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Abstract: Studies have shown the vulnerability of machine learning algorithms against adversarial samples in image 
classification problems in deep neural networks. However, there is a need for performing comprehensive 
studies of adversarial machine learning in the intrusion detection domain, where current research has been 
mainly conducted on the widely available KDD’99 and NSL-KDD datasets. In this study, we evaluate the 
vulnerability of contemporary datasets (in particular, UNSW-NB15 and Bot-IoT datasets) that represent the 
modern network environment against popular adversarial deep learning attack methods, and assess various 
machine learning classifiers’ robustness against the generated adversarial samples. Our study shows the 
feasibility of the attacks for both datasets where adversarial samples successfully decreased the overall 
detection performance. 

1 INTRODUCTION 

Machine learning has become one of the most 
important techniques for image classification, voice 
recognition, intrusion detection, and many other 
systems. It has a significant impact on everyday 
tasks and it shaped how we process information and 
data. Machine learning methods have shown a great 
improvement in terms of processing time, 
scalability, and reliability. These techniques and 
methods are being used by many areas from health 
care, retail, government, transportation, and many 
others. Intrusion Detection Systems (IDS) has 
adopted machine learning to monitor network traffic 
to detect specific types of attacks against the 
systems. Traditional IDS could take relatively long 
time to analyse the complex data and provide results, 
which can result in the vulnerability of the system 
for missing alerts (Othman et al., 2018). To address 
the issue and other challenges, deep learning 
techniques have been the focus of the IDS area due 
to its efficiency at processing data and providing 
great analysis results. 

The challenge of a machine learning algorithm is 
that it can be vulnerable against an adversary who 
tries to inject malicious data into the learning 
algorithm, with the main goal of making the 
algorithm fail to detect the attack (Papernot et al., 

2016). This process is called adversarial machine 
learning which involves designing “machine 
learning algorithms that can resist sophisticated 
attacks and also the study of capabilities and 
limitations of attackers” (Huang et al., 2011). An 
attacker can adopt different techniques depending on 
the end goal such as seeking to launch targeted 
attacks and evade the detection systems. Other goals 
could be causing misclassification or lower accuracy 
metrics.  

Many studies have showed that machine learning 
is vulnerable to adversarial data (Biggio et al., 2010; 
Carlini & Wagner, 2017; Goodfellow et al., 2015; 
Papernot et al., 2016; Rigaki & Elragal, 2017; 
Szegedy et al., 2014). Although there is a great deal 
of research based on image datasets, the issue with 
adversarial machine learning in the intrusion 
detection domain has been popular in the last few 
years (Wang, 2018). New challenges have arisen 
with machine learning in the intrusion detection field 
since an attacker can evolve and improve attack 
techniques by adopting available technology being 
developed, when the main focus was to find patterns 
and vulnerabilities in particular applications and 
systems (Biggio et al., 2010).  

The main contribution of this work is to evaluate 
the effectiveness of adversarial deep learning attacks 
against contemporary datasets which represent the 
new networking and computing environment. This 
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study provides the evaluation of different intrusion 
detection datasets such as UNSW-NB15 and Bot-
IoT to demonstrate their vulnerability against 
popular adversarial attack methods including 
Jacobian Saliency Map Attack (JSMA), Fast 
Gradient Method (FGSM), and Carlini Wagner 
(CW). The study was performed by evaluating 
different metrics such as accuracy, AUC (area under 
the curve), F1 score, and Recall with different 
classifiers to compare and analyze the impact of the 
attacks with different datasets.  

The rest of the paper is organized as follows:  
Section 2 presents an overview of adversarial 
machine learning and the methods used in this study. 
Section 3 presents related work in adversarial 
samples generation and adversarial machine 
learning. Section 4 discusses the experimental 
evaluation process for the study. Section 5 provides 
experimentation results. Section 6 provides a 
discussion of the adversarial attacks on the datasets. 
Finally, we conclude in Section 7. 

2 BACKGROUND 

2.1 Adversarial Machine Learning 

The training and testing phases for machine learning 
algorithms are vulnerable against adversarial attacks, 
where the attacker can modify input data and lead to 
a misclassification result. An adversarial example is 
an input crafted to cause machine learning 
algorithms to misclassify the output. This process is 
performed during the test time after the algorithm 
has been trained (Papernot et al., 2016), and the 
process where the attacker crafts malicious input to 
fool the machine learning algorithms is called 
adversarial machine learning. This technique also 
involves designing and creating robust machine 
learning algorithms that can resist sophisticated 
attacks (Huang et al., 2011).  

Relevant research related to adversarial machine 
learning describes specific characteristics of the 
attack model, the adversary, and the defenses. 
Barreno et al. (2006) presented three main properties 
for such an attack. Influence refers to the capability 
of the attacker and it could be causative (modify 
input training data) or exploratory (learn classifier 
decisions after sending instances to the classifier). 
The second property is security violation which 
covers integrity, availability, and privacy. The third 
property is specificity targeted (degrade classifier 
based on one instance target) and indiscriminate (the 
goal is to cause classifier failure based on a large 

number of classes).  The threat model refers to the 
types of potential attacks considered by black-box 
attacks where the attacker has no information about 
the model or white-box attack where the attacker has 
access to all parameters of the model. 

2.2 Adversarial Sample Generation 

2.2.2 Jacobian based Saliency Map 

One of the adversarial techniques evaluated in this 
work was Jacobian Based Saliency Map (JSMA) 
which was introduced by Papernot et al. (2016). This 
specific attack minimizes the L0 norm by iteratively 
calculating a saliency map and then perturbing the 
feature that will have the highest effect (Martins, 
2019). The process consists of obtaining the 
Jacobian matrix where the component i is the input 
and j is a derivative of the class for input I (Papernot 
et al., 2016): 
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Where F represents the second to last layer 
(Yuan et al., 2019). The perturbation is selected and 
the process continues until misclassification in the 
target class is achieved or the parameter for the 
maximum number of perturbed features is reached 
(Papernot et al., 2016). If it fails, then the algorithm 
selects the next feature and adds it to the perturbed 
sample (Rigaki & Elragal, 2017). The authors were 
successful by only modifying 4.02% of the input 
features per sample and achieved 97% adversarial 
success (Yuan et al., 2019). This process requires 
full knowledge of the targeted model’s architecture 
and parameters (Papernot et al., 2016). 

This attack can generate adversarial samples with 
a similar success rate as FGSM with the difference 
of using less feature modification with higher 
computing cost (Martins, 2019). 

2.2.3 Fast Gradient Sign Method 

Goodfellow et al. (2015) introduced a method called 
Fast Gradient Sign Method (FGSM) to generate 
adversarial examples. The perturbation is defined as: 
 

η ൌ  ε ∗  signሺ∇x Jሺθ, x, yሻሻ              (2) 
 
Where θ represents the parameters of a specific 
model, x is the input to the model, y represents the 
targets associated with x, J (θ, x, y) is the cost used 
to train the neural network (Goodfellow et al., 2015) 
and ε represents the magnitude of the attack, and the 
gradient can be obtained by backpropagation.  
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FGSM implements a loss function to decide the 
course of the input data in order to minimize this 
loss function (Wang, 2018). The authors 
successfully proved that this attack method is able to 
cause output misclassification with a variety of 
models (Goodfellow et al., 2015). The main goal of 
this attack was to be faster in the adversarial sample 
generation and it is not optimal in finding the 
minimal adversarial perturbations (Carlini & 
Wagner, 2017) which is why this attack method is 
the most efficient in terms of computing time. 

2.2.4 Carlini Wagner 

Carlini and Wagner (2017) proposed a powerful 
attack to evaluate the vulnerability of a secured 
model. This attack works by finding adversarial 
samples. The objective function is defined by:  
 

 
                      (3) 

 
Where g(x') ≥ 0 if and only if f (x’) = l’ and l’ is 

the label of the adversarial class in targeted 
adversarial examples (Yuan et al., 2019). In this 
way, the distance and penalty term can be better 
optimized (Wang, 2018). The authors provided an 
L2 attack to generate adversarial samples defined by 
(Carlini & Wagner, 2017):   

   
   (4) 

The main goal is to be able to lower distortion in 
the L2 metric. The authors also stated that this attack 
is robust against defensive distillation (Carlini & 
Wagner, 2017), making this attack the most 
powerful among the existing attacks against 
defenses. In this work, L2 was the one implemented 
by Cleverhans library (Papernot et al., 2017). 

2.3 Dataset Overview 

Datasets are fundamental in the process of 
developing new research. They play an important 
role in representing real-life network activity with 
labeled data, where each data point is assigned to a 
normal or attack class that will be used as evaluation 
criteria (Ring et al., 2017). Although there are many 
studies available in the intrusion detection domain, 
the lack of representative datasets which include a 
variety of attacks is one of the recurring issues, since 
most of the studies use the KDD’99 dataset or its 
derivation, the NSL-KDD (Rigaki & Elragal, 2017). 
The process to create new labeled datasets requires 
effort in addition to the complications that come 

with making a public dataset available since it would 
contain important information about the network, the 
users, and the current system environment (Javaid et 
al., 2016). In the last few years, there has been an 
effort in developing new datasets that contribute to 
new research as well as improving the quality of 
these datasets. The UNSW-NB15 dataset and the 
Bot-IoT dataset are two examples in this effort. 
Although the NSL-KDD dataset is the most 
commonly used dataset in the IDS domain, modern 
datasets such as the UNSW-NB15 and the Bot-IoT 
were used for this study. One of the reasons is 
because the NSL-KDD contains a large number of 
redundant records in the training set which definitely 
have an impact on results and multiple missing 
records affect the nature of the data (Moustafa & 
Slay, 2016). Another reason is that the NSL-KDD 
dataset is not a very comprehensive representation of 
an attack environment as the underlying network 
traffic of NSL-KDD dates back to 1998 (Ring et al., 
2017). Both the UNSW-NB15 dataset and the Bot-
IoT dataset represent realistic modern network 
traffic with diverse attack scenarios (Koroniotis et 
al., 2019).  

2.3.1 UNSW-NB15 Dataset 

This dataset was developed in the Cyber Range Lab 
of the Australian Centre for Cyber Security (ACCS) 
(Moustafa & Slay, 2015). It represents new modern 
normal activities containing contemporary attacks. A 
partition of the full dataset is provided, divided into 
a training set and a test set according to the 
hierarchical sampling method, namely, 
UNSW_NB15_training-set.csv with 175,341 records 
and UNSW_NB15_testing-set.csv contains 82,332 
records with a total of 257,673 records (Moustafa & 
Slay, 2016). The number of features is 43 with the 
class label. There are ten categories in total, one for 
normal class representing no attacks and nine 
attacks: shellcode, backdoor, exploits, worms, 
reconnaissance, generic, analysis, DoS, and fuzzers.  

This dataset is more complex than the KDD’99 
because it contains features where the attacks and 
normal classes have similar behaviors. Another 
reason is the correlation of the features for the 
UNSW-NB15 where training and test sets have the 
same distribution (Moustafa & Slay, 2016). 

2.3.2 Bot-IoT Dataset 

The Bot-IoT dataset was created by the Cyber Range 
Lab of the Centre of UNSW Canberra Cyber. The 
main characteristic of this dataset is that it represents 
a realistic network environment with more attacks 
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and network traffic in a realistic setting with its 
respective labels (Koroniotis et al., 2019). The 
dataset has normal IoT-related and other network 
traffic, along with various types of attack traffic 
commonly used by botnets. The attack categories in 
the dataset include Keylogging, Data exfiltration, 
DDoS, DoS, OS, and Service Scan. The dataset has 
3 components: network platforms, simulated IoT 
services, extracting features and forensics analytics. 
The dataset has more than 72,000,000 records but a 
smaller version is available of around 3 million 
records. An extracted version of 5% of the total 
dataset was used in this study. 

3 RELATED WORK 

There has been extensive research on providing 
different techniques to generate adversarial samples. 
Szegedy et al. (2014) were the first to prove how 
vulnerable deep neural networks are against 
adversarial examples. Because of this research, the 
need to study adversarial attacks and defenses 
increased (Wang, 2018).  

When it comes to extensive studies on defenses, 
Barreno et al. (2006) created a taxonomy of several 
attacks related to adversarial machine learning, as 
well as defensive methods and techniques against 
them. Also, they discussed how an adversary could 
successfully insert malicious data into the learning 
algorithm and provided detailed information about 
the attack model and its properties. Yuan et al. 
(2019) presented a taxonomy of adversarial attacks 
and defenses for deep neural networks, as well as 
challenges and possible defenses for these attacks.  

Biggio et al. (2010) focused on improving 
classifiers under adversarial data manipulation, in 
addition to proposing a strategy for linear classifiers 
with Boolean features. Tan et al. (2020) focused on 
active adversarial attacks against machine learning 
algorithms, specifically on backdoor attacks, where 
the adversary manipulates training data and/or the 
training algorithm and parameters of the model to 
embed an adversarial sample.  

Previous studies have created adversarial 
examples in the IDS domain successfully. 
Warzyński and Kołaczek (2018) studied the 
vulnerability of the NSL-KDD dataset against 
adversarial examples generated by FGSM. Wang 
(2018) researched the performance of attack 
algorithms against deep learning intrusion detection 
systems on the NSL-KDD dataset, as well as on the 
impact of feature selection in generating adversarial 
examples, demonstrating the vulnerability of deep 

learning algorithms against adversarial samples. He 
performed four attacks: FGSM, JSMA, Deepfool, 
and CW on a Multi-layer perceptron model. The 
most effective attack was targeted FGSM and the 
least efficient was CW. It also showed that it is not 
realistic to alter a very large set of features for an 
adversary, which explains why JSMA attacks are 
more popular than other attacks.  

Rigaki and Elragal (2017) performed two types 
of attacks JSMA and FGSM on the NSL-KDD 
dataset. The study focused on evaluating the 
performance of several classifiers under attack such 
as RandomForest, Linear Support Vector Machine, 
Decision Tree, Multi-Layer Perceptron, and Voting 
Ensembles. The metrics used in this study were 
accuracy, AUC, and F1 score. The attacks 
implemented successfully decreased classifier 
performance by lowering accuracy on Linear SVM 
by 27% and Random Forest by 18%. The study 
demonstrated that adversarial methods can be 
implemented in the intrusion detection area. The 
authors showed that FGSM uses 100% of features to 
generate adversarial samples, while JSMA needs 6% 
of altered features to generate adversarial samples. 
The authors concluded that machine learning 
techniques need to be hand in hand with defensive 
methods against adversarial attacks.  

Yang et al. (2018) showed how adversarial 
samples can have a negative impact on deep neural 
networks classifiers using the NSL-KDD dataset. 
They performed three attacks: CW, Zeroth-order 
Optimization (ZOO), and GAN. The process 
consisted of training a classifier to generate 
adversarial samples with CW and then attack 
another trained model. The same process was 
followed, but instead of CW, ZOO was implemented 
to get the gradient and then generate adversarial 
samples. Results showed a decrease of 70% in F1 
score with the ZOO attack. 

Martins et al. studied four attacks JSMA, 
DeepFool, CW, and FGSM on the NSL-KDDD and 
CICIDS2017 (Martins, 2019). They only performed 
the study on denial of service records and evaluated 
the attacks with Decision Tree, SVM, Naïve Bayes, 
Denoising Autoencoder (DAE), Neural Networks, 
and Random Forest. Results showed that overall 
performance is compromised by the attacks by 
decreasing 40% on CICDS2017 and 13% on the 
NSL-KDD. One key finding is that DAE was the 
most robust classifier.  

Martins et al. (2020) presented a systematic 
review of adversarial machine learning applied to 
IDS and malware scenarios. In this work, the authors 
reviewed all existing research in the IDS field that 
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apply machine learning principles. One of the major 
findings is the lack of research using modern 
datasets. Of all the studies evaluated, six used the 
NSL-KDD, three implemented CTU-13, and one 
used CICIDS2017. According to the authors, the 
main reason is the lack of labelled intrusion datasets 
available. All studies observed performance 
degradation after adversarial attacks such as JSMA, 
WGAN, DeepFool, and FGSM. Results showed that 
the most affected classifiers are SVM, naïve Bayes, 
Decision Tree, while the most robust are Random 
Forest, and RBF SVMs. 

4 EXPERIMENTAL 
EVALUATION 

Our study is based on a multi-class classification 
problem. Bot-IoT has 5 classes while UNSW-NB15 
has 10 classes. Based on this, four algorithms were 
selected to perform the experimental evaluation: 
Multi-Layer Perceptron (MLP), Decision Tree (DT), 
Random Forest (RD), and Support Vector Machine 
(SVM). The hyperparameters implemented for the 
experiment are presented in Table 1. In order to 
handle multi-class classification, 
OneVsRestClassifier was implemented to fit one 
classifier per class. The experimental evaluation, 
preprocessing and analysis were done with Python 
3.6.5, Scikit-learn V.0.19.1 (Pedregosa et al., 2011), 
Tensorflow V.1.13.2 (Abadi et al., 2015), and Keras 
V.2.1.5 (Chollet, 2015). The attack algorithms were 
implemented with Cleverhans V.3.0.1 (Papernot et 
al., 2017), a library dedicated to assess machine 
learning vulnerability against adversarial samples. 

4.1 Data Pre-processing 

Data preparation is essential to train the machine 
learning algorithm. The first step was One-Hot 
encoding to convert all values to numerical data. The 
second step was standardization as not all features in 
the datasets are continuous values, but categorical or 
different data types that require pre-processing.  
 
 
 
 
 
 
 
 

Table 1: Hyperparameters chosen for classifiers. 

 

4.1.1 One-Hot Encoding 

One-Hot encoding was used to convert nominal 
values to numerical data. For example, the nominal 
values in the proto and service features need to be 
converted to numerical values. The UNSW-NB15 
dataset has a total of 45 features and after One-Hot 
encoding, the number of features is 206. The Bot-
IoT dataset has 39 features and after One-Hot 
encoding, the total number of features becomes 65.  

4.1.2 Min-Max Normalization 

After One-Hot encoding, Min-Max normalization 
was applied to all features on both datasets. The 
values were transformed to fit between 0 and 1. This 
step was important because datasets consist of 
numeric features whose values can be drawn from 
different distributions, have different scales, and, 
sometimes, contaminated by outliers (Wang, 2018). 
This affects results since features with very large 
values may cause imbalanced results by some 
classifiers. Besides, this step is needed by the attack 
methods so all features are within an interval 
(Martins, 2019). 

4.2 Adversarial Sample Generation 

The three selected adversarial attack algorithms 
include Jacobian Based Saliency Map Attack, Fast 
Gradient Sign Method, and Carlini Wagner attack. 
And they are available in the Cleverhans Library 
(Papernot et al., 2017). In addition, we chose 
targeted attacks since the goal of the experiment is to 
attack the normal class to be misclassified. The goal 
is to test the effectiveness of adversarial attacks on 
the Bot-IoT and UNSW-NB15 datasets and then 
evaluate the results based on the classifiers.  

The study is divided into two main processes: 
model training for original data and adversarial 
sample generation. Model training for original data 
consists of pre-processing training and test data 
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(Figure 1) so it is scaled and prepared to train the 
machine learning algorithm. For this study, the 
model chosen for adversarial attack generation is a 
Multi-Layer Perceptron. The model was trained 
using training data to obtain the accuracy of normal 
samples. Then the evaluation of different machine 
learning algorithms such as Decision Tree, Support 
Vector Machine, and Random Forest were 
performed. 

The same process was followed for the 
adversarial sample generation (Figure 2), where the 
pre-processed testing set was the input for the MLP 
to generate a new test set containing the poisoned 
samples by using three main attack methods JSMA, 
FGSM, and CW. After generating the poisoned 
adversarial test set, it was used for the evaluation of 
the classifier to make the predictions from the same 
machine algorithms and metrics mentioned above. 

Targeted attacks for the normal class were 
performed on the datasets. The datasets are split into 
training and test sets. The study was performed in a 
white-box setting, where all the model information, 
target, and data are known by the attacker.  

 

Figure 1: Training process for original data. 

 

Figure 2: Adversarial sample generation process. 

Multi-Layer Perceptron (MLP) was implemented 
as the source for the adversarial test set generation 
with Keras model (Chollet, 2015). Then, the JSMA 
attack algorithm was used to generate adversarial 
samples. The last step was evaluating the 
performance of the classifier with the original test 
set and the poisoned test set. The same process was 
followed for FGSM and Carlini Wagner attacks.  

The default parameters used by the attacks are 
presented in Table 2. The values can be easily 
modified through Cleverhans (Papernot et al., 2017). 
For feature evaluation, we calculated the difference 
between the poisoned test set generated by the 
attacks and the original test set to obtain the list of 
features altered by the attacks. 

Table 2: Parameters used by the attacks on both datasets. 

 

To obtain reasonable results for both datasets, the 
results were evaluated with averages provided by 
running the program 10 times for the UNSW-NB15 
dataset and the Bot-IoT datasets. 

5 EXPERIMENTATION RESULTS 

As described in Section 4, the first process is to train 
and test all the baseline models on the original 
training set and test set from the UNSW-NB15 and 
Bot-IoT datasets. The second process is to generate 
an adversarial test set with the baseline model MLP 
with the attack algorithms including JSMA, FGSM, 
and CW to then target the machine learning 
classifiers including DT, RF, and SVM. After the 
adversarial attacks, we evaluated the results on the 
original data before the attacks and after perturbed 
samples are included. The metrics chosen for the 
evaluation are ROC AUC, accuracy, F1 score, and 
Recall. The final results are averaged from 10 runs 
in order to obtain more accurate final results to 
measure the impact of the adversarial samples on the 
classifiers.  

5.1 UNSW-NB15 Dataset 

Table 3: Accuracy results for the UNSW-NB15 dataset. 
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Table 4: AUC results for the UNSW-NB15 dataset. 

 

Table 5: F1 score results for the UNSW-NB15 dataset. 

 

Table 6: Recall results for the UNSW-NB15 dataset. 

 
 

 
Figure 3: ROC Curve for baseline results on the UNSW-
15 dataset. 

5.1.1 Jacobian Saliency Map Attack 

The results from the evaluation of the original data 
and after the attack on the UNSW-NB15 are 
presented in Tables 3-6. The baseline model MLP, 
used to generate adversarial samples on the test set is 
affected by the JSMA attack for this dataset as 
expected with a 34% drop in accuracy (from 0.72 to 
0.38). Results showed the UNSW-NB15 presented a 
decrease in accuracy for SVM, DT, and RF that 
ranges from 1% to 35%, AUC from 0% to 53%, F1 
score from 1% to 38%, and Recall from 1% to 41%. 

It demonstrated an overall decrease in performance 
of the JSMA on the UNSW-NB15. 

The most severely affected algorithm after the 
evaluation with the perturbed samples was SVM in 
terms of accuracy, AUC, F1 score, and Recall (see 
Tables 3-6). SVM presented a decrease in accuracy 
of 0.35, AUC of 0.53, F1 score of 0.38, and Recall 
0.41. This finding confirms the results obtained from 
Rigaki and Elragal (2017) where the weakest 
classifier was also linear SVM. Meanwhile, RF 
presented no change in AUC after the attack and 
only 0.01 drop in accuracy, F1 score, and Recall. DT 
was affected by the attack with a 0.1 drop in 
accuracy, 0.18 AUC, 0.05 F1 score, and 0.02 Recall.  

 
Figure 4: ROC Curve for normal class after JSMA attack 
on the UNSW-NB15 dataset. 

The top 10 features used by the adversarial 
samples are sbytes, smean, sinpkt, dur, spkts, sload, 
sttl, rate, ct_srv_src, ct_state_tt. The feature 
categories include basic information features and 
connection/content related features (Moustafa & 
Slay, 2016). The number of unique features changed 
by the JSMA attack is 95 and the number of average 
features changed per data point is 22. The 
percentage of altered features is 11%. The 
adversarial sample generation process took 9 
minutes and 34 seconds to finish. JSMA attacks are 
well known for its high computational cost which is 
why the attack is slower than FGSM (Yuan et al., 
2019). 

5.1.2 Fast Gradient Sign Method Attack 

The metrics from the FGSM attack on the UNSW-
NB15 are presented in Tables 3-6. The baseline 
model MLP used to generate adversarial samples is 
affected by the FGSM attack with 0.33 drop in 
accuracy (from 0.72 to 0.39), which successfully 
degraded the performance of the model. Also, the 
overall range decrease in accuracy is from 30% to 
44%, AUC from 7% to 32%, F1 score from 34% to 
47%, and Recall from 25% to 41%. It demonstrated 
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the vulnerability of the UNSW-NB15 dataset against 
FGSM. 

The performance of the classifiers varies based 
on the metrics selected for the study. SVM 
decreased by 0.44 in accuracy, AUC by 0.32, F1 
score by 0.47, and Recall by 0.4. Meanwhile, DT 
showed a drop in accuracy of 0.4, AUC by 0.07, F1 
score by 0.34, and Recall by 0.25. RF showed a 
decrease in accuracy of 0.3, AUC by 0.09, F1 score 
by 0.4, and Recall by 0.41.  

 

Figure 5: ROC Curve for normal class after FGSM attack 
on the UNSW-NB15 dataset. 

ROC AUC curves for the models showed an 
overall decrease in performance against targeted 
misclassification related to the normal class (Figure 
3 and Figure 5). It is clear SVM was severely 
affected by the attack with a decrease of 0.32. The 
classifiers RF and DT were similarly degraded by 
the attack with a decrease of 0.09 and 0.07 
respectively. 

The top 10 features used by the adversarial 
samples are sbytes, spkts, sttl, dur, smean, sinpkt, 
sload, rate, ct_state_ttl, ct_srv_src. Feature 
categories are basic information, connection, time-
related, and content. Another finding is that the top 
features are more evenly distributed compared to 
JSMA attacks. The number of unique features 
changed is 196 and the number of average features 
changed per data point with FGSM is 162. The 
percentage of altered features is 78%. 

The adversarial sample generation process took 5 
seconds to complete. The FGSM attack was 
designed to run faster than other attack algorithms 
(Yuan et al., 2019) and this study has confirmed that 
FGSM attack is the fastest to generate adversarial 
samples for the UNSW-NB15 dataset.  

5.1.3 Carlini Wagner Attack 

The results for the CW attack on the UNSW-NB15 
are presented in Tables 3-6. The baseline model 

MLP, used to generate adversarial samples for the 
normal class is affected by the CW attack for this 
dataset with about a 0.5 decrease in accuracy (from 
0.72 to 0.21) as shown in Table 3. Results showed 
that CW attacks have a negative impact on accuracy 
with a decrease from 32% to 46%, AUC from 14% 
to 31%, F1 score from 35% to 42%, and Recall from 
38% to 40%. 

 

Figure 6: ROC Curve for normal class after CW attack on 
the UNSW-NB15 dataset. 

The performance of RF is significantly better 
than SVM and DT in terms of accuracy. RF showed 
a decrease in accuracy of 0.32, AUC by 0.14, F1 
score by 0.35, and Recall by 0.38. SVM had a 
decrease of 0.37 in accuracy, AUC by 0.16, F1 score 
by 0.35, and Recall by 0.38. Meanwhile, DT showed 
a decrease across all metrics with a drop by 0.46, 
AUC by 0.31, F1 score by 0.42, and Recall by 0.40. 

In terms of AUC, RF and SVM performed 
similarly with a decrease of 14% and 16% 
respectively (Figure 3 and Figure 6).  DT is shown 
as the most affected with a decrease of 31%.  

The top 10 features used by the adversarial 
samples are sbytes, smean, sinpkt, dur, sload, sttl, 
spkts, ct_state_ttl, rate, sjit. The features chosen are 
related to basic, time, and connection features, 
similar to the results obtained by JSMA and FGSM 
attacks. Also, the number of unique features changed 
with the CW attack is 196, while the number of 
average features changed per data point is 133. The 
percentage of altered features is 65%. The 
adversarial generation process for this attack took 51 
minutes and 24 seconds. This process is the slowest 
of all the three attacks for the UNSW-NB15. 
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5.2 Bot-IoT Dataset 

Table 7: Accuracy results on the Bot-IoT dataset.  

 

Table 8: AUC results on Bot-IoT dataset. 

 

Table 9: F1 score results on Bot-IoT dataset. 

 

Table 10: Recall results on Bot-IoT dataset. 

 

5.2.1 Jacobian Saliency Map Attack 

The results from the evaluation of the original 
dataset and the attacks for the Bot-IoT are presented 
in Tables 7-10. The baseline model, MLP is affected 
by the JSMA attack for this dataset with a 51% drop 
in accuracy (from 0.94 to 0.48). The Bot-IoT 
showed an overall decrease in performance across 
all metrics with accuracy from 13% to 56% after the 
attack, AUC from 0% to 49%, F1 score from 3% to 
38%, and Recall from 4% to 55%.  
 

 

Figure 7: ROC Curve for baseline results on the Bot-IoT 
dataset. 

 

Figure 8: ROC Curve for normal class after JSMA attack 
on the Bot-IoT dataset. 

DT presented a 0.51 drop in accuracy, no change 
in AUC, F1 score by 0.38, and Recall by 0.4. DT 
was the most affected with accuracy, F1, and Recall. 
RF showed similar results as SVM with a decrease 
in accuracy of 0.13, AUC of 0.49 0.03 F1 score, and 
0.04 Recall. SVM was degraded by 0.46 in 
accuracy, AUC by 0.49, F1 score by 0.23, and 
Recall by 0.07. 

In terms of AUC, SVM, and RF were equally 
affected by the attack as shown in Figure 7 and 
Figure 8 with 0.5 drop in accuracy. The AUC for DT 
was not affected after the JSMA attack. 

The top 10 features used by the adversarial 
samples are TnBPSrcIP, stime, TnBPDstIP, seq, 
Pkts_P_State_P_Protocol_P_DestIP, TnP_PSrcIP, 
TnP_PerProto, Pkts_P_State_P_Protocol_P_SrcIP, 
TnP_PDstIP. These features belong to flow and 
basic categories. The number of unique features 
changed was 57 and the number of average features 
changed per data point is 28. The percentage of 
altered features is 43%. 

The adversarial generation process for this attack 
took 16 minutes and 5 seconds.  
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5.2.2 Fast Gradient Sign Method Attack 

The results for the FGSM attack on the Bot-IoT 
dataset are presented in Tables 7-10. The baseline 
model, MLP is affected by the FGSM attack for this 
dataset with a 53% drop in accuracy (from 0.90 to 
0.37). All metrics were degraded for all algorithms 
implemented SVM, DT, and RF after the evaluation 
with the perturbed samples for the FGSM attack. 
The decrease in accuracy ranges from 51% to 53% 
for all classifiers, AUC from 1% to 2%, F1 score 
from 53% to 67%, and Recall from 58% to 60%. 

 

Figure 9: ROC Curve for normal class after FGSM attack 
on the Bot-IoT dataset. 

Based on the results from all metrics, SVM had a 
decrease in accuracy by 0.54, AUC by 0.01, F1 
score by 0.67, and Recall by 0.59. DT decreased by 
0.51 in accuracy, AUC by 0.02, F1 score by 0.53, 
and Recall by 0.6. RF had a drop in accuracy by 
0.52, AUC by 0.01, F1 score by 0.57, and Recall by 
0.58. The results confirm that FGSM attacks had a 
negative impact on the Bot-IoT dataset across all 
metrics. AUC score was degraded for all algorithms 
SVM, DT and RF with a small decrease between 
0.01 and 0.02 as shown in Figure 7 and 9.    

The top 10 features used by the adversarial 
samples are seq, TnP_PerProto, stime, bytes, 
Pkts_P_State_P_Protocol_P_DestIP, 
TnP_Per_Dport, TnBPSrcIP, TnBPDstIP, 
TnP_PDstIP, ltime. These features belong to flow 
and basic categories. The number of unique features 
changed by the attack was 60 and the number of 
average features changed per data point is 34. The 
percentage of altered features is 52%. 

The adversarial sample generation process for 
this attack finished in 33 seconds. FGSM was 
observed to generate adversarial samples faster than 
the other two attacks. 

 
 

5.2.3 Carlini Wagner Attack 

The results for the CW attack on the Bot-IoT dataset 
are presented in Tables 7-10. Accuracy for the 
baseline model MLP was affected by the CW attack 
for this dataset with an almost 0.5 decrease in 
accuracy (from 0.9 to 0.43). The results confirm that 
the CW attacks have an impact on accuracy for the 
Bot-IoT dataset with a decrease in accuracy from 
34% to 46% for all classifiers, AUC from 2% to 4%, 
F1 score from 32% to 42%, and Recall from 40% to 
42%. In terms of AUC, it is not severely affected by 
adversarial samples with an average drop in 
accuracy of 3% (Figure 7 and Figure 10), presenting 
a small difference of 0.02 to 0.04 (Table 8). 

 

Figure 10: ROC Curve for normal class after CW attack 
on the Bot-IoT dataset. 

Based on the results from all the metrics, all the 
classifiers were affected by the CW attack. SVM 
decreased in accuracy by 0.46, AUC by 0.04, F1 
score by 0.42, and Recall by 0.41. DT had a 
decrease in accuracy by 0.34, AUC by 0.02, F1 
score by 0.32, and Recall of 0.4. RF had a drop in 
accuracy of 0.39, AUC of 0.04, F1 score of 0.42, 
and Recall of 0.42. 

The top 10 features used by the adversarial 
samples are stime, bytes, TnP_Per_Dport, 
Pkts_P_State_P_Protocol_P_SrcIP, sbytes, 
AR_P_Proto_P_DstIP, AR_P_Proto_P_SrcIP, pkts, 
AR_P_Proto_P_Sport, dur. These features belong to 
flow and basic categories. Most of them are related 
to protocol transactions in the network flow. The 
number of unique features changed was 59 and the 
number of average features changed per data point is 
42. The percentage of altered features is 65%. 

The adversarial generation process for this attack 
finished in 2 hours and 14 minutes as it is more 
computationally expensive compared to FGSM and 
JSMA. 
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6 DISCUSSIONS 

The performance of JSMA, FGSM, and CW attacks 
varies based on the datasets used. On the UNSW-
NB15 dataset, an average accuracy of all classifiers 
decreased by 33%, AUC by 20%, F1 score by 31%, 
and Recall 30%, while Bot-IoT showed an average 
decrease in accuracy by 47%, AUC by 12%, F1 
score by 41%, and Recall 40%. Both datasets are 
vulnerable against JSMA, FGSM, and CW attacks. 
However, the UNSW-NB15 had a lower decrease 
across all the metrics compared to Bot-IoT. This is 
because Bot-IoT has fewer features, making it more 
vulnerable to adversarial attacks. 

The robustness of the classifiers and attacks also 
varies between datasets. CW had the best 
performance in terms of accuracy and Recall on the 
UNSW-NB15 dataset with an overall decrease in 
accuracy by 42% and recall by 39%, while FGSM 
was the most efficient in decreasing the average 
performance for F1 score by 40%. In terms of AUC, 
JSMA decreased it by 24%. On the Bot-IoT dataset, 
results show FGSM is the most efficient attack with 
all the three metrics by decreasing the overall 
average by 53% in accuracy, F1 score by 59%, and 
Recall by 59%. The most efficient attack at 
degrading AUC was JSMA with an overall average 
decrease of 33%. JSMA and FGSM were shown as 
the most consistent attacks for both datasets with the 
least efficient performance. JSMA was the least 
efficient in terms of accuracy, F1, and Recall, while 
FGSM was the least successful in terms of AUC. 
This means the attacks’ performances vary across 
datasets and affect the metrics differently which is 
an important factor for the attacker to consider when 
launching an attack. Time spent on adversarial 
sample generation is another factor to consider. The 
attack that takes the longest to generate perturbed 
samples is CW, while the most efficient attack is 
FGSM.  

The classifier with the best performance on the 
UNSW-NB15 is RF with accuracy overall average 
decrease by 21%, AUC by 8%, and F1 score by 
25%, while the best performance in terms of Recall 
was DT by 22%. The least robust classifier is SVM 
with an overall decrease across all the metrics with a 
39% drop in accuracy, 34% decreased in AUC, 40% 
drop in F1 score and Recall. On the Bot-IoT dataset, 
the most robust classifier is RF in terms of accuracy, 
F1, and Recall by 35%, 34%, and 35% respectively. 
DT was the most robust in terms of AUC with a 
decrease of only 1%. On the contrary, the least 
robust classifier is RF and SVM in terms of AUC 
with an overall decrease of 18%. Meanwhile, SVM 

is the least robust in terms of accuracy and F1 with a 
decrease of 49% and 44% respectively, while DT 
had the worst performance in terms of Recall with a 
decrease of 52%. 

The average number of features used by all 
attacks for the Bot-IoT is 59 out of 65, while the 
UNSW-NB15 dataset is 162 out of 206. JSMA 
required the least number of features to modify for 
both datasets with 11% and 43% for the UNSW-
NB15 and Bot-IoT respectively. FGSM required 
78% of features for the UNSW-NB15, and 52% for 
the Bot-IoT dataset. CW attack required 65% of all 
the features modified for both datasets. According to 
this finding, JSMA required the least number of 
features modified and it would need less effort for 
the attacker compared to FGSM and CW.  Another 
observation is the feature perturbation distribution 
by the attack. On the UNSW-NB15, basic category 
features were the most perturbed by all attacks. For 
the Bot-IoT most of the features related to protocol 
and packet information were targeted by all attacks. 
Another finding is that CW also altered time-related 
features while JSMA targeted connection features in 
addition to basic features.  

7 CONCLUSIONS 

 In this work, we use modern IDS datasets UNSW-
NB15 and the Bot-IoT to study the impact of 
popular adversarial machine learning attacks JSMA, 
FGSM, and CW against machine learning 
classifiers. This study demonstrated that the above-
mentioned attacks were able to effectively degrade 
the overall performance of the different classifiers 
SVM, DT, and RF used on the two IDS datasets. RF 
was shown as the most resilient classifier, while 
SVM was the least robust on both datasets. The 
attacks presented varied results based on the two 
datasets. Overall, JSMA was the least efficient on 
both datasets. CW was most efficient attack on the 
UNSW-NB15, while FGSM was the most efficient 
attack on the Bot-IoT dataset. 

For the future work, we will incorporate a 
broader selection of contemporary IDS datasets, 
adversarial machine learning attacks and machine 
learning classifiers into the research. In addition, we 
will work on developing and evaluating various 
defensive techniques against adversarial machine 
learning attacks to improve the robustness of 
machine learning algorithms used in IDS systems. 
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