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To represent human manipulation actions in a simple and understandable way, we had proposed a framework
called enriched semantic event chains (eSEC) which creates a temporal sequence of static and dynamic spatial
relations between objects in a manipulation. The eSEC framework has so far only been used in manipula-
tion actions consisting of one hand. As the eSECs descriptors are in the form of huge matrices, we need
to have a concise version of them. Here, we want to extend this framework to interactions which involve
more hands. Therefore, we applied statistical and semantic analyses to summarize the current eSEC while
preserving its important features and introducing an enhanced eSEC (e?SEC). This summarization is done by
reducing the number of rows in an eSEC matrix and merging semantic spatial relations between manipulated
objects. Eventually, we presented the new e2SEC framework which has 20% fewer rows, 16.7% less static
spatial and 11.1% less dynamic spatial relations while still maintaining the eSEC efficiency in recognition
and differentiation of manipulation actions. This simplification paves the way for a simpler recognition and
predicting complex actions and interactions in a shorter time and is beneficial in real time applications such as

human-robot interactions.

1 INTRODUCTION

Thanks to the experience of many training samples
in their lives, humans can recognize and even pre-
dict actions well. However, this task is very diffi-
cult for a machine. A machine knows neither the
objects that are used for an action, nor the reason
and outcome of the action. Even simple actions like
cut, stir or push are difficult to understand. Unless
the machine is equipped with an efficient algorithm
to represent and recognize human actions, many im-
portant challenges such as human computer interac-
tions, visual surveillance and video indexing will re-
main unattainable. Therefore, various methodologies
have recently been developed to resolve this issue.
The majority of these proposed approaches, recognize
human actions through statistical, syntactic or seman-
tic analyses. Recently, We have introduced a semantic
framework which represents manipulation actions (as
an important category of human actions) in terms of
thirty-row matrices whose rows indicate the chains of
static and dynamic spatial relations between each pair
of fundamental manipulated objects during the video
frame sequences (Ziaeetabar et al., 2018; Ziaeetabar
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et al., 2017; Worgétter et al., 2020). This approach
extracts qualitative spatio-temporal relations between
objects without further knowledge of their type which
makes it superior to other approaches.

Although eSEC is a useful method for simple one-
handed manipulation actions, its efficiency decreases
as the number of involved hands increases or the ac-
tions become more complex. It also fails to repre-
sent the interactions effectively. On the other hand,
we intend to extend our work by integrating the eSEC
framework with the basic components of body limbs
(Borras et al., 2017) and create a conjoint frame-
work to represent whole body human actions. But
as long as our matrices are so huge (with thirty rows
and many columns), we will not succeed in combin-
ing other features of body which inevitably lead to
larger matrices. Because the huge matrices increase
the complexity of the computations and slow down
the performance of the algorithm.

Therefore, in this paper an enhanced version of
ESEC (e?SEC) is proposed to keep the eSEC matrices
smaller and simpler with almost the same amount of
information. The procedure is as follows: (a) comput-
ing the level of importance for each row in an eSEC
matrix by an extensive statistical analysis to remove
the less important rows as well as (b) shrinking the
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set of spatio-temporal relations (semantics) to keep
the new framework even simpler.

2 RELATED WORKS

In this paper, we applied spatial reasoning between
objects to represent manipulation actions performed
by humans. This type of reasoning has been previ-
ously presented in numerous other domains, includ-
ing robot planning and navigation (Crockett et al.,
2009), interpreting visual inputs (Park et al., 2006),
computer aided design (Contero et al., 2006) and nat-
ural language understanding (Wei et al., 2009).

To represent manipulation actions semantically,
various methodologies have been proposed. (Qi et al.,
2019) used an attentive semantic recurrent neural net-
work to understand individual actions and group ac-
tivities in videos. To encode interactions between ob-
jects, (Sridhar et al., 2008) extracted functional ob-
ject categories from spatio-temporal patterns. The
next ability intelligent systems must be equipped with
after representing actions is to be able to recognize
them. Recently, (Khan et al., 2020) used deep neural
networks, with features from a convolutional Neural
Network model, and multiview features to recognize
human actions. Other studies utilized RGB-D data
to classify actions through a Bag-of-Visual-Words
model (Avola et al., 2019; Fei-Fei and Perona, 2005),
a multi-class Support Vector Machine classifier and a
Naive Bayes Combination method (Kuncheva, 2004)
to recognize human actions.

Among the existing methods, approaches that use
a semantic perspective are more widely used, due
to their simplicity in perception and similarity with
the human cognitive system. In this regard, (Ak-
soy et al., 2011) introduced the semantic event chain
(SEC) which considers the sequence of transitions be-
tween touch and non-touch relations between manip-
ulated objects to represent and recognize actions. We
further improved this method using a computational
model, named the enriched Semantic Event Chain
(eSEC) (Ziaeetabar et al., 2017), which incorporates
the information of static (e.g. top, bottom) and dy-
namic spatial relations (e.g. moving apart, getting
closer) between objects in an action scene. This led
to a significant accuracy in recognition and predic-
tion of manipulation actions (Ziaeetabar et al., 2018).
The predictive power of humans and the eSEC frame-
work was compared in (Worgotter et al., 2020). Here,
we intend to upgrade the current eSEC framework to
cover other new and important applications of manip-
ulation actions in every-day life.

This paper is organized into the following sec-
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tions: First, we introduce the eSEC framework to con-
tinue with its enhanced version (e2SEC) in 3.1. Then,
the similarity measurement algorithm is proposed in
3.2. Next, the importance of rows in an eSEC ma-
trix is computed in 3.3 and the updated semantics are
presented in 3.4. The results are discussed follow-
ing the methods section in 4 and finally, the paper is
concluded by providing a conclusion and outlook to
future work.

3 METHODS

3.1 eSEC

The eSEC framework has been completely introduced
in our previous papers (Ziaeetabar et al., 2018; Zi-
aeetabar et al., 2017; Worgotter et al., 2020). Here,
we mention its basics.

The Enriched SEC framework is inspired by the
original Semantic Event chain (SEC) approach (Ak-
soy et al., 2011) which check touching (T) and not-
touching (N) relations between each pair of objects in
all frames of a manipulation scene and focus on tran-
sitions (change) of these relations. The extracted se-
quences of relational changes which are represented
in the form of a matrix will then used in the ma-
nipulation action recognition. In the enriched SEC
framework the wealth of relations described below are
embedded into a similar matrix-form representation,
showing how the set of relations changes throughout
the action.

A practical application would be human-robot in-
teraction where a human performs an action while a
robot observes it and performs the suitable response
as soon as possible (Ziaeetabar et al., 2018).

3.1.1 Spatial Relations

The details on how to calculate static and dynamic
spatial relations have been provided in (Worgotter
et al., 2020). Here we only define these relations.

e Touching and non-touching relations (TNR)
between two objects are defined according to col-
lision or no-collision between their corresponding
point clouds.

e Static spatial relations (SSR) include: “Above”
(Ab), “Below” (Be), “Right” (R), “Left” (L),
“Front” (F), “Back” (Ba), “Inside” (Im), “Sur-
round” (Sa). Since “Right”, “Left”, “Front” and
“Back” depend on the viewpoint and directions
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of the camera axes, we combined them into
“Around” (Ar) and used it at times when one
object was surrounded by another. Moreover,
“Above” (Ab), “Below” (Be) and “Around” (Ar)
relations in combination with “Touching” were
converted to “Top” (Te), “Bottom” (Bo) and
“Touching Around” (ArT), respectively, which
corresponded to the same cases with physical
contact. If two objects were far from each other
or did not have any of the above-mentioned
relations, their static relation was considered as
Null (O). This led to a set of nine static relations
in the eSECs:

SSR = {Ab, Be, Ar, Top, Bo, ArT, In, Sa, O}
The additional relations, mentioned above: R,
L, F, Ba are only used to define the relation
Ar=around, because the former four relations are
not view-point invariant.

e Dynamic Spatial Relations (DSR) require to make
use of the frame history in the video. We
used a history of 0.5 seconds, which is an es-
timate for the time that a human hand takes to
change the relations between objects in manipu-
lation actions. DSRs included the following re-
lations: “Moving Together” (MT), “Halting To-
gether” (HT), “Fixed-Moving Together” (FMT),
“Getting Close” (GC), “Moving Apart” (MA) and
“Stable” (S). MT, HT and FMT denote situations
when two objects are touching each other while:
both of them are moving in a same direction (MT),
are motionless (HT), or when one object is fixed
and does not move while the other one is mov-
ing on or across it (FMT). Case S denotes that any
distance-change between objects remained below
a defined threshold of (§ = 1 ¢cm) during the en-
tire action. In addition, Q is used as a dynamic
relation between two objects when their distance
exceeded the defined threshold & or if they did not
have any of the above-defined dynamic relations.
Therefore, dynamic relations make a set of seven
members:

DSR = {MT, HT, FMT, GC, MA, S, Q}

To distinguish between touching/non-touching, we
measure the distance between the closest points of
two objects and set a touching relation if this dis-
tance is smaller than a predefined threshold (n = 1
cm). To facilitate the computation of spatial rela-
tions between objects, we use camera axes and create
an Axis Aligned Bounding Box (AABB) surrounding
each object’s point cloud. In the AABB representa-
tion, all box sides are parallel to the directions of axes.
An example of an object’s point cloud and its corre-
sponding AABB is shown in figure 1. By taking the
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AABBs around the objects’ point clouds (instead of
their original shape), the computation is much easier
but also reliable.

3.1.2 Fundamental Object Roles

Computing the spatial relations described above be-
tween all pairs of objects is time consuming and use-
less. Therefore, we recognize the so-called “funda-
mental objects” among all of the other objects in a
manipulation scene. The definition of these objects is
based on the original SEC relations and given in Table
1. This way we exclude distractor objects which are
present in the scene but do not perform any role in the
manipulation.

Table 1: Definition and remarks of all objects in the eSEC
framework. (Ziaeetabar et al., 2018).

Object Definition Remarks
In the beginning and
Hand Hand interacts with the end not touching anything.
the objects in the scene. Interacts at least with one
object during the manipulation.
Ground The Support of all A ground plane extracted
objects except the hand. from a visual scene.
1 The first object which This object will have
has a transition from N to T. its first transition with hand.
The second object which Can have a change from
2 o, N—Tor
has a transition from N to T.
from T — N.
The third object which Can have a change from
3 N — Tor
has a transition from N to T. from T — N.

Figure 1: An AABB around a point cloud. The box is par-
allel to the axes x,y and z.

3.2 Similarity Measurement

The extracted sequences of spatial relational changes
(produced in the form of a matrix, see the left matrix
in figure 6) are used in the representation as well as
recognition of manipulation actions. An eSEC matrix
always consists of 30 rows while the top, middle and
bottom 10 rows indicate the sequence of Touching
and non-touching, static spatial and dynamic spatial
relations between each pair of the fundamental ma-
nipulated objects during a manipulation contentious
frames, respectively. Although the number of rows is
constant, the number of columns varies depends on
the number of frames. With the change of spatial re-
lations between objects a new column is created.



Action representation by eSEC matrices allows us
to measure the (diss)similarity between them through
mathematical computations. To this end, each 30-
row eSEC matrix is transformed to a 10-row matrix ®
that consists of triples containing (TNR, SSR, DSR)
like seen in the following equation (Ziaeetabar et al.,
2018):

(@1n,a11,0,@21.0)
(@21, a12,1,G22.0)

(01.1-011,1,1121.1) (01.2-011.27021.2>
(aZ.l-aIZ.ly‘IZZ.I) (02.2-,a12.27a22.2>

(a10,1,a20,1,a30,1)  (@10,2,a202,a30.2) (a10,1,@20,1,@30,n)

With the three relations categories L!(Ziaeetabar
et al., 2018)

, ifag;=bi
otherwise

, otherwise

, ifaji0,; =biyoo,;
, otherwise

0
1
2 _{ 0, ifajy10,; =bit10,;
- 1
0
1

(1)

This leads to a compound matrix, which holds the dif-
ference values between each pair of the correspond-
ing items in two eSEC matrices, and finally obtains
the amount of dissimilarity between the two manipu-
lation actions (Dg, @,) (Ziaeetabar et al., 2018):

dig dip - dig

dry1  dap - dyy
Daow =1 . . ..

dio diop - dig

2

||M5

1 k
Doy, = 15 Z

3.3 Importance of eSEC Matrix Rows

Some rows of an eSEC matrix depend on the impor-
tance of the objects that reflect the spatial relations
between them contain more information than others.
For instance, obviously the interaction between the
hand and ground pair is less important than the one
between hand and object 1 (which is the first object
touched by hand and usually refers to a tool with the
essential role in an action’s execution).

According to our previous studies, we have de-
fined and represented 35 manipulation actions by the
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eSEC framework (Ziaeetabar et al., 2018). To inves-
tigate the effectiveness and importance of a row, we
considered all combinations of size 2 from our pre-
defined 35 possible manipulation actions. Compar-
ing the two matrices, when the number of columns is
not equal, we repeated the last column in the matrix
with fewer columns until the number of columns was
the same. Then we initialized a counter to zero, and
during the comparison, each member of the i, row
(1 <i<30) of each manipulation eSEC matrix com-
pared with its corresponding member in the other ma-
trix, and if they were not equal, the counter value was
increased by one. This counter value was assigned to
each row in any comparison. Next, the counter values
of 30 rows were ranked from the lowest to highest.
An example can be seen in table 2. Then we did this
for each pair of the possible permutations between the
predefined manipulations: C(35,2) = 595, and finally
defined a parameter called the “degree of importance
of the row” by calculating the mean (median) of the
ranks (which were computed according to the counter
values) for each row using all the permutation compu-
tations. An example of these comparison between ac-
tion 1 to action 35: {(1,2), (1,3),...,(35,34)} is shown
in table 3.

Table 2: An example of the calculation for the importance
of rows. If one value in a row is same for manipulation 1
and manipulation 2, the dissimilarity counter rises by one.
The rank is calculated with the percentages.

Row Manipulation 1 Manipulation 2 |Dis.| % |Rank
1 ' UUT T T NNUUT TN NN| 1|20 2
T O e R
11 |U U Ar ArT ArT Ar O|U U Ab To To Ab O| 4 |80| 3
T O e R
30/ UUU U U UUUUUUUUU O0|0] 1

Table 3: An example for the calculation the mean and me-
dian of the ranks.

Manipulations | Row 1 | - | Row 11 | - | Row 30
1,2 2 . 3 . 1
35,34 1 . 2 . 7
Mean 314 | - 5.24 . 242
Median 3 . 5 . 1

The mean/median value is obtained at the end and
is directly related to the “degree of importance of the
rows”. Because the row that produces the most dis-
tinction among all possible action permutations and
causes more counter-value is of higher importance.

3.3.1 Removing Unimportant Rows
With the evaluation of “degree of importance of the

rows”, the less important rows can be deleted while all
35 predefined manipulations are still distinguishable
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from each other.

If there is more than one row that is less important
according to 3.3, all possible combination of those
must be considered to see if all 35 manipulations are
still distinguishable after removing those rows or not.
Therefore, we defined the number of rows that are
least important according to the analysis explained in
3.3 as “n”. Initially, only one row is deleted (k = 1),
then all possible combinations of two rows (k = 2),
next three rows (k = 3) and so on, while every combi-
nation is considered. The resulting combinations are
calculated with the binomial coefficient.

n n!
(k>1<k<n ki(n—k)!. ©)

After considering all possible combination of
rows to delete, we calculate the dissimilarity value for
each pair of the predefined 35 manipulations, using
equation 2. Given this results, we plot a huge dissimi-
larity matrix (size: 35x35) (figure 7), which displays
the dissimilarity values between each pair of prede-
fined manipulations after removing rows. In this way,
(%) <z, dendrograms are produced. Despite the re-
moval of the less importance rows, to make sure that
the actions are still significantly different, we select
the combination from which the most distinction be-
tween the existing manipulation actions is produced.

3.3.2 Dissimilarity Measure of Groups

We had categorized manipulation actions into 6
groups based on their nature in the figure 6 of (Zi-
aeetabar et al., 2018). To obtain more information
about the “degree of importance of rows”, we in-
troduced the dissimilarity measure of those groups.
Therefore, groups were determined using an unsu-
pervised clustering between different manipulation
actions using their dissimilarity (Ziaeetabar et al.,
2018). These groups can be seen in figure 7.

Using these groups, we calculated the dissimilar-
ity between each member of one group with each
member of another group, using equation 2. A cal-
culation example can be seen in figure 2.

Finally, we calculated the minimum, maximum,
mean and median for the dissimilarity of the groups
which can be represented in a dissimilarity matrix.
We select the rows that lead to the minimal informa-
tion loss while removing.

3.4 Updated Semantics

So far, we summarized the eSEC manipulations de-
scriptor by reducing the number of rows without com-
promising the uniqueness of the actions. To make
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Group 2 Group 5
D ) ] Dissimilarity D; ;
ChopSUE__ Stir Dchop,stir
Chop—| P
Dchop,Rotate-align Rotate-align Dieratch stir
Scratch ’
D
chop.Scoop SCOOp DSquash.Slir
Squash
Dchop,Break e

Break/Rip-off

Figure 2: A dissimilarity value is calculated between each
member of two groups (left). To determine the minimal in-
formation loss, we measured the mean, median, min and
max values for all calculated dissimilarities between two
groups (right).

the e2SEC tables even simpler, we decided to shrink
the huge set of static and dynamic spatial relations
as well, and merge some of the current semantics.
Our purpose is to ensure every manipulation is still
distinguishable from each other while the set of spa-
tial relations has been summarized. To this end, we
combined the items that seemed most logical to inte-
grate. For example, it is reasonable that the relations
“Above” and “Below” can be merged in some way
but “Inside” and “Around” have no relation to each
other. Since there are more than one semantics we
wanted to merge, we had to consider every possible
combinations, using equation 3. For further analysis,
we applied our merged semantics with the removed
rows from chapter 3.3.1 & 3.3.2 and once more cal-
culated the dissimilarity between the groups accord-
ing to chapter 3.3.2.

Eventually, the maximum, minimum, mean and
median values of the dissimilarities were computed
and accordingly the merged semantics that leads to
minimal information loss were selected.

4 RESULTS

In this paper, we divided the problem of simplification
of the eSEC manipulation action descriptors into two
parts.

e Determining the degree of importance for the
rows and removing the less important ones.

e Integrating some spatio-temporal spatial relations
with each other and shrinking the set of semantics.

To achieve the first purpose, we measured the impor-
tance of eSEC rows according to chapter 3.3, for ev-
ery combination of the 35 predefine manipulation ac-
tions, which leads to C(35,2) = 595 calculations. To
specify which rows can be removed with the least in-
formation loss, we plotted the median and mean val-
ues of the resulting ranks. As shown in figure 3, there
are five rows with a lower rank and thus of less impor-
tance. These row numbers are 3, 4, 6, 8 and 10. Since
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DSR

o

Rank (mean)
N

3]

0

1 23 4 5 6 7 8 910

Row

1

2 3 45 6 7 8 910
Row

1 2 3 4 5 6 7 8 9 10
Row

Figure 3: Mean values of the row ranks from TNR, SSR and DSR with corresponding error bars. A row is more important if

the rank is high and vice versa.

we have n = 5 rows in total, to investigate further,
we check the combination of one(k = 1), two(k = 2),
three(k = 3), four(k = 4) and five(k = 5) rows. Using
equation 3, we reach a total of 54+ 104+ 104+5+1 =
31 combinations to remove. We discovered that all
pairs of manipulations are still distinguishable, even
when all five rows were removen together. Therefore,
we needed to calculate the dissimilarity between the
groups of manipulations to find the combinations of
the less important rows, by the removal of which, the
different actions are still the most different from each
other.

We started by removing all combinations of rows
as mentioned before. Then, we calculated the dissim-
ilarity between each group, leading to dissimilarity
values of each group member {D; ;,...,D,,,} while
i,...,n € groupxand j,...,m € groupy, as shown in
figure 2. We used these values to calculate the mini-
mum, maximum, mean and median to plot them in a
dissimilarity matrix, shown in figure 4.

We determined the best suitable combinations to
remove by calculating the minimal cost between the
original dissimilarity matrix (A) and the dissimilarity
matrix with removed rows (B) by using the following
equation:

1 (JA—B| +|A— B|+ |max(A) — max(B)| + |min(A) — min(B)|)

The variables A/B are defined as the mean and A/B
as the median of the matrices. We discovered that
removing rows 4 (relation between the hand and the
ground) and 10 (relation between object 3 and the
ground) result in a minimal information loss.

Once the special pairs of fundamental objects with
less meaning are identified, we next integrate seman-
tics to further simplify our e>’SEC framework.

In total, we discovered four semantics(n=4) that
were possible candidates to merge, shown in the fol-
lowing list:

e “Above”(Ab) &
Around”(VArT)

“Below”(Be) — “Vertical

Median

0.64 [0v#30.66 0.62 101514 0.73

Mean
jR 0.22 (¥4 0.27 0.31 0.350.53

2-0.64 JUwR 0.62 0.62 11551 0.73

6§ 0.27 [UKe¥) 0.24 0.32 0.32
iR 0.31 [0A:#4 0.32 0.22 0.31 0.47

0.15[0K]10.14 0.3 0.35
0.29[0K¥3 0.3 0.23 0.3 |0.46 0.75
5§ 0.35/0.55 0.32 0.31 0.25/0.530.360.54 0.35 0.3 0.36 0.49

-0.60
0.46 0.49 0.2

0.45

ax
0.67 0.30

2 {URE IR VR 01 ORe%8 0.68  0.72 (U8l 0.74 0.71 0.75 0.77 0.15

M
0 0.48 0.09 0.18 0.120.38 054 (V)

£$0.090.18 0 0.09 0.09 0.37 0.74 0.62 0.62 0.65 0.75 0.00
F/80.18/0:52/0.09 0 0.250.29 H 5 0.71 0.62 [UReyAReIe] 0.65

5§0.12 0.34 0.09 0.25 0 0.4 0.75 0.65 (Ui Y] 0.68

6{0KE] 0.68 [EYAPEN SN 0.67 0.77 0.75 0.65 0.68 (&}
= o= 34 =5 (=2l |E= 32 |5=) b
Figure 4: An example of the mean, median, min and max

dissimilarity values of all groups with removed rows 4 and
10.

o “Top”(To) & “Bottom”(Bo) — “Vertical Around
With Touch”(VArT)

o “Moving Together”(MT) & “Fixed-Moving To-
gether”(FMT) — “Moving Together”(MT)

o “Getting Close”(GC) & “Moving Apart”’(MA) —
“Moving Around”’(MA)

We once more check all combinations for one(k=1),
two(k=2), three(k=3) and four(k=4) merged seman-
tics. Using equation 3, we reach a total of 4 + 6+
4 +1 = 15 combinations. In detail, we check all the
combinations listed in table 4. We discovered that
the minimal information loss is obtained by merging
“MT+FM”, “Ab+Be” and “To+Bo”.

Furthermore, some semantics were renamed to re-
main consistent:

e “Around”(Ar) — “Horizontal Around”(HAr)

e “Around With Touch”(ArT) —
Around With Touch”(HArT)

“Horizontal
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Table 4: All possible combinations of semantics for the
analysis.

Relations

To+Bo;

Ab+Be;

MA+GC;

MT+FMT;

Ab+Be, To+Bo;

MA+GC, To+Bo;

MA+GC, Ab+Be;
MT+FMT, To+Bo;
MT+FMT, Ab+Be;
MA+GC, MT+FMT
MA+GC, To+Bo, Ab+Be;
MT+FMT, To+Bo, Ab+Be;
MT+FMT, MA+GC, To+Bo;
MT+FMT, MA+GC, Ab+Be;
Four Ab+Be, To+Bo, MT+FMT, MA+GC

Combination

One

Two

Three

In conclusion, we obtain the following new relations:
e TNR: {T,N, U, X}

e SSR: {VAr, In, Sa, Bw, HAr, VArT, HAIT, U, X,
O}

e DSR: {MT, HT, GC, MA, S, U, X, Q}

which can be observed in figure 5.

Static relations

o ol

al) a2)
Dynamic relations

b1) b2)

-7 O[T

b3) b4)

[T
b5)

Figure 5: Final static spatial and dynamic spatial relations
of the new e2SEC framework.

a) Static Spatial Relations: al) Vertical Around, a2) Hor-
izontal Around, a3) Inside/Surround. b) Dynamic Spatial
Relations: b1) Halting Together, b3) Moving Together, b4)
Getting Close, bS) Moving Apart, b6) Stable.

At the appendix, we show an example to present the
difference between the eSEC and e?SEC matrices.
The figure 6 includes an eSEC and e>SEC table of
the “Scratch” manipulation. We Selected this action
out of the 35 analyzed eSEC matrices because it ben-
efits the most from the new framework. The images
on top of the tables are the frames, which correspond
to the process of this manipulation. First, the pencil
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(object 1) is touched by hand. After scratching on the
paper, the pencil lead breaks (object 2) and separates
from the remaining part of the pencil (object 3). The
hand moves away from the lead and the pencil is put
down by the hand. Finally, the hand moved out of the
frame.

After applying our new e’SEC approach, i.e., re-
moving the rows containing spatial relation between
(H,G) and (3,G) as well as merging the semantics, we
are able to reduce the number of columns by ~ 27% in
comparison to the eSEC table. Furthermore, the num-
ber of rows is reduced by 20%. Specifically, columns
1/2, 6/7 and 9/10 are equal with our framework and
can therefore be removed. If we consider all 35 ma-
nipulation we get a mean of ~ 12% reduced rows.

S CONCLUSIONS AND
OUTLOOK

In this paper, we improved our previously defined
action representation framework, the so-called eSEC
(enriched semantic event chain) and produced the en-
hanced version of it, called e2SEC framework to rep-
resent human actions in a simple and concise way.

The traditional eSEC performed well in recogni-
tion and prediction of simple manipulations which
were performed only by one hand (Ziaeetabar et al.,
2018; Worgotter et al., 2020) but was not efficient
enough when we aimed to represent and recognize
complex actions as well as interactions when two (or
more) hands were involved. Because their eSEC ta-
bles were growing in size and the computations be-
came heavier. This disadvantage was mostly con-
siderable in real time applications such as prediction.
The new e>SEC simplifies the previous eSEC and pro-
vides a new possibility for the analysis of complex ac-
tions as well as the interactions that are most common
in humans’ every-day life.

In the e2SEC framework, the number of rows was
reduced to 20%. Moreover by merging the semantics
in the set of spatial relations, we reduced the amount
of static and dynamic spatial relations to 16.7% and
11.1%, respectively. This simplification allows us
to combine manipulation descriptors with features of
body limbs (Mandery et al., 2015) and create an in-
tegrated framework for full-body human action repre-
sentation.
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APPENDIX
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Figure 6: Comparison of eSEC (left) and ¢>SEC (right) matrices for the manipulation “Scratch”. The important frames are
shown on top of the tables.
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Figure 7: Dissimilarity matrix for all manipulations without removed rows. The color of the manipulation names represent
the groups. Group 1: black, Group 2: red, Group 3: blue, Group 4: green, Group 5: orange, Group 6: purple
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