism that deletes VMs
nobody accessed for a determined amount of time.
It does not take other parameters into consideration.
This can be cited as another example of inactive VM
detection and garbage collection, even if it’s a very
simple one.

SolarWinds Virtualization Manager (Kedia et al.,
2013) provides high-quality and reliable virtual ma-
chine monitoring, performance management, capac-
ity planning, and optimization. SolarWinds can con-
trol VM sprawl and resource inefficiencies by pow-
ering off idle VMs or deleting VMs no longer in
use. This can help to reclaim resources that the host
machine or other VMs can then use. It is able to
find some zombie VMs, but this tool only works on
VMWare and Hyper-V. It also requires an expensive
license. RVTools (Mauro et al., 2017) is a Windows
application that can display information about the vir-
tual environment. RVTools is able to list informa-
tion about VMs, CPU, memory, disks, partitions, net-
works, and much more. It is able to find some zom-
bie VMs, but this tool only works on VMWare ESXs
virtualization servers. Prometheus is an open-source
system monitoring and alerting toolkit originally built
at SoundCloud. Prometheus (Padgham and Winikoff,
2002) is a full monitoring and trending system that in-
cludes built-in and active scraping, storing, and more.
It has knowledge about what the world should look
like (which endpoints should exist, what time se-
ries patterns mean trouble, etc.) and actively tries
to find faults. Though it has extensive VM monitor-
ing, it does not have a specific zombie machine finder.
WhatsUp Gold (Hernantes et al., 2015) is a moni-
toring performance and availability end-to-end tool.
WhatsUp Gold displays hosts and guests, host/guest
relationships, clusters, and the real-time status. It also
monitors the performance and resource consumption
of hosts and guests, including CPU, memory, disk,
and more, but it does not have a specific zombie ma-
chine finder and only works in VMware and Hyper-
V environments. Veeam One (Graziano et al., 2013)
provides historical data to forecast resource usage and
plans for capacity changes and is able to model usage
trends and predict costs for storage, compute power,
and backup. It can find possible infrastructure weak-
nesses or vulnerabilities, but it does not have specific
zombie machines finder and only works in VMware
and Hyper-V environments. SolarWinds as one of
the strongest monitoring tools in the market and ad-
vertises its VM utilization as one of its most impor-
tant features. As shown above, most of the moni-
toring tools available today work only with VMWare
and Hyper-V, some do not look for zombie VMs, and
most of them charge licensing fees. These factors em-

HERO vs. Zombie: Identifying Zombie Guests in a Virtual Machine Environment

243



phasize the need for a project such as ours. Another
way to detect zombies is by using an introspection
solution, such as libvmi (Payne, 2012) or NSX (Pettit
et al., 2018), or software inside the VM (Kiperberg
et al., 2019). The memory can later be analyzed us-
ing tools such as rekall (Block and Dewald, 2017) or
volatility (Graziano et al., 2013). While these sys-
tems may provide all the required components to de-
tect zombies, they do not include a unique tool and
some hacking may be required. In addition, the per-
formance cost is quite significant. The system oper-
ated using Linux servers and workstations, but with
the exception of new tests and the inspection mod-
ule the system can operate equally as well using Win-
dows, OS X, MVS, or any other enterprise operating
system.

5 CONCLUSIONS

We presented HERO, a system designed to locate and
identify zombie VMs running on the inspected host or
cluster. We have used HERO on KVM environments,
though the system can be ported easily to Hyper-V,
ESXi, Acropolis, and Xen.

We designed and developed HERO, a system to
locate and identify zombie VMs on the inspected host
or cluster. By deploying HERO in a virtual server en-
vironment, we found that HERO could successfully
locate VMs and improve zombie detection accuracy
through the Training Module, thus validating our ap-
proach and use of machine learning.

Unfortunately, we could not access a live data
center to experiment on and, therefore, had to esti-
mate the common zombie characteristics based on our
knowledge and experience with real-life production
environments. Because HERO cannot definitively
verify which VMs are zombies, system administrators
must still confirm which VMs to deactivate. How-
ever, with further development, HERO could prove to
be an invaluable tool for system administrators, em-
powering them to quickly and accurately track down
zombie machines and, thus, optimize computing ca-
pacity and save costs.

ACKNOWLEDGEMENTS

We thank the College of Management, Academic
Studies, for a research grant that allowed us to de-
velop and test the system described in this paper.

REFERENCES

Belanger, S. and Casemore, B. ”exploring the impact of
infrastructure virtualization on digital transformation
strategies and carbon emissions” an idc white paper,
sponsored by vmware.

Bila, N., de Lara, E., Joshi, K., Lagar-Cavilla, H. A.,
Hiltunen, M., and Satyanarayanan, M. (2012). Jet-
tison: Efficient idle desktop consolidation with par-
tial vm migration. In Proceedings of the 7th ACM eu-
ropean conference on Computer Systems, pages 211–
224.

Block, F. and Dewald, A. (2017). Linux memory forensics:
Dissecting the user space process heap. Digital Inves-
tigation, 22:S66–S75.

Carroll, M., Kotzé, P., and Van der Merwe, A. (2011). Se-
cure virtualization: benefits, risks and constraints.

Cohen, N. and Bremler-Barr, A. Graph-based cloud re-
source cleanup.

Colman-Meixner, C., Develder, C., Tornatore, M., and
Mukherjee, B. (2016). A survey on resiliency tech-
niques in cloud computing infrastructures and appli-
cations. IEEE Communications Surveys & Tutorials,
18(3):2244–2281.

Fesl, J., Gokhale, V., and Feslová, M. (2019). Efficient vir-
tual machine consolidation approach based on user in-
activity detection. CLOUD COMPUTING 2019, page
115.

Galante, G. and de Bona, L. C. E. (2012). A survey on
cloud computing elasticity. In 2012 IEEE Fifth Inter-
national Conference on Utility and Cloud Computing,
pages 263–270. IEEE.

Georgiou, S., Tsakalozos, K., and Delis, A. (2013). Ex-
ploiting network-topology awareness for vm place-
ment in iaas clouds. In 2013 International Confer-
ence on Cloud and Green Computing, pages 151–158.
IEEE.

Graziano, M., Lanzi, A., and Balzarotti, D. (2013). Hyper-
visor memory forensics. In International Workshop on
Recent Advances in Intrusion Detection, pages 21–40.
Springer.

Großmann, M. and Schenk, C. (2018). A comparison of
monitoring approaches for virtualized services at the
network edge. In 2018 International Conference on
Internet of Things, Embedded Systems and Communi-
cations (IINTEC), pages 85–90. IEEE.

Habib, I. (2008). Virtualization with kvm. Linux Journal,
2008(166):8.

Hernantes, J., Gallardo, G., and Serrano, N. (2015).
It infrastructure-monitoring tools. IEEE Software,
32(4):88–93.

Kedia, P., Nagpal, R., and Singh, T. P. (2013). A survey on
virtualization service providers, security issues, tools
and future trends. International Journal of Computer
Applications, 69(24).

Kim, I. K., Zeng, S., Young, C., Hwang, J., and Humphrey,
M. (2016). A supervised learning model for identi-
fying inactive vms in private cloud data centers. In
Proceedings of the Industrial Track of the 17th Inter-
national Middleware Conference, pages 1–7.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

244



Kim, I. K., Zeng, S., Young, C., Hwang, J., and Humphrey,
M. (2017). icsi: a cloud garbage vm collector for ad-
dressing inactive vms with machine learning. In 2017
IEEE International Conference on Cloud Engineering
(IC2E), pages 17–28. IEEE.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., and Zaiden-
berg, N. (2019). Hypervisor-assisted atomic memory
acquisition in modern systems. In International Con-
ference on Information Systems Security and Privacy.
SCITEPRESS Science And Technology Publications.

Koomey, J. and Taylor, J. (2017). Zombie/comatose servers
redux. Report by Koomey Analytics and Anthe-
sis. Recuperado de http://anthesisgroup. com/zombie–
servers-redux.

Kovari, A. and Dukan, P. (2012). Kvm & openvz virtualiza-
tion based iaas open source cloud virtualization plat-
forms: Opennode, proxmox ve. In 2012 IEEE 10th Ju-
bilee International Symposium on Intelligent Systems
and Informatics, pages 335–339. IEEE.

Luo, S., Lin, Z., Chen, X., Yang, Z., and Chen, J. (2011).
Virtualization security for cloud computing service. In
2011 International Conference on Cloud and Service
Computing, pages 174–179. IEEE.

Mauro, A., Valsecchi, P., and Novak, K. (2017). Mastering
VMware vSphere 6.5: Leverage the power of vSphere
for effective virtualization, administration, manage-
ment and monitoring of data centers. Packt Publishing
Ltd.

Mazumdar, S. and Pranzo, M. (2017). Power efficient server
consolidation for cloud data center. Future Generation
Computer Systems, 70:4–16.

Padgham, L. and Winikoff, M. (2002). Prometheus: A
methodology for developing intelligent agents. In
International Workshop on Agent-Oriented Software
Engineering, pages 174–185. Springer.

Padgham, L. and Winikoff, M. (2005). Prometheus: A prac-
tical agent-oriented methodology. In Agent-oriented
methodologies, pages 107–135. IGI Global.

Payne, B. D. (2012). Simplifying virtual machine introspec-
tion using libvmi. Sandia report, pages 43–44.

Pettit, J., Pfaff, B., Stringer, J., Tu, C.-C., Blanco, B., and
Tessmer, A. (2018). Bringing platform harmony to
vmware nsx.

Ray, E. and Schultz, E. (2009). Virtualization security. In
Proceedings of the 5th Annual Workshop on Cyber Se-
curity and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and
Strategies, pages 1–5.

Sapp, K. L. (2014). Managing Virtual Infrastructure with
Veeam® ONE™. Packt Publishing Ltd.

Shen, Z., Young, C. C., Zeng, S., Murthy, K., and Bai,
K. (2016). Identifying resources for cloud garbage
collection. In 2016 12th International Conference
on Network and Service Management (CNSM), pages
248–252. IEEE.

Steinder, M., Whalley, I., Carrera, D., Gaweda, I., and
Chess, D. (2007). Server virtualization in autonomic
management of heterogeneous workloads. In 2007
10th IFIP/IEEE International Symposium on Inte-
grated Network Management, pages 139–148. IEEE.

Suchithra, R. and Rajkumar, N. (2012). Efficient migration-
a leading solution for server consolidation. Interna-
tional Journal of Computer Applications, 60(18).

wook Baek, H., Srivastava, A., and Van der Merwe, J.
(2014). Cloudvmi: Virtual machine introspection as
a cloud service. In 2014 IEEE International Confer-
ence on Cloud Engineering, pages 153–158. IEEE.

Zaidenberg, N. J. (2018). Hardware rooted security in in-
dustry 4.0 systems. Cyber Defence in Industry 4.0
Systems and Related Logistics and IT Infrastructures,
51:135–151.

HERO vs. Zombie: Identifying Zombie Guests in a Virtual Machine Environment

245


