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Abstract: We present golog++, a high-level agent programming and interfacing framework that offers a temporal con-
straint language to explicitly model layer-penetrating contingencies in low-level platform behavior. It can
be used to maintain a clear separation between an agent’s domain model and certain quirks of its execution
platform that affect problem solving behavior. Our system reasons about the execution of an abstract (i.e.
exclusively domain-bound) plan on a particular execution platform. This way, we avoid compounding the
complexity of the planning problem while improving the modularity of both golog++ and the user code. On
a run-through example from the well-known blocksworld domain, we demonstrate the entire process from
domain modeling and platform modeling to plan transformation and platform-specific plan execution.

1 INTRODUCTION

Conceptually, a high-level control program makes a
robot execute a sequence of actions that achieves a
certain goal, where each action is some elementary
step that manipulates the environment in a predictable
manner. A (formal) description of the preconditions
and effects of such actions is often called a domain
model (or domain theory), and it is supposed to cover
the robot’s environment with its specific tasks and
challenges. In particular, a description of the domain
is not supposed to be tied (i.e., refer in any way) to
concepts that are specific to the robot platform (i.e.,
its hardware, software and their limitations).

In practice however, it turns out that a perfect sep-
aration between an agent’s environment and its plat-
form is unattainable. Every hardware platform has
specific properties and limitations, which cannot sim-
ply be abstracted by a reactive layer below the agent
level.

As an example, consider an RGB-D camera used
for object recognition. Such cameras often actively
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project an infrared pattern from which depth informa-
tion is reconstructed, so they are notoriously power-
hungry and may also cause disturbance in other IR-
sensitive devices in the environment. As a result, such
cameras need to be switched off when they are not
being used. When switching them on, they typically
take a few seconds to initialize, so in order to not
cause delays, we want to switch it on shortly before
it will be used.

For this reason, switching the camera on and off is
a platform-specific behavior that can only be sensibly
integrated at the strategic agent level. There are ap-
proaches that model everything from the domain the-
ory down to its mapping onto a particular platform as
one unified planning problem. However, this can re-
sult in a significant increase in the domain size and
thus the search space size, thereby impairing planner
performance.

As an alternative approach, (Hofmann et al., 2018)
proposed to separate the platform model from the do-
main theory such that the domain theory is abstract
and independent of the underlying platform. The
platform model describes the platform components
with timed automata. Temporal constraints describe
the relationship between domain theory and platform
model, e.g., by stating that two seconds before doing
a scan action, the camera should be switched on.

golog++ is a GOLOG development framework
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that decouples the language syntax, the runtime se-
mantics and the platform interfacing. In this paper,
we describe the runtime semantics of the temporal
constraint language we offer as a means to explic-
itly model how platform-specific quirks and contin-
gencies interact with a platform-independent domain
theory.

We begin with some background on the GOLOG
language family and other related work in Section 2.
Section 3 is the main part of this paper, where we
build up an application example based on the well-
known Blocksworld domain. We start by introducing
a simple Basic Action Theory (BAT) in Section 3.1,
and continue in Section 3.2 with a golog++ main pro-
cedure that solves a problem within this domain. Sec-
tion 3.3 then introduces our platform modeling lan-
guage by linking the above-mentioned RGB-D cam-
era problem to the Blocksworld BAT. Section 3.4
roughly describes one particular method of trans-
forming a platform-independent plan into a platform-
specific schedule given the domain theory and the
platform model shown before. The example run-
through is finished in Section 3.5 with more detailed
account of how a transformed schedule is executed
and how platform consistency is maintained at run-
time.

2 BACKGROUND & RELATED
WORK

As mentioned before, advances in hybrid planning
systems (Halsey et al., 2004; Shu et al., 2005; Eyerich
et al., 2012, etc.) make it possible to treat a domain
theory along with temporal platform contingenciens
as a single, integrated planning problem (Stock et al.,
2015; Dvorak et al., 2014). There is however no way
around the fact that this approach can compound the
problem problem complexity to the point that an oth-
erwise solvable problem becomes intractable.

So introducing some kind of separation between
domain and platform is a natural choice, and the re-
lation between the two is being investigated with di-
verse goals and requirements. (Konečnỳ et al., 2014)
introduce a concept they call execution semantics
which is used for consistency monitoring during exe-
cution. It is based on Allen’s Interval Algebra (Allen,
1983), much like the groundwork for our endeavour
(Schiffer et al., 2010). Their goals are however differ-
ent from ours in that they aim to increase plan robust-
ness with regard to changes in the world state. (Kunze
et al., 2011) leverage the Web Ontology Language
(Bechhofer et al., 2004) to define a language called
Semantics Robot Description Language (SRDL) to

map a task-level strategy onto kinematic description
languages.

The roots of our work can be traced back to the
Situation Calculus (McCarthy, 1963; McCarthy and
Hayes, 1969), SitCalc for short. The SitCalc is a
second-order logical language with equality that is de-
signed to reason about actions and their effects. A
situation in the world is the result of a sequence of ac-
tions given an initial situation s0. The preconditions
of actions are described in terms of so-called fluents:
Predicates that carry a situation term as their last ar-
gument. Successor state axioms specify which fluents
hold true in a given situation s. This idea spawned the
first GOLOG language (Levesque et al., 1997), where
a nondeterministic imperative program is combined
with a so-called Basic Action Theory that specifies
a SitCalc-like model of the problem domain. This
allows an interpreter to ground the nondeterministic
choices and obtain a grounded action sequence that
can be executed.

Since then, the GOLOG language family has
grown significantly, with newer dialects increasing
the capabilities of the original language in differ-
ent directions. CONGOLOG (De Giacomo et al.,
2000) introduced concurrent execution and exoge-
nous actions, allowing an agent to react to events
not triggered by itself. INDIGOLOG (De Giacomo
et al., 2009) made the resolution of nondeterminisms
(i.e. planning) more explicit and thereby increased
capabilities for incremental planning. DTGOLOG
(Boutilier et al., 2000) introduced the capability to op-
timize planned choices against a reward function, thus
introducing decision-theoretic planning. READY-
LOG (Ferrein and Lakemeyer, 2008) integrated fea-
tures from DTGOLOG, PGOLOG and CCGOLOG
(Grosskreutz and Lakemeyer, 2000; Grosskreutz
and Lakemeyer, 2003) to combine decision-theoretic
planning with uncertain action outcomes and fluents
that change continuously over time. The problems
associated with active sensing, resource management
and execution monitoring have also been touched
early in the GOLOG evolution (Hähnel et al., 1998;
Lakemeyer, 1999).

Despite all the progress in GOLOG language se-
mantics, there has been surprisingly little effort put
into the more engineering-related issues like language
usability, platform interfacing and maintainability of
both user code and interpreter implementations. This
effectively puts the GOLOG world at a disadvantage
towards better integrated agent languages like PDDL
or PRS. Important progress towards language usabil-
ity and integration has been made by golog.lua (Fer-
rein, 2010) and the YAGI dialect (Ferrein et al., 2012),
the latter of which has inspired the the golog++ archi-
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tecture (Mataré et al., 2018) and its action execution
interface (Kirsch et al., 2020).

While earlier explorations of the way we han-
dle temporal platform contingencies (Schiffer et al.,
2010) were still based on Allen’s Interval Algebra
(Allen, 1983), this work is based on a more expressive
temporal language called t-ESG (Hofmann and Lake-
meyer, 2018; Hofmann et al., 2018), which embeds
the Metric Temporal Logic (Koymans, 1990, MTL for
short) into ESG (Claßen and Lakemeyer, 2008).

3 PLATFORM ABSTRACTION IN
golog++

In golog++ (same as in many other GOLOG dialects),
programmers have the freedom to interleave planning
with imperative code. Planning is done over regu-
lar imperative code where some parameter choices
are made nondeterministically. Wrapping an impera-
tive code block in a solve(f, h){...} statement lets
golog++ resolve all nondeterminisms in such a way
that the cumulative reward function f is maximized
given the maximum search depth (horizon) h. This
gives programmers the freedom to, for instance, gen-
erate many short plans that solve a problem step by
step, to use a fixed plan library, or even to rely only
on scripted behaviour and not use planning at all.

In classical GOLOG, actions are completed instan-
taneously. In contrast, all domain actions defined in
golog++ (as shown in the next section) are implic-
itly durative. That means they have a begin, a du-
ration and an end, similar to the concept of durative
actions introduced by (Reiter, 1996). So when a user
defines an action a(), this durative definition spawns
the instantaneous actions start(a()) and end(a()).
The precondition of a() becomes the precondition
of start(a()), and the precondition of end(a()) de-
pends on a fluent that can only be set by an exogenous
action triggered by the platform backend (cf. fig. 2).

This reflects the fact that an agent generally can-
not control if and when a robot platform is finished
executing a certain task. For example, an agent may
of course cancel a robot’s movement while it is on
its way to a certain target, but it cannot simply stip-
ulate that it has now arrived. So when a program-
mer calls a();, that call is internally expanded into
{start(a()); end(a());}, although these instanta-
neous actions can also be called explicitly.

If the precondition of any action is not satisfied,
execution will block at that point and wait for an ex-
ogenous event to change the world state before testing
the precondition again.

Apart from the platform modeling features de-
scribed in sections 3.3 to 3.5, what sets golog++
apart from earlier implementations is its modular ar-
chitecture and vastly improved language usability. All
structural assumptions are explicitly represented in
abstract interfaces, and behavioral assumptions be-
tween major components are kept to an absolute min-
imum. This means for example that development on
language semantics can be done independently from
all of the other concerns.

Figure 1: An overiew of the golog++ component architec-
ture. Shaded boxes represent the core architecture, while
the plain boxes are exchangeable. For more background and
motivation on this architecture, see (Mataré et al., 2018).

Only the shaded boxes in fig. 1 make up the golog++
core architecture. Everything within the "gologpp"
package container is shipped with the source distribu-
tion, but the white boxes represent components that
are intended to coexist with alternative implementa-
tions.

The coexistence with alternatives is especially rel-
evant for the platform backend: golog++’s interface
to a real execution platform (i.e., a robot, a simulation,
etc). It typically leverages the functionality of some
robotics middleware framework like ROS (Quigley
et al., 2009) or Fawkes (Niemueller et al., 2010) to
dispatch and monitor action execution and to asyn-
chronously notify golog++ of any relevant exogenous
events (Kirsch et al., 2020). Additionally, it supplies
a clock source with a timed wakeup mechanism and
manages low-level components according to the plat-
form models shown later in section 3.3.

Regarding language usability, golog++ improves
on the state of the art by (1) defining an intuitive yet
strict language syntax and implementing it in a parser
that gives precise error messages, and by (2) making
the language typesafe. In combination, these two fea-
tures allow us to statically verify referential integrity
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and thereby catch the most common programming er-
rors before any code is executed.

3.1 The Basic Action Theory Σ

Fundamental to every golog++ program (as in all
GOLOG dialects) is the Basic Action Theory (BAT).
A BAT Σ describes the domain, mainly in terms of
what actions can be performed, what preconditions
they have and how they will affect the state of the
world.

golog++ uses a notation that is inspired by the C++
syntax. Being a syntax that is optimized for readabil-
ity (as opposed to grammar size), the full grammar of
the language is too large to be reproduced here. That
is why we limit ourselves to giving code examples
which should suffice to convey an intuition about the
language syntax.

Since golog++ is an explicitly, statically type-
safe language, all expressions have a fixed type.
A compound type definition specifies a key-value
structure, and can be freely defined and nested
by the user. list types are also user-defined
and are likewise arbitrarily nestable both in each
other and in compound types. A domain type de-
fines a named subset of values from some other
type, typically to enumerate relevant domain el-
ements. In the blocksworld scenario, we can use
domains of symbols to represent blocks and locations:

symbol domain Block = { A, B, C }
symbol domain Location =

Block | { Table, Home, Unknown }

An expression of the symbol type can be thought
of as an unquoted string that has to be defined as a
member of some domain before it can be referenced.
So any expression of type Block can take the values
A, B or C, and any expression of type Location can
take the values A, B, C, Table, Home or Unknown. With
these restrictions, we can define a functional fluent
that evaluates to the current location of a given Block:

Location fluent loc(Block x) {
initially:

loc(A) = Table;
loc(C) = Table;
loc(B) = C;

}

In addition to defining the fluent’s type signature, this
statement also defines the initial situation s0 with
regard to the fluent loc(Block). Using anything other
than a member of the Block domain as an argument
or assigning anything other than a Location as a
value will lead to a static error being raised.

This is already a highly specific description of the
world state for our simplified blocksworld scenario.

To complete our BAT, all we need is a descrip-
tion of how our agent can affect the world state.
That is, we need an action that moves a Block x
from its current location to another Location y:
action put_block(Block x, Location y) {
effect:

loc(x) = y;
precondition:

x != y & loc(x) != y
& (!exists(Block z) loc(z) == x)
& (y == Table

| !exists(Block z) loc(z) == y)
duration:

[4, 10]
}

Note how the current location is absent from the
action’s signature and how we are able to encode the
precondition without resorting to additional helper
predicates like Free(x) that are required e.g. in a
PDDL encoding of the Blocksworld domain. So in
detail, the action’s precondition says that we cannot
stack a Block x on itself, that its current location
must be different from y, and that there cannot be
another Block z on top of either x or y, except if y is
the Table (we can put all we want on the Table).

For demonstration purposes, we also introduce
two other actions. The go_to(...) action makes the
robot drive to a certain location using collision avoid-
ance, while align_to(...) will align it precisely so as
to be able to perceive and manipulate objects. We’re
omitting the definitions of these two actions here be-
cause for the purpose of this paper we are only con-
cerned about their interaction with the platform model
as shown further below.

3.2 The Main Procedure δ0

As mentioned in the introduction, GOLOG-based lan-
guages do not automatically search the entire ac-
tion space for a solution to a certain goal. In-
stead, the programmer writes an imperative pro-
gram δ0 that can include nondeterministic elements.
These nondeterministic elements make up the search
space for a planning operator that resolves them
so that the code block nested into it becomes exe-
cutable1. One example of such a nondeterminism
is the pick(T var) CODE(var); statement. It tells
golog++ to assign a value from the type T to the vari-
able var for which CODE(var) is executable. Com-
bined with classical imperative constructs, this can
be used to write a program that solves a Blocksworld
problem like a classical planner would:

1"Executable" here means that the preconditions of all
executed actions hold true.
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bool function goal() =
loc(A) == Table & loc(B) == A
& loc(C) == B

number function reward() =
if (goal())
100

else
-1

The goal() function decides whether the desired situ-
ation has been achieved, and the reward() function
gives a large payout in the goal() situation while
slightly penalizing all other situations.

procedure main() {
solve(16, reward()) {
go_to(Table);
align_to(Table);

while (!goal())
pick (Block x) pick (Location y)
put_block(x, y);

go_to(Home);
}

}

The main() procedure shown above com-
bines deterministic action calls (go_to(Table),
align_to(Table) and go_to(Home) with a
nondeterministic parameter choice within the
while (...) {...} loop. The result is a plan that
always begins with the two hard-coded actions and
ends with the hard-coded go_to(Home), but has a
variable sequence of put_block(x, y) actions in the
middle that realizes the shortest path to a situation
that satisfies the goal() function. The two pick(...)
statements are responsible for nondeterministically
binding the variables x and y. Without the enclosing
solve(...) block, parameter assignments would
be picked at random and every action would be
dispatched for execution immediately (online exe-
cution in GOLOG jargon). The solve(...) block
enables offline execution: Actions are not dispatched
to the platform backend, only their preconditions
are checked and their effects are applied, forming
a tree of situations. The entire while(...) block
is executed this way until it terminates or until the
maximum search depth (here 16 actions) is reached.
If an action’s preconditions are not satisfied, that
branch is not expanded further, and penalizing any
non-goal situation results in the shortest plan giving
the highest cumulative reward.

For illustration’s sake, say we want to formulate a
different strategy: Maybe we have a lot of space on
the table and manipulation works well, so we think
it’s best to first unstack every block and spread them
out on the table, and only then stack them back up in
the desired configuration. Then we could just "tran-

scribe" that strategy in two nondeterministic loops:

procedure main2() {
solve(22, reward()) {
go_to(Table);
align_to(Table);

while (exists(Block x) loc(x) != Table)
pick (Block x)
put_block(x, Table);

while (!goal())
pick (Block x) pick (Block y) {
test(loc(x) == Table);
put_block(x, y);

}

go_to(Home);
}

}

While this solution may look more complicated at
first glance, it actually results in a less complex plan-
ning problem. It encodes sort of a divide-and-conquer
strategy, sacrificing solution optimality for planning
speed: In main2(), the first loop only uses a branch-
ing factor of 1, making that search trivial. Then in
the second loop, blocks can only be moved onto other
blocks and the test(...) statement further restricts
the search to blocks which are still on the table, ef-
fectively limiting the search depth to the number of
blocks in existence. Depending on the initial situation
and the goal, the generated plan will likely contain a
number of actions that could have been saved (think
of stacking A-B-C into C-B-A for example), but the
planning will now scale linearly with the number of
blocks instead of quadratically.

3.3 The Platform Model Π

The example code shown so far is concerned purely
with the domain semantics. To execute it effi-
ciently on a particular robot platform, certain layer-
penetrating details of lower-level components may
have to be considered. This phenomenon has been
observed across many areas of software development
(i.e. not just in robotics) and is being discussed under
the term leaky abstraction (Spolsky, 2002).

In Section 1, we mentioned a depth camera as an
example of a hardware component that exhibits be-
haviour that cannot be completely "abstracted away".
Here our platform modeling language can be used to
describe precisely what hardware-specific behaviour
should be accounted for:
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component depth_cam {
clocks: bcl
states: off, boot (bcl < 4), on, error
transitions: off => boot resets(bcl),

boot ->(bcl > 2) on,
on => off,
error => off

}

The depth_cam component is modeled as a timed au-
tomaton according to (Alur and Dill, 1994). The dis-
tinctive feature of timed automata is that they can have
an arbitrary number of clocks that all count upward
with a uniform period and can be reset by certain
transitions. Both states and transitions can then be
guarded by simple conditions over these clocks.

Here, the model says that the component can only
remain in the boot state as long as the bcl clock
counts less than 4 (seconds in our case). Switching
from off to boot resets bcl to 0, and the transition
from boot to on can only be taken after at least 2 sec-
onds have passed on bcl. The thin arrow (->) on the
transition from boot to on also indicates that this is an
exogenous transition, meaning that it is not triggered
by the agent, but by the component itself. The agent
cannot influence if and when it happens: it can merely
acknowledge the fact that it did. This is the timed
automata equivalent of saying "The camera takes 2-4
seconds to boot". Now all we need to say is that we
want the depth_cam to be in the on state during any
put_block(...) action:

constraints {
during(put_block(*, *)):

state(depth_cam) = on;
during(go_to(*)):

state(depth_cam) = off;
}

The set of all component automata combined with the
set of all constraint formulas is called the platform
model Π. Generally speaking, a constraint formula
is an implication φ ⊃ ψ, where φ is a formula with
t-ESG semantics that refers only to action terms from
the domain theory Σ, and ψ is formula that refers only
to component states from the platform model Π. We
call φ the action spec and ψ the state spec. In the
golog++ notation shown above, the colon ":" repre-
sents the implication sign "⊃". All temporal opera-
tors can optionally be suffixed with temporal bounds
[t,u]. Other than during, golog++ also supports the
temporal operators previous/next, future/past, and
since/until. The semantics of such temporal formu-
las and their relation to the situation calculus are de-
fined in (Hofmann and Lakemeyer, 2018).

3.4 Plan Transformation

The plan produced by 〈Σ,δ0〉 is platform-agnostic and
doesn’t specify temporal boundaries. The plan trans-
formation takes this as input and attempts to satisfy all
platform constraints by inserting maintenance actions
and assigning a [tmin, tmax] time window to each ac-
tion. The transformation specifically is not supposed
to alter the initial action sequence in any way, because
the platform control is assumed to be completely dis-
joint from the domain of reasoning, resulting in a
clear separation between platform specifics and the
agent BAT as in (Hofmann et al., 2018; Hofmann
and Lakemeyer, 2018). In combination with the sim-
ple structure of platform constraints that demand plat-
form control solely based on the occurrence of certain
domain actions, this allows us to treat the plan trans-
formation as an isolated task only being concerned
with respecting

1. the order and durations of actions according to the
initial plan

2. the temporal features of the platform model
(guards and invariants of the modeled TAs with-
out exogenous transitions as the framework has
no control over them)

3. the desired platform control according to the plat-
form constraints.

Any transformation procedure capable of dealing
with these requirements may be suitable for our appli-
cation. One particular procedure developed with our
use case in mind is presented in (Viehmann, 2019).
There the task is tackled by encoding the entire plat-
form model (i.e. both the component automata and
the constraints) as a reachability problem over timed
automata. Despite being a PSPACE-complete prob-
lem (Alur and Dill, 1994), this is often solvable quite
efficiently with modern techniques. The rough idea is
to construct a single automaton with a designated fi-
nal state, such that every path to that state corresponds
to a possible transformed plan together with a range
of possible action time groundings, from which any
one particular may be computed.

Generally there is no single unique solution to
such a plan transformation. Solutions may differ in
the order or types of inserted maintenance actions and
(most likely) in the time windows assigned to each ac-
tion.

3.5 Execution

During execution, the main program δ (initially
δ = δ0) is traversed by the Controller (cf. Figure 2).
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The basic idea is that of an event loop, which is real-
ized by a blocking queue qexog. First, all pending ex-
ogenous events are processed in a non-blocking man-
ner, i.e. execution continues as soon as qexog is empty.

Controller

〈Σ,s0,Π, p0,δ = δ0〉

Platform
Backend

qexog

a, twake

Transition
Function

〈Σ,s,δ〉

〈δ, l = l0〉

Transformation

〈Π, p, l〉l

Figure 2: Flow of events and information between the major
components involved in program execution.

The Transition function is responsible for interpret-
ing program elements up to the point where the next
online action must be executed. It returns the remain-
ing program δ and the resulting abstract plan l0. If
δ calls the next action from outside a planning block
(online), l0 is a trivial plan that contains just this sin-
gle action. If a planning block is encountered, the
Transition function will plan through it and return the
resulting plan l0. If the end of the planning block was
reached, l0 is valid and the planning block is removed
from the remaining program δ. Note that a valid plan
could also be the empty plan {}.

If the transition function does not reach the end of
the planning block, that means no valid plan could be
found in the current situation s. The remaining pro-
gram δ is not changed, l0 is null (i.e. invalid) and we
must wait for the environment to change (i.e. block
on qexog) before trying again.

Given the 〈Σ,s0,δ0〉 described above, the transi-
tion function will generate the following abstract plan
l0:
{
start(go_to(Table));
end(go_to(Table));
start(align_to(Table));
end(align_to(Table));
start(put_block(B, A));
end(put_block(B, A));
start(put_block(C, B));
end(put_block(C, B));
start(go_to(Home));
end(go_to(Home));

}

The durative domain actions have been expanded
into instantaneous start(...) and end(...) actions
and the nondeterministics pick(...) statements have
been grounded such that the plan produces the maxi-

mum cumulative reward().
The abstract plan l0 is transformed according to

the platform model Π given the current platform state
p. This turns l0 into a schedule l that satisfies the
platform constraints. In our example, the result will
resemble the following:
{
[0,32748] start(go_to(Table))
[0,32768] end(go_to(Table))
[1,21] switch_state(depth_cam, off, boot)
[1,5] start(align_to(Table))
[3,5] switch_state(depth_cam, boot, on)
[3,13] end(align_to(Table))
[13,15] start(put_block(B, A))
[15,19] end(put_block(B, A))
[17,19] start(put_block(C, B))
[19,23] end(put_block(C, B))
[19,23] switch_state(depth_cam, on, off)
[21,23] start(go_to(Home))
[21,43] end(go_to(Home))

}

Each action a has been annotated with a time win-
dow [tmin,tmax] for its execution, and platform main-
tenance actions have been inserted to satisfy platform
constraints.

The constraints say that the depth_cam must
be off during any go_to(...) action, but they
say no such thing about the align_to(...) ac-
tion. Therefore, the transformation can insert the
switch_state(depth_cam, off, boot) action only
after the go_to(...) has ended. In this case, it co-
incides with the start of the align_to(Table) action,
likely giving the device enough time to complete its
boot procedure while the robot is aligning to the table.
Next up is an exogenous transition from boot to on,
so the action switch_state(depth_cam, boot, on)
will block until the depth_cam component has actu-
ally finished its boot procedure. The same is true for
end(align_to(Table)). Once both actions have been
executed, we can start stacking blocks according to
the solution found by the solve(...){...} block. Af-
terwards, another go_to(...) action is scheduled, so
the transformation has arranged for the depth_cam to
be switched off before it.

Before any action is executed, its time window
is checked against the current time: If it is still
too early, a timer event at twake = tmin is sched-
uled on the Platform Backend. Then, the Con-
troller blocks on qexog. When the timer event fires
at the wall time twake, the Platform Backend wakes
the Controller up by enqueueing an exogenous event
step_context_time(twake + ε) to qexog. Any exoge-
nous event (including the timer event) will be con-
sumed when it comes up and unblock the Controller.
Other possible events include exogenous component
state changes and any exogenous actions defined by
the BAT Σ.
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In case the platform state p did change exoge-
nously, we trigger another Transformation before at-
tempting to execute the next action a. This re-
transformation may insert new maintenance actions,
even at the beginning of the plan to maintain or re-
store platform consistency, effectively changing the
next scheduled action a. If and when a finally be-
comes possible, it is dispatched to the Platform Back-
end, has its effects applied to the current situation and
is removed from the remaining schedule l. After this,
schedule execution will continue in this way until the
schedule is empty, at which point the remaining pro-
gram δ will continue to be evaluated if it is non-empty.

In the real world, this loop will actually spend
most of its wall time being blocked on qexog, wait-
ing for an action to end, waiting until a certain point
in time or for any other kind of exogenous event that
may make the next action a executable.

4 EVALUATION

In 2018/2019 golog++ was used by students in a
lab course to develop an agent for the RoboCup Lo-
gistics League (RCLL Technical Committee, 2018;
Niemueller et al., 2015). The students used the Logis-
tics League simulation in a non-adversarial setup (one
team of 3 cooperating robots on the playing field). In
the Logistics League, robots score points by using the
playing field to manufacture and deliver products or-
dered by a central game controller (the referee com-
puter or RefBox). Ordered products vary in their de-
livery time windows and in their complexity, with the
more complex ones requiring forty or more interac-
tions with the playing field.

In the beginning, we could observe the students
intuitively employing a trial-and-error behavior while
they familiarized themselves with the basic syntax
and semantics of the golog++ language. At this stage,
much of the learning process was being driven by the
error messages generated by the parser and the type
system.2 Later during the semester, as students’ pro-
ficiency grew along with their code bases, their focus
shifted to experimenting with different team coordi-
nation strategies and how to employ incremental plan-
ning effectively given the uncertainties inherent in the

2Note that this would not have been possible with any
of the classical Prolog-based GOLOG dialects because they
neither define a GOLOG-specific syntax nor do they check
for any level of semantic coherence (static semantics). With
these, a self-guided, experimental learning process would
have been impossible because many typical beginner’s mis-
takes (syntax errors, parameter mismatches etc.) yield un-
defined behavior instead of helpful error messages.

Figure 3: Top: Playing field of the RoboCup Logistics
League (RCLL), seen here during the RoboCup 2015 in
China. The robots (circular bodies) use the Festo MPS ma-
chines (rectangular boxes with AR tags) to manufacture and
deliver ordered products. The MPS machines are movable
and the playing field layout changes with each game. Bot-
tom: RCLL simulation. Picture source and further league
details see (Niemueller et al., 2016).

domain.
The fact that students with little previous pro-

gramming experience and little to no background in
knowledge-based multi-agent development were able
to get to this stage shows that golog++ development
can be self-taught sustainably and that it can be a help-
ful tool in teaching knowledge-based high-level agent
programming.

5 CONCLUSION

We have shown how to solve a domain-specific prob-
lem in a platform-conformant manner while maintain-
ing a strict separation between domain and platform
on all levels. In broader terms, our architecture re-
flects the fact that while an individual is never entirely
separable from its environment, the relationship be-
tween both still follows a different logic than that of
the environment itself. That is why we think it is both
natural and effective to have different formalisms to
model a platform (here: timed automata) and a do-
main (here: GOLOG), and to describe their relation-
ship in a language (here: t-ESG constraints) whose
semantics overlap with both.

We have shown how the execution controller al-
ways strives to keep the runtime behavior consistent
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with the platform model, even in the presence of
unplanned behavior in low-level components. The
framework puts particular emphasis on a clean ar-
chitecture: In user code through type safety and the
platform/domain separation, and in its implementa-
tion through strict separation of the interfacing, repre-
sentation, interpretation and execution concerns. First
lab tests with uninitiated users give us confidence that
both the language design and the system architecture
are comprehensible and sustainable.

It will be of particular interest to study how this
new architecture helps with the development of error
recovery strategies and with porting existing domain
models to new robot platforms.

ACKNOWLEDGMENTS

This work was supported by the German National
Science Foundation (DFG) under grant numbers GL-
747/23-1 and FE 1077/4-1 and by Germany’s Excel-
lence Strategy – EXC-2023 Internet of Production –
390621612.

REFERENCES

Allen, J. F. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–
843.

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical computer science, 126(2):183–235.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P. F., and Stein,
L. A. (2004). OWL Web Ontology Language Refer-
ence. W3C Recommendation, World Wide Web Con-
sortium. http://www.w3.org/TR/owl-ref/.

Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S.
(2000). Decision-theoretic, high-level agent program-
ming in the situation calculus. In AAAI/IAAI, pages
355–362.

Claßen, J. and Lakemeyer, G. (2008). A Logic for
Non-Terminating Golog Programs. In Proceedings
of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR),
pages 589–599.

De Giacomo, G., Lespérance, Y., and Levesque, H. J.
(2000). ConGolog, a concurrent programming lan-
guage based on the situation calculus. Artificial Intel-
ligence, 121.

De Giacomo, G., Lespérance, Y., Levesque, H. J., and Sar-
dina, S. (2009). IndiGolog: A high-level program-
ming language for embedded reasoning agents. In
Multi-Agent Programming, pages 31–72. Springer.

Dvorak, F., Bit-Monnot, A., Ingrand, F., and Ghallab,
M. (2014). A flexible ANML actor and planner in
robotics.

Eyerich, P., Mattmüller, R., and Röger, G. (2012). Using
the context-enhanced additive heuristic for temporal
and numeric planning. In Towards Service Robots for
Everyday Environments, pages 49–64. Springer.

Ferrein, A. (2010). Golog.lua: Towards a non-prolog
implementation of GOLOG for embedded systems.
In Hoffmann, G., editor, Proceedings of the AAAI
Spring Symposium on Embedded Reasoning, (SS-10-
04), pages 20–28. AAAI Press.

Ferrein, A. and Lakemeyer, G. (2008). Logic-based robot
control in highly dynamic domains. Robotics and Au-
tonomous Systems, 56(11):980–991.

Ferrein, A., Steinbauer, G., and Vassos, S. (2012). Action-
based imperative programming with YAGI. In Work-
shops at the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence.

Grosskreutz, H. and Lakemeyer, G. (2000). Turning high-
level plans into robot programs in uncertain domains.
In ECAI, pages 548–552.

Grosskreutz, H. and Lakemeyer, G. (2003). ccGolog – A
Logical Language Dealing with Continuous Change.
Logic Journal of the IGPL, 11(2):179–221.

Hähnel, D., Burgard, W., and Lakemeyer, G. (1998).
GOLEX — Bridging the Gap between Logic
(GOLOG) and a Real Robot. In Annual Conference
on Artificial Intelligence.

Halsey, K., Long, D., and Fox, M. (2004). CRIKEY - a tem-
poral planner looking at the integration of scheduling
and planning. In Workshop on Integrating Planning
into Scheduling, ICAPS, pages 46–52. Citeseer.

Hofmann, T. and Lakemeyer, G. (2018). A Logic for
Specifying Metric Temporal Constraints for Golog
Programs. https://kbsg.rwth-aachen.de/~hofmann/
papers/timed-esg-cogrob18.pdf.

Hofmann, T., Mataré, V., Schiffer, S., Ferrein, A., and Lake-
meyer, G. (2018). Constraint-Based Online Transfor-
mation of Abstract Plans into Executable Robot Ac-
tions. In AAAI Spring Symposium: Integrating Rep-
resentation, Reasoning, Learning, and Execution for
Goal Directed Autonomy.

Kirsch, M., Mataré, V., Ferrein, A., and Schiffer, S.
(2020). Integrating golog++ and ROS for Practical
and Portable High-level Control:. In Proceedings of
the 12th International Conference on Agents and Ar-
tificial Intelligence, pages 692–699, Valletta, Malta.
SCITEPRESS - Science and Technology Publications.
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