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Abstract: The increasing interest towards wearable Magnetic Inertial Measurement Units (MIMUs) for gait analysis is 
justified by their low invasiveness, confirmed repeatability and complete independence from laboratory 
constraints. However, some crucial doubts about the identification of a suitable sensor set-up and algorithm 
in different gait conditions and populations still exist. In this context, the principal aim of the present study 
was to investigate the effect of different walking conditions on the accuracy of gait phases detection with a 
trunk-MIMU system. Eleven healthy elderly subjects performed gait trials in four different walking conditions 
(fast speed, normal speed, slow speed and normal speed with dual-task). A stereophotogrammetric system 
was adopted as gold standard. The accuracy of the estimation of stance and swing phases was evaluated from 
the comparison of trunk-MIMU to the stereophotogrammetric system. Mean error values smaller than 0.03 s 
confirmed the accuracy of the trunk-MIMU algorithm for an elderly population. Consequently, trunk-MIMU 
system can be considered suitable for the characterization of gait phases in elderly subjects regardless of 
walking conditions.

1 INTRODUCTION 

During the last decades, different applications 
highlighted the central role of locomotion in human 
daily activities, generating a strong interest towards 
gait analysis. Several studies have been directed to 
assess standard gait patterns (Davis 1997), to identify 
the conditioning factors (Hebenstreit et al. 2015), to 
select systems and set-ups (Benndorf, Gaedke, and 
Haenselmann 2019), as to characterize human gait 
phases and kinematics (Kadaba et al. 1989).  In 
particular, clinical gait analysis is usually aimed at 
monitoring rehabilitation processes (Moon et al. 
2017), characterizing normal and pathological 
locomotion (Prakash, Kumar, and Mittal 2018; 
Shirakawa et al. 2017) and verifying therapeutic 
treatments (Gastaldi et al. 2015). The objective 
measurement of gait parameters supports clinical 
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experts during the observational assessment of gait. 
Human locomotion can be mainly described by the 
identification of two gait events: the heel strike (HS) 
and the toe off (TO). In detail, the detection of gait 
events allows first to divide each walking trial into 
consecutive cycles, then to estimate different gait 
phases. The gait cycle (GC) of each limb can be 
mainly divided in stance and swing phases. The first 
one starts with the load acceptance from the foot and 
lasts the entire time the foot is in contact with the 
ground, while correspondingly the limb bears part or 
whole human weight. The swing phase depicts the 
time period of foot oscillation without floor contact. 
Durations of stance and swing phases are expressed 
as percentages of the GC duration. Generally, in 
healthy adults the stance phase represents 
approximatively the 60% of the GC, while the swing 
phase the 40% of the GC. 
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Stance and swing phases can be crucially 
influenced by gait velocities, external disturbs or 
dual-tasks (Liu et al. 2014). In addition, previous 
studies highlighted the aging effect on gait phases 
(Aboutorabi et al. 2016). Healthy elderly people 
demonstrated a compensatory strategy to overcome 
instability and loss of control through the variation of 
spatio-temporal parameters. The percentage duration 
of the stance phase is increased, entailing a reduced 
percentage duration of the swing phase. More in 
general, in clinics, altered patterns of locomotion are 
assessed by a different percentage distribution of time 
in the two phases (Trojaniello et al. 2014). Another 
important aspect of pathological gait is the symmetry 
between right and left limbs. However, reduced  
symmetry is not clearly associated with age in healthy 
elderly populations (Aboutorabi et al. 2016). 

During past decades, several tools have been used 
for the analysis of human locomotion, especially to 
add an objective measure to the observational gait 
evaluation (Akhtaruzzaman, Shafie, and Khan 2016). 
Literature confirms optoelectronic systems as the 
gold standard technology thanks to their high 
accuracy and precision. Several improvements, 
methodologies and innovative biomechanical models 
are proposed nowadays to be implemented with 
optoelectronic systems for deeper kinematic and 
dynamic investigations (Panero, Gastaldi, and Rapp 
2018). However, these systems have some crucial 
disadvantages, as the cost, the restriction to the 
laboratory environment and the required expert 
operation. 

Recently, wearable sensor technologies such as 
Magnetic Inertial Measurement Units (MIMUs) have 
shown promising results in measuring human body 
motion with limited cost and invasiveness, with a 
good reliability and without laboratory constraints 
(Cereatti, Trojaniello, and Croce 2015; Digo et al. 
2020; Petraglia et al. 2019; G. Yang et al. 2019). The 
use of wearable systems may be more suitable for 
monitoring the subject for longer observation periods 
and during daily activities. However, some open 
issues related to MIMUs still exist, such as the 
definition of a suitable and reliable set-up (S. Yang 
and Li 2012) and the implementation of a robust 
algorithm for gait phases identification (Caldas et al. 
2017) that can be used in different conditions. Several 
previous studies have proposed MIMUs set-ups and 
algorithms to assess gait parameters both in healthy 
and pathological subjects. 

A previous pilot study has been conducted with 
three healthy young subjects performing gait trials for 
the evaluation of two MIMUs set-ups and associate 
algorithms for gait events detection (Panero et al. 

2018). In the first set-up one MIMU was positioned 
on the trunk, while in the second set-up two MIMUs 
were fixed on heels. Results have demonstrated the 
suitability of the two MIMUs set-ups and algorithms, 
but the set-up involving the trunk-MIMU showed the 
best accuracy and simplest usage. Considering these 
results and concentrating on the trunk-MIMU set-up, 
the analysis has been extended to a larger population 
of healthy elderly subjects, in order to validate the 
robustness of the algorithm in different walking 
conditions.  

Consequently, the aim of the current study deals 
with the analysis of gait speeds and conditions effects 
on the accuracy of gait phases detection with a trunk-
MIMU system. Eleven healthy subjects over 65 years 
old performed gait trials in four different walking 
conditions. Stance and swing phases have been 
monitored as outcomes of interest. Accuracy and 
error quantification, obtained from the comparison of 
trunk-MIMU results with an optoelectronic reference 
system, are analysed. 

2 MATERIALS & METHODS 

2.1 Participants 

Eleven healthy elderly subjects (4 males and 7 
females) participated in the research after giving their 
written informed consent. Four inclusion criteria were 
considered: (i) age over 65 years old, (ii) no declared 
neurological disorders, (iii) no musculoskeletal 
diseases in the last five years and (iv) no internal 
prostheses. The study was approved by the Local 
Institutional Review Board. All procedures were 
conformed to the Helsinki Declaration. Mean and 
standard deviation values of subjects’ age, height, 
weight and Body Mass Index (BMI) are reported in 
Table 1. 

Table 1: Subjects’ data (mean ± standard deviation). 

Age 
(years)

Height  
(m)

Weight 
(kg) 

BMI 
(kg/m2)

68.8 ± 5.0 1.6 ± 0.1 70.3 ± 14.9 25.8 ± 3.1 

2.2 Instruments 

Two motion capture systems were adopted for the 
study: an inertial system consisting of one MIMU and 
a stereophotogrammetric system composed of six 
infrared cameras and nine passive reflective markers. 
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2.2.1 Inertial System 

One MTx MIMU (Xsens, The Netherlands) 
containing a tri-axial accelerometer (range ±5 G), a 
tri-axial gyroscope (range ±1200 dps) and a tri-axial 
magnetometer (±75 μT) was used for the test. The 
MIMU was fixed on trunk (TRN) of participants at 
the level of T12-L1 vertebrae, with an elastic band 
provided by the Xsens kit. The sensor was oriented 
with the vertical x-axis pointing downward, the 
medio-lateral y-axis directed to the right side of 
participants and the anterior-posterior z-axis pointing 
in the opposite direction of the gait (Figure 1A). The 
MIMU was connected to the Xbus Master, the control 
unit able to send data to the PC via Bluetooth. Data 
were acquired through the Xsens proprietary software 
(MT Manager) with a sampling frequency of 50 Hz. 

2.2.2 Stereophotogrammetric System 

The stereophotogrammetric system adopted for the 
test was composed of two V120:Trio tracking bars 
(OptiTrack, USA) and nine passive reflective markers 
with a diameter of 14 mm. Each bar was self-
contained, pre-calibrated and equipped with three 
cameras able to detect infrared light. 

Six markers were fixed on feet of participants 
with adhesive tape (Figure 1B): two on toes (right toe 
= TOR, left toe = TOL), two on malleolus (right 
malleolus = MAR, left malleolus = MAL) and two on 
heels (right heel = HER, left heel = HEL). Other three 
markers (A, B and C) were placed on the floor in 
order to define the Global Coordinate System (GCS) 
in which to report data recorded by the bars (Panero 
et al. 2018). Each bar was connected to a separate PC. 
Data acquisition was made with the OptiTrack 
proprietary software (Motive) with a sampling 
frequency of 120 Hz. 

2.3 Protocol 

The experimental test was conducted indoor. The two 
OptiTrack bars were located one in front of the other 
parallel to a 6-meters linear walking path traced on 
the floor. Consequently, the obtained captured area 
was 2.5 m x 3.5 m, to guarantee the acquisition of at 
least three steps for each transition in front of the 
cameras. A static recording was made to obtain the 
coordinates of the three fixed markers A, B, C on the 
floor (Figure 2). 

Participants were first asked to hit their right heel 
on the floor to define an external event to synchronize 
the stereophotogrammetric system and the inertial 
system. Subsequently, subjects walked barefoot on 
the linear path in four conditions. In the first three 
conditions, they were asked to walk at different self-

selected speeds: fast, normal and slow. In the fourth 
condition, participants were involved in a dual-task 
condition at self-selected normal speed. While 
walking, they were asked many questions about their 
lives and habits. For each walking condition, all 
subjects performed 26 transitions in front of the 
cameras. The order of the four sets of walking 
conditions was randomized for all subjects. 
Coordinates of markers and signals of MIMUs were 
acquired at the same time with the two motion capture 
systems. 

 
Figure 1: Configuration of trunk-MIMU (A) and markers 
(B) on body of participants. 

2.4 Signal Processing and Data 
Analysis 

Signal processing and data analysis were conducted 
with customized Matlab routines. Considering the 
static recording of markers on the floor, a 
transformation matrix was built and used to express 
in the GCS all markers trajectories collected during 
gait sessions. Afterwards, the temporal 
synchronization of data from the two motion capture 
systems was guaranteed through the initial impact of 
the right foot on the floor (Panero et al. 2018). Gait 
events were then separately identified from data 
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acquired by the MIMU system and the optoelectronic 
system. This detection was made with two algorithms 
inspired by previous literature works. Considering the 
optoelectronic system, HSs and TOs were identified 
from horizontal and vertical coordinates of heels and 
toes markers, respectively (Panero et al. 2018; 
Veilleux et al. 2016). Since each bar captured the 
lateral view of one side of the body, markers on 
malleolus were used to distinguish between right and 
left sides during gait. As regards the MIMU system, 
gait events were identified from the anterior-posterior 
acceleration signal of trunk-MIMU. More in detail, 
HSs and TOs were detected as maximum and 
minimum peaks of this signal, respectively (Panero et 
al. 2018; Zijlstra and Hof 2003). In addition, the 
distinction between right and left gait events was 
made by considering the alternation sign of trunk-
MIMU angular velocity signal around the vertical 
axis (McCamley et al. 2012; Panero et al. 2018). 

For each subject, a total number of gait cycles 
between 150 and 300 was collected. First, for each 
participant in each testing condition, the average 
walking velocity was calculated as the ratio between 
the total gait path and the travel time. Then, for each 
testing condition, inter-subjects mean and standard 
deviation of walking speed values were estimated. 
Afterwards, using gait events obtained with both 
algorithms, spatio-temporal parameters of stance and 
swing times were assessed for each gait cycle of each 
participant in all walking conditions. For both stance 
and swing times, mean and standard deviation values 
were calculated intra- and inter-subjects for both right 
and left sides. Moreover, the symmetry of participants 
was evaluated by estimating the limp index as the 
ratio between right and left stance times. According 
to this confirmed symmetry, values of stance and 
swing times were averaged between right and left 
sides and represented through bar diagrams. In 
addition, stance and swing durations were estimated 
as percentages of the GC, in order to evaluate the 
effect of age on gait phases distribution.  

The accuracy of the MIMU algorithm was 
evaluated as the relative error between the mean value 
estimated with the optoelectronic system and the 
mean value obtained with the MIMU system, for each 
participant. Subsequently, inter-subjects mean values 
of errors were calculated in all walking conditions. 
The sign of the error allowed the differentiation 
between overestimation (negative sign) and 
underestimation (positive sign) with respect to the 
reference value. Finally, a stem graph representation 
was adopted in order to compare errors for both 
stance and swing times in different walking 
conditions. 

 
Figure 2: Top view of the setting with distance between 
OptiTrack bars, measures of the capture volume, length of 
walking path and GCS definition. 

3 RESULTS 

Table 2 depicts average and standard deviation values 
of walking speed (m/s) for the tested population in all 
the four conditions.  

Table 2: Inter-subjects mean and standard deviation values 
of walking speed (m/s) in four conditions. 

Speed (m/s) Mean ± St. Dev.  

Fast 1.16 ± 0.16 

Normal 0.87 ± 0.12 

Slow 0.74 ± 0.14 

Dual 0.82 ± 0.15 

 
Figure 3 shows inter-subjects mean and standard 

deviation values of stance and swing times (s) 
estimated with both OptiTrack and trunk-MIMU in 
all walking conditions. In Figure 4, two stem graphs 
represent mean errors for stance and swing times in 
all walking conditions (red circle for fast speed, green 
diamond for normal speed, blue square for slow speed 
and black pentagram for dual-task). 

Table 3 contains inter-subjects mean and standard 
deviation values of limp index, stance duration (% 
GC) and swing duration (% GC) obtained from the 
two algorithms in all walking conditions. 
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Figure 3: Stance time and swing time estimated in different 
walking conditions with OptiTrack (blue) and trunk-MIMU 
(orange) systems. 

4 DISCUSSIONS 

The main aim of the current study was to evaluate 
how the accuracy and robustness of a trunk-MIMU 
algorithm in gait phases identification are influenced 
by four different walking conditions (speeds and 
dual-task). In order to fulfill this purpose, inter-
subjects mean and standard deviation values of 
walking speeds (Table 2) were calculated. As 
reported by Aboutorabi and colleagues, a walking 
speed of 1.30 m/s can be considered the standard 
reference value for normal walking in healthy adults 
(Aboutorabi et al. 2016). Moreover, they referred to 
previous studies showing a loss of gait speed based 
on age (1.2%/year). In the present work, inter-
subjects mean walking speed in normal condition 
(0.87 m/s) confirms this reduction provoked by age. 
Moreover, even the registered walking speed in fast 
condition (1.16 m/s) is lower than the reference value 
of normal walking speed in healthy adults. In the 
dual-task condition, walking speed of subjects (0.82 

m/s) was lower than the one of normal condition (0.87 
m/s), but higher with respect to the slow speed 
condition (0.74 m/s). This aspect could be justified 
considering that participants were involved in 
answering questions and consequently were less 
focused on walking. Deeper investigation comparing 
normal and dual-task conditions with a larger 
population might demonstrate the significance of this 
difference.  

 
Figure 4: Errors of trunk-MIMU algorithm with respect to 
OptiTrack for both stance time and swing time in the four 
walking conditions. 

The effect of age on symmetry has been 
previously investigated by different studies 
(Aboutorabi et al. 2016). In the present work, the 
symmetry of participant was evaluated by estimating 
the limp index in all walking conditions both with 
trunk-MIMU and OptiTrack (Table 3). Since inter-
subjects mean values of limp index were always 
around 1 as expected in a healthy gait, symmetry of 
participants was confirmed. Consequently, right and 
left values of stance time and swing time (Figure 3) 
and percentage durations (Table 3) were averaged. 
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Table 3: Limp index, stance duration (%GC) and swing duration (%GC) estimated by OptiTrack and trunk-MIMU systems 
in all walking conditions (inter-subjects mean ± standard deviation). 

 Fast Normal Slow Dual  
OptiTrack Trunk-

MIMU OptiTrack Trunk-
MIMU OptiTrack Trunk-

MIMU OptiTrack Trunk-
MIMU 

Limp  
index 

1.01 
(0.03) 

1.01 
(0.03) 

1.00 
(0.01) 

1.01 
(0.03) 

1.01 
(0.03) 

1.00 
(0.04) 

1.00 
(0.02) 

1.01 
(0.04) 

Stance 
duration 
(%GC) 

61.76 
(1.42) 

60.44 
(1.61) 

63.20 
(1.66) 

62.09 
(2.40) 

64.57 
(1.70) 

62.77 
(2.01) 

64.31 
(1.71) 

62.39 
(2.13) 

Swing 
duration 
(%GC) 

38.24 
(1.42) 

39.56 
(1.61) 

36.80 
(1.66) 

37.91 
(2.40) 

35.43 
(1.70) 

37.23 
(2.01) 

35.69 
(1.71) 

37.61 
(2.13) 

 
Low cost, low invasiveness and confirmed 

repeatability of inertial sensors make them a suitable 
alternative to optoelectronic systems for gait analysis. 
Despite large investigations and many applications, 
some crucial gaps still exist for the identification of a 
robust and accurate sensor set-up configuration and 
algorithm that can be applied in different gait 
conditions and populations. Considering young 
subjects, the trunk-MIMU solution resulted to be the 
most suitable one (Panero et al. 2018). In the present 
study, stance time and swing time have been selected 
as outcomes of interest for the validation of accuracy 
and robustness of the trunk-MIMU algorithm and set-
up on an elderly population. As Figure 3 shows, both 
stance time and swing time increase with the 
reduction of gait speed. In the dual-task condition, 
values of stance time and swing time are halfway 
between the correspondent ones of normal and slow 
speed conditions. Moreover, small standard deviation 
values depict a repeatability of the measure inside the 
tested sample of elderly subjects (Pacini Panebianco 
et al. 2018). Considering the accuracy in gait phases 
detection with the trunk-MIMU system with respect 
to the OptiTrack one, bar diagrams of Figure 3 show 
strong accordance between values of both stance time 
and swing time in all walking conditions. This 
correspondence could be evaluated with stem graphs 
in Figure 4. Smaller errors were obtained for 
conditions at fast (+0.01 s for stance time, -0.01 s for 
swing time) and normal speeds (+0.01 s for stance 
time, -0.01 s for swing time). Stance time error is 
greater in dual-task condition (+0.03 s), while the 
greater error for swing time was registered in slow 
speed condition (-0.03 s). However, in all walking 
conditions, errors are lower than 0.03 s for both 
parameters. In addition, stance time is always 
overestimated (positive sign of errors), while an 
underestimation interests the swing time (negative 
signs of errors). This aspect might be justified by the 
later detection of toe off performed with the trunk-
MIMU, probably caused by less clear minimum 
peaks of the signal. Nevertheless, the overestimation 

of stance time and the underestimation of swing time 
demonstrate the constancy of the gait cycle duration. 
Better performance at fast and normal speeds could 
be explained by an easier identification of peaks of 
interest in acceleration and angular velocity signals 
used for HSs and TOs detection. Despite this aspect, 
the trunk-MIMU algorithm could be considered 
accurate for gait phases detection also in elderly 
subjects. 

Considering Table 3, values of stance duration 
and swing duration obtained as percentages of GC 
were observed. Reference values of stance duration 
and swing duration in normal gait are 60% and 40% 
of the GC, respectively. The current elderly 
population shows an increased stance duration 
(around 63% GC for OptiTrack and 62% GC for 
trunk-MIMU) and a consequent reduction of swing 
duration (around 37% GC for OptiTrack and 38% GC 
for trunk MIMU) in normal walking condition. In 
faster walking speed, the reduction of stance duration 
with respect to normal speed can be underlined with 
both OptiTrack (around 62% GC) and trunk-MIMU 
(around 60% GC), with a resulting increase of swing 
phase duration. In slow walking speed, the increase 
of stance duration with respect to normal speed can 
be underlined with both OptiTrack (around 65% GC) 
and trunk-MIMU (around 63% GC), with a resulting 
reduction of swing phase duration. Finally, the 
walking condition with dual-task shows percentage 
times distribution similar to the slow speed condition, 
both for OptiTrack and trunk-MIMU. 

5 CONCLUSIONS 

In conclusion, the presented analysis confirms that 
the trunk-MIMU system is suitable for the 
characterization of gait phases not only in healthy 
young subjects (Panero et al. 2018), but also in an 
healthy elderly population. The trunk-MIMU system 
depicts small errors of stance time and swing time 
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calculation at different walking conditions, revealing 
its accuracy and robustness. Moreover, the singular 
MIMU configuration might reveal advantages in 
terms of ease of use, limited cost and reduced 
invasiveness. For all these reasons, the trunk-MIMU 
system demonstrates to be a strategical and potential 
alternative to traditional stereophotogrammetric 
systems to evaluate gait phases. 

The principal limitation of this study consists in 
the involvement of a small sample of participants. 
However, this limit is expected to be overcome in the 
future, by testing a larger number of elderly subjects 
and by considering the possibility to identify 
subgroups based on gender, healthy conditions and 
specific age.  

Future perspectives will concentrate first on the 
evaluation of additional spatio-temporal parameters, 
including symmetry indices. Then, plans are to test 
the same MIMU set-up and algorithm on pathological 
populations, in order to define a complete protocol for 
the evaluation of rehabilitation progress and 
therapeutic treatments benefits. 
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