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Abstract: The research reported in this paper is related to the differentiation and fusion of measurement data in systems 
for healthcare-oriented unobtrusive monitoring of elderly persons. Two methods for regularised numerical 
differentiation – suitable for different shapes of trajectories of the monitored person’s movement – are con-
sidered. A technique for the fusion of data from sensors of different types – which involves weighting those 
data according to the available a priori information about the variances of errors corrupting those data – is 
presented. Guidelines on the usage and optimisation of that technique are provided according to the results of 
numerical experimentation based on synthetic data. 

1 INTRODUCTION 

1.1 Motivation for Monitoring 

The life expectancy at birth, estimated for the global 
population in 2019, is ca. 73 years; it has been rising 
during the last decades and is predicted to reach 77 
years by the half of the twenty-first century, while the 
global fertility rate – i.e. the number of live births per 
woman over a lifetime – is decreasing (United 
Nations, 2019). For these reasons, the global popula-
tion is ageing, i.e. the share of people aged at least 65 
years is growing. Taking into account these predic-
tions, several global institutions involved in the pro-
tection and management of public health have point-
ed out the necessity to take actions aimed at improv-
ing the quality of life of elderly people and at ensuring 
that the public expenditures, related to the healthcare 
services addressed to those people, remain affordable 
(see, for example, WHO, 2017). That necessity has 
inspired the development of diverse technological 
means, designed to facilitate the accomplishment of 
various healthcare-related objectives such as the re-
duction of the number of admissions to nursing 
homes, the optimisation of the processes of treatment 
or rehabilitation, or the social integration of elderly 
people. For instance: 
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 Alerting devices – such as those worn on the body 
or clothes, which send out an emergency signal 
when a button is pressed – reduce the delay of in-
tervention after dangerous events such as falls, 
and enhance the sense of safety of elderly people 
who live independently in their households, thus 
encouraging them to stay active (Fleming and 
Brayne, 2008). 

 Robots support elderly people in tasks which they 
are unable to complete without aid, and may 
relieve them from the sense of loneliness (Wada 
et al., 2004, Sharkey and Sharkey, 2012). 

 Sensors and actuators ensuring the safe function-
ing of household appliances protect elderly people 
from dangerous accidents (Al-Shaqi et al., 2016). 

 Video games which involve players in physical 
activity may be used to promote such activity 
among elderly people and gather information 
about their health status (Garcia Marin, 2015). 

 Social-networking websites and systems based on 
ambient-display screens – designed to help elder-
ly people maintain contact with their relatives and 
friends – help prevent their social isolation 
(Campos et al., 2016). 

 Monitoring systems provide data representative of 
the behaviour and physiological parameters of in-
dependently-living elderly people, help in identi-
fying progressive changes in those people’s health 
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status and enable quick reactions to dangerous ac-
cidents (Peetoom et al., 2015). 
This study is focused on technological solutions 

belonging to the last category, viz. on monitoring 
systems which enable the acquisition of data repre-
sentative of the monitored person’s movement tra-
jectory. Such data can be used to obtain information 
useful for the healthcare practitioners, in particular – 
to estimate the monitored person’s walking speed. 
Walking is a complex task which requires the interac-
tion of several organs and the proper functioning of 
multiple parts of the brain (Kikkert et al., 2016). The 
analysis of gait can provide information about the so-
called functional mobility, i.e. a set of abilities related 
to balance and gait manoeuvres used in everyday life 
– abilities which partially reflect the overall health 
status (Shumway-Cook et al., 2000). Some quantities 
characterising the gait – such as the stride length, the 
stride frequency, or the variability of the stride time – 
are correlated with the risk of falling and are useful as 
indicators of conditions such as Parkinson’s disease, 
osteoarthritis or diabetes (Hodgins, 2008). On the 
other hand, the speed with which a person walks com-
fortably during every-day activities – the so-called 
self-selected walking speed – has been recently recog-
nised as a versatile, informative and easily measur-
able indicator of functional mobility and general 
health status (Lusardi, 2012): 
 its values smaller than 0.6 m/s indicate a high risk 

of fall and hospitalisation; 
 its increase of at least 0.1 m/s is a useful predictor 

of well-being; 
 its similar decrease is correlated with the deterio-

ration of the health status or the decline in overall 
functioning. 
In clinical settings, self-selected walking speed 

can be estimated by using a stopwatch to measure the 
time which the examined person needs to walk along 
a path of a predefined length; however, the in-home 
use of monitoring systems may prove to be more re-
liable, convenient and affordable than clinical assess-
ment sessions (Hagler et al., 2010). 

Apart from the estimation of the self-selected 
walking speed, the data representative of the monitor-
ed person’s two- or three-dimensional movement tra-
jectory – together with the estimates of velocity and 
acceleration, obtained on the basis of those data – can 
be used in other healthcare-oriented applications, 
such as the detection of falls (Khan and Hoey, 2017) 
or the analysis of that person’s behavioural patterns 
(Baldewijns et al., 2016), which may enable the early 
detection of the onset of dementia. 

 

1.2 Techniques for Monitoring 

In the practice of healthcare-oriented monitoring, the 
solutions based on wearable sensors – i.e. sensors 
attached to the body or clothes of the monitored per-
son, including accelerometers, gyroscopes and sen-
sors of physiological parameters – are the most wide-
spread ones (Majumder et al., 2017). The most im-
portant drawback of such techniques is the fact that 
the need to wear devices may be considered inconve-
nient by the people subject to monitoring; further-
more, a system based on wearable devices becomes 
useless if the monitored person forgets to wear the 
device or decides not to do it. For these reasons, it 
seems desirable to develop monitoring systems which 
do not require any action from the monitored persons. 

Other monitoring techniques, already applied in 
healthcare practice, include those based on video 
cameras, passive-infrared detectors of motion and 
pressure sensors. There are also two emerging cate-
gories of monitoring techniques which attract grow-
ing attention of researchers, viz. techniques based on 
depth sensors and impulse-radar sensors. The recent 
attempts to apply them for monitoring of elderly per-
sons are mainly motivated by the conviction that they 
may be less intrusive, invasive and cumbersome than 
the above-mentioned, better explored techniques. 

This study is devoted to the monitoring techniques 
which – like those based on depth sensors and im-
pulse-radar sensors – involve the estimation of the 
position of the monitored person’s centre of mass 
with high temporal resolution (i.e. several to several 
dozen estimates per second), followed by the analysis 
of the sequences of those estimates. Such techniques 
require numerical differentiation in order to estimate 
the monitored person’s movement speed. The posi-
tion estimates are corrupted with measurement errors, 
so their numerical differentiation is an ill-posed prob-
lem, i.e. if no remedies are applied, small errors cor-
rupting the data may cause large errors in the speed 
estimates. Therefore, the problem of numerical differ-
entiation needs to be regularised, i.e. redefined in 
such a way as to ensure a kind of “regularity” of the 
speed estimates, at the cost of limiting their attainable 
fidelity to the measurement data, in order to reduce 
their sensitivity to the measurement errors. 

Sensors which operate according to different phy-
sical principles tend to have specific complementary 
advantages and disadvantages; for example, impulse-
radar sensors offer a broad field of view and the ca-
pacity of through-the-wall monitoring, but provide 
estimates of the monitored person’s position corrupt-
ed with larger errors than depth sensors, which – on 
the other hand – cannot detect occluded persons and 
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whose field of view is limited. This study is devoted 
to monitoring systems which employ sensors of mul-
tiple types and thus require the application of an ade-
quate method for the fusion of data acquired by means 
of those sensors. 

Despite the generally recognised need for devel-
oping technological solutions aimed at improving the 
quality of life of elderly people and contributing to 
the efficiency of public health management, health-
care-oriented monitoring systems are still not being 
commonly used in healthcare facilities and house-
holds. This may be explained by the difficulties relat-
ed to the development of technological solutions 
which can be both widely accepted among elderly 
people and – at the same time – capable of providing 
healthcare practitioners with useful information 
(Debes et al., 2016). Solutions aimed at combining 
the complementary advantages of several types of 
sensors seem to have a promising potential for 
achieving a satisfactory compromise between the two 
above-mentioned qualitites. 

1.3 Scope of Study 

Two methods of numerical differentiation have been 
considered in this study (cf. Subsection 2.2): 
 a method based on Tikhonov regularisation, suit-

able for the analysis of smooth movement trajec-
tories; 

 a method based on total-variation regularisation, 
suitable for the analysis of piecewise-linear move-
ment trajectories. 

In both cases, the fusion of data from different sensors 
has been performed by adopting an adequate indicator 
of the fidelity of the speed estimates to the measure-
ment data (cf. Subsection 2.3). The aim of this study 
is the analysis of the properties and applicability of 
that indicator – the analysis based on the results of 
experiments performed using synthetic data. 

2 ESTIMATION OF MOVEMENT 
SPEED 

2.1 Mathematical Formulation of 
Research Problem 

Let’s assume that the time-dependence of the mon-
itored person’s position in a given direction can be 
modelled using a scalar, real-valued function  
𝑓: ℝ → ℝ  of a scalar variable t  modelling time, 

differentiable on the interval  0,T . The analytic 

form of f  is unknown. The available data 1, , Nx x 

are its error-corrupted values, resulting from mea-
surements performed at time instants 1, , Nt t  such 

that 10 Nt t T    . Those data are modelled as 

follows: 
  

  n n nx f t      for   1, ,n N   (1) 
 

where 1, , N   are realisations of independent ran-

dom variables 
1
, , N   modelling measurement er-

rors. Since it is assumed that those data may have 
been acquired by means of different types of sensors, 
the distributions of the variables 

1
, , N   may dif-

fer; in this study, it is assumed that those variables are 
zero-mean, normally distributed and that their vari-
ances are 2 2

1 , , N  . Those variances are unknown, 

but their estimates 2 2
1ˆ ˆ, , N   are available; in prac-

tice, these estimates may be obtained as a result of 
prior calibration experiments. 

The time-dependence of the monitored person’s 

speed in the given direction is modelled with  1f , i.e. 

the first derivative of f . Speed estimates  1
1̂ , ,x   

 1ˆNx  are sought such that: 
 

      1 1ˆn nx f t    for   1, ,n N   (2) 

2.2 Numerical Differentiation 

The procedure for numerical differentiation, i.e. de-

termination of the sequence    1 1
1̂ ˆ, , Nx x  on the basis 

of the sequence 1, , Nx x  , involves the following 

operations: 
 approximation of the function f , 

 computation of the first derivative  1f̂  of the re-

sult of approximation f̂ , 

 evaluation of  1f̂  at the time instants 1, , Nt t . 

The approximation of f  requires the determination 

of a set of admissible approximating functions and the 
selection of one of them on the basis of the data nx . 

In this study, it is assumed that the admissible approx-
imating functions are polynomial splines of degree 2. 
Such functions are defined as quadratic polynomials 
in each subinterval  1,n nt t  , 1, , 1n N  ; hence, 

it can be easily checked that the following equality is 

satisfied for each such function f̂ : 
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(3)
for  

 

Thus: 
 

(4)
  for  

 

The 1N   equations obtained by evaluating Eq. (4) 
for 2, ,n N   – the equations specifying the linear 

relation between the values of the approximating 
function and the values of its first derivative – may be 
supplemented by adopting an additional assumption 
regarding the movement of the monitoring person; 
here, it has been assumed that the speed of the moni-
tored person is constant at the beginning of the time 
interval under analysis, i.e.: 

 

        1 1
1 2

ˆ ˆ 0f t f t    (5) 
 

Eq. (4) and Eq. (5) may be collected in the following 
way: 

 

  1ˆ ˆ Qx x   (6) 
 

where ˆ x  is the vector of values of the approximating 

function, shifted by  1f̂ t : 
 

           
T

1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ Nf t f t f t f t f t f t      x   

 

 1x̂  is the vector of estimates of the first derivative: 
 

             
TT

1 1 1 1 1
1 1

ˆ ˆˆ ˆ ˆN Nx x f t f t      x    
 

and the matrix Q  is defined as follows:  
 

2 1 2 1

3 1 3 22 1

3 1 12 1 4 2

2 2

2 2 2

2 2 2 2

1 1 0

0

0

N N

t t t t

N Nt t t tt t

t t t tt t t t 

 

 

  

 
 
 
   
 
 
  

Q







 



R  

If the measurement errors are negligible and – conse-
quently – one may assume that the best approximat-
ing function is the one which interpolates the mea-

surement data, i.e.  ˆ
n nf t x   for 1, ,n N  , then 

Eq. (6) can be used directly to obtain the vector  1x̂  
of speed estimates, viz.: 
 

  1 1ˆ  x Q x   (7) 
 

where x  is the vector of measurement data shifted 
by 1x  : 
 

  T1 1 2 1 1Nx x x x x x    x         
 

However, the condition number of Q  tends to be 
very large even for relatively small N, and thus the 
speed estimates obtained this way are unacceptably 
inaccurate even when the errors corrupting the data 
are small. The remedy for this is regularisation, which 
consists in imposing an additional constraint on the 
set of admissible approximating functions. Such a 
constraint should be based on a realistic a priori as-
sumption regarding the movement of the monitored 
person, in particular – an assumption about the shape 
of the function f  modelling the trajectory of that 

movement. In this study, constraints on the following 
two quantities are considered: 
 the squared 2-norm of the vector of values of the 

second derivative of the approximating function, 
denoted with   hereinafter: 

 

   (8) 

 

where  and: 
 

   

 

 the squared 1-norm of the vector of values of the 
second derivative of the approximating function, 
denoted with   hereinafter: 

 

        
2

2 2
2 2 1

1 1
1

ˆˆ ˆ
N

n
n

f t


 
   

 
x Dx  (9) 

The imposition of a constraint on   – being a va-

riant of the regularisation technique commonly re-
ferred to as Tikhonov regularisation (Stickel, 2010) – 
is suitable when the monitored person’s movement 
trajectory is adequately modelled with a smooth func-
tion, i.e. a function whose several derivatives are con-
tinuous. Such an assumption about the shape of the 
modelling function seems reasonable when human 
movement is analysed in a relatively short time inter-
val; for example, during gait, the position of the mon-
itored person’s centre of mass along the direction or-
thogonal to the walking direction fluctuates smoothly 
with a period corresponding to the stride duration. 

           1 1 1
1 1

ˆ ˆ ˆ ˆ
2

n n
n n n n

t t
f t f t f t f t 

 

    
2, ,n N 

           1 1 1

1
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2
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On the other hand, the imposition of a constraint 
on   – being a variant of the regularisation technique 
commonly referred to as total-variation (TV) regu-
larisation (Rudin et al., 1992) – is suitable when the 
movement trajectory is adequately modelled with a 
piecewise-linear function. Such an assumption seems 
reasonable when the walking trajectory is modelled in 
a time interval of several seconds or minutes, since 
people tend to walk with approximately piecewise-
constant speed. 

The effects of both considered regularisation tech-
niques are illustrated in Figure 1, which presents the 
shapes of some arbitrarily selected, exemplary func-
tions, characterised by different values of   and  . 

   

   

   

Figure 1: Exemplary functions, characterised by different 
values of   and  , together with their first derivatives; 
the functions presented in the left column have been 
obtained by imposing decreasing constraints on   (note 

that   also decreases); the functions presented in the right 
column have been obtained by imposing decreasing con-
straints on   (note that in this case   increases). 

For practical choices of the constraints max  and 

max , it is unlikely that there exists an admissible ap-

proximating function which satisfies such a constraint 
and – at the same time – interpolates the measurement 
data. Therefore, the vector of speed estimates needs 
to be determined by minimising an indicator of the 
fidelity of the results to the measurement data, denot-
ed hereinafter with J ; in the case of Tikhonov regu-
larisation, this minimisation problem can be formu-
lated in the following way: 

 

     21
max2

ˆ arg inf ,NJ   ξx ξ ξ DξR   (10) 
 

and, analogously, in the case of TV regularisation: 
 

     21
max1

ˆ arg inf ,NJ   ξx ξ ξ DξR   (11) 
 

Various choices for the indicator J  are viable; the 
one studied here is described in the next subsection. 

2.3 Fusion of Data from Different 
Sensors 

In order to quantify the discrepancy between the 
results of estimation and the measurement data, one 
may evaluate the vector of approximation residuals, 
computed in the following way: 

 

  1ˆ ˆ   x x Qx x    (12) 
 

The a priori information about the accuracy of the 
employed sensors – the information contained in the 
estimates 2 2

1ˆ ˆ, , N   – can be incorporated in the 

procedure for estimation of movement speed by al-
lowing for larger approximation residuals at the time 
instants which correspond to the data acquired using 
sensors with lower accuracy. This can be done by de-
fining the indicator J  in Eq. (10) and Eq. (11) as a 
weighted norm of the vector ˆ x x , with weights se-
lected on the basis of the estimates 2 2

1ˆ ˆ, , N  : 
 

(13)

 

where N NW R  is a diagonal weighting matrix 
whose nth element is defined as follows: 

 

  ˆ ˆmax 1, ,n nw N 
       (14) 

 

with 0  R  being a parameter controlling the 

amount of weighting. For 0  , all the data are  

taken into account with equal weights; for larger  , 

the data corresponding to smaller 2ˆn  (i.e. the data ac-

quired using more accurate sensors) have more influ-
ence on the estimates of speed. The division by the 
maximum element in Eq. (14) ensures that 

2
1W , 

so that the values of J  are in approximately the same 
range regardless of the value of  . 

The experiments described in Section 3 are aimed 
at assessing the influence of the value of   and of 

  22 1ˆ ˆJ     
W W

x x Qx x 

     T
1 1ˆ ˆ   Qx x W Qx x 
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the accuracy of the estimates 2ˆn  on the quality of the 

estimates of speed. 

2.4 Computational Formulae 

Equation (10), defining the vector of speed estimates 
obtained using Tikhonov regularisation, can be 
reformulated using the Lagrange multiplier technique 
in the following way: 

 

   2 21

2
ˆ arg inf N   ξ W
x Qξ x Dξ ξ R   (15) 

 

where   is a regularisation parameter (related to the 
constraint max ) whose value may be selected empi-

rically. The analytic solution of Eq. (15) yields: 
 

     11 T T Tˆ 


 x Q WQ D D Q Wx   (16) 
 

In the case of TV regularisation, the correspond-
ing minimisation problem – defined by Eq. (11) – can 
be reformulated in an analogous way, viz.: 

 

   2 21

1
ˆ arg inf N   ξ W
x Qξ x Dξ ξ R   (17) 

 

but the dependence of  1x̂  on x  cannot be ex-

pressed in closed form, because the term 
2

1
Dξ  is not 

differentiable. However,  1x̂  can be determined us-
ing the following iterative algorithm, being a general-
ised version of the algorithm described in (Chartrand, 
2011) (which corresponds to W  being the identity 
matrix): 

    T1
0ˆ 0 0x    (18) 

      1 1 1
1ˆ ˆ ˆi i i   x x x    for   0,1, 2,i    (19) 

 

where  1ˆ ix  is the solution of the following set of 

linear algebraic equations: 
 

  1ˆ i i  H x g   (20) 

 T T
i i H Q WQ D E D   (21) 

     1 1T Tˆ ˆi i i i  g Q W Qx x D E Dx   (22) 
 

with    1 1N N
i

  E R  being a diagonal matrix whose 

nth element is defined as follows: 

 
(23)

 
1 The value of the regularisation parameter may significant-
ly influence the quality of the estimates of speed; however, 
the problem of its selection remains outside the scope of this 

The term 0 ൏ 𝜀 ≪ 1 is introduced to prevent the di-
vision by zero, whereas   is a regularisation param-
eter – related to the constraint max  – whose value 

may be selected empirically1. 

3 NUMERICAL EXPERIMENTS 

3.1 Methodology of Experimentation 

The synthetic data, used for experimentation, have 
been generated according to the formula: 

 

 for , 
(24)

 and 
 

where: 

      12
6 332 1

1 3 3 301 exp tf t t     for  0,3t  

is a smooth test function, well suited to be differ-
entiated using Tikhonov regularisation; 

  
 

2

0.8 for 1

0.8 for 1 2

0.8 3 for 2

t t

f t t

t t


  
  

 

is a piecewise-linear test function, better suited to 
be differentiated using TV regularisation; 

  1nt n t    for 1, , 51n N  , 0.06t   

 ,n rx  are pseudorandom numbers following zero-

mean normal distributions whose variances are 
2
n ; 

 R  is the number of generated sequences of syn-
thetic data, each corresponding to a different set 
of pseudorandom numbers ,n rx  for 1, ,n N   

and 1, ,r R  . 

The functions 1f  and 2f , together with their first 

derivatives: 
 

          
12

6 51 23 3 1
1 3 3 1016 exp t tf t t      (25) 

    1
2

0.8 for 1

0 for 1 2

0.8 for 2

t

f t t

t


  
 

  (26) 

 

are depicted in Figure 2. 

paper. The interested reader may refer to, e.g., (Hansen, 
2010, Chapter 5), (Bauer and Lukas, 2011) and (Reichel 
and Rodriguez, 2013). 

    
, 2

1 1
, 1 ,

1

ˆ ˆ
i n

i n i n

e

x x 


 

 , ,n r k n n rx f t x   1, ,n N 

1, ,r R  1,2k 
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The level of disturbances in the data has been 
characterised by the signal-to-noise ratio, defined in 
the following way: 

 

 (27)

for 
 

The signal-to-noise ratio corresponding to the esti-

mates of the derivative  1
,ˆn rx  has been determined in 

the analogous way: 

 (28)

for 
 

The performance of the studied methods of numerical 
differentiation has been compared in terms of the 
relative signal-to-noise ratio, defined as: 

 

 1,

1 0,

1 R
r

r r

SNR
RSNR

R SNR

    (29) 

 
 

 
 

Figure 2: Functions used for the generation of synthetic data 
and their first derivatives. 

The numerical experiments have been designed in 
such a way as to emulate a monitoring system em-
ploying two sensors – called S1 and S2 hereinafter – 
which provide position estimates corrupted with er-
rors whose variances are S1  and S2 , respectively, 

such that: 
 

 S2 S1    with   1,10   (30) 
 

Two scenarios have been considered: 
 According to the first one – called scenario #1 

hereinafter – S1 and S2 are acquiring data simul-
taneously; approximately N  data points, uni-

formly distributed over the time interval under an-
alysis, with  0.4,0.8  , are acquired by means 

of S2, whereas the remaining data – by S1. 
 According to the second one – called scenario #2 

hereinafter – S2 is only acquiring data for 

 0.5,t  , with  1.1,1.7  , and S1 – only dur-

ing the remaining fragments of the time interval 
under analysis. This scenario corresponds to the 
configuration in which a sensor with low accuracy 
is used only when the monitored person is outside 
the field of view of another, more accurate sensor. 

Exemplary data, generated according to both above-
described scenarios, are shown in Figure 3. 

The sequences 1, ,, ,r N rx x    have been normal-

ised in order to ensure that 0,rSNR  remains approxi-

mately constant throughout the experimentation, re-
gardless of the ratio S2 S1  : 

    

   

 
 

Figure 3: Exemplary data generated according to scenario 
#1 (first row) and scenario #2 (second row) for different 
values of   and  . 
 

  

  

2

1
0, 10

2

,
1

10 log

N

n
n

r N

n r n
n

f t
SNR

x f t










 

1, ,r R 

    
      

2
1

1
1, 10 2

1 1
,

1

10 log
ˆ

N

n
n

r N

n r n
n

f t
SNR

x f t











1, ,r R 

Estimation of Movement Speed in Monitoring Systems based on Sensors of Multiple Types

75



with  
 (31)

for 
 

The value c 0.021   results in 0, 30rSNR   and is 

roughly consistent with the authors’ previous experi-
ences with impulse-radar sensors and depth sensors 
(Wagner et al., 2017). 

It has been assumed that S1  is known accurately, 

i.e. that its perfect estimate S1 S1̂   is available; on 

the other hand, the uncertainty of the estimate S2̂  of 

S2  has been modelled in the following way: 
 

 S2 S2̂  ,    0.1,10    (32) 
 

For both test functions 1f  and 2f  and for both 

scenarios, the following experiments have been per-
formed: 
 experiments aimed at assessing the influence of 

the weighting of data on the quality of the speed 
estimates for different ratios S1 S2  , with S1  

and S2  being known perfectly and the values of 

all other parameters having been fixed; 
 experiments aimed at assessing the influence of 

the weighting of data on the quality of the speed 
estimates for different fractions of the data having 
been acquired by means of sensor S2, with S1  

and S2  being known perfectly and the values of 

all other parameters having been fixed; 
 experiments aimed at assessing the influence of 

the ratio S1 S2   on the quality of the speed esti-

mates for different fractions of the data having 
been acquired by means of sensor S2, with S1  

and S2  being known perfectly and the values of 

all other parameters having been fixed; 
 experiments aimed at assessing the influence of 

the error corrupting the estimate S2̂  of S2  on 

the quality of the speed estimates for different 
ratios S1 S2  , with the values of all other param-

eters having been fixed. 
The sequences of data, generated using the test 

function 1f , have been differentiated using Tikhonov 

regularisation, whereas those generated using the test 
function 2f  – using TV regularisation; such a choice 

is justified by the shapes of those functions. For each 
sequence of data, the value of the regularisation pa-
rameter   has been selected in such a way as to max-
imise RSNR; it is only possible in the synthetic setting 

of the numerical experiments reported here. This pos-
sibility has been exploited in order to study the influ-
ence of other parameters on the quality of the speed 
estimates independently from the influence of the re-
gularisation parameters, although – in practice – the 
optimisation of regularisation parameters is an impor-
tant and complex task which, nevertheless, remains 
outside the scope of this paper. 

3.2 Results of Experiments 

Figures 4–7 present the results of the numerical 
experiments described in the previous subsection. In 
order to facilitate the interpretation of these figures, 
the symbols of selected parameters, together with 
their descriptions, are collected in Table 1. The ob-
tained results indicate that: 
 The studied method for weighting the data on the 

basis of the available information about the vari-
ances of errors corrupting those data yields an 
improvement in the quality of the speed estimates 
when the ratio S2 S1   is sufficiently large, viz. 

larger than ca. 2 (cf. Figure 4); when that ratio is 
smaller, the use of 0   does not yield any sig-

nificant benefit. 
 The weighting of data is more advantageous in the 

case of scenario #2 – i.e., when less accurate data 
are acquired within a continuous fragment of the 
time interval under analysis – than in the case of 
scenario #1 – i.e., when less accurate data are 
mixed uniformly with more accurate data (cf. 
Figure 4, note the differences in the colour scales). 

 In most cases, the values  provide the 

best results (cf. Figure 4). 
 In the case of scenario #1, setting  too large 

yields only modest negative effects (cf. Figure 4, 
left column). On the other hand, in the case of 
scenario #2, setting  too large may yield results 

worse than setting  – i.e., ignoring the 

available information about the ratio  (cf. 

Figure 4, right column). 
 In the case of scenario #2, the dependencies of the 

quality of the speed estimates on  and on  

are not significantly affected by the length of the 
time interval in which the data are acquired by 
sensor S2 (cf. the right columns of Figure 5 and 
Figure 6). 

 In the case of scenario #1 with test function , 

no systematic dependency of the quality of the 
speed estimates on the fraction of data acquired 
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using sensor S2 can be observed in the obtained 
results (cf. the lower-left panels of Figure 5 and 
Figure 6). 

 The quality of the speed estimates is sensitive to 
the error corrupting the estimate of the variance 

. In the case of scenario #1 with test function 

, overestimation of that variance does not in-

crease the errors corrupting the speed estimates as 
much as its underestimation. On the other hand, in 
all the other cases, for larger values of that vari-
ance the best results are obtained, surprisingly, 
when it is slightly underestimated (cf. Figure 7). 
The results presented here are representative ex-

amples of the results of a more exhaustive set of ex-
periments, in which other values of the fixed param-
eters have also been taken into account. 

Table 1: Symbols and descriptions of parameters presented 
in Figures 4–7. 

Symbol Description 

 
the amount of weighting of the data according to the 
estimates of the sensors’ accuracy; cf. Eq. (14) in 
Subsection 2.3 

 
in scenario #1, the fraction of the data acquired using 
sensor S2; cf. Subsection 3.1 

 
in scenario #2, the end of the time interval in which data 
have been acquired using sensor S2; cf. Subsection 3.1 

 the ratio ; cf. Subsection 3.1 

  
the relative error corrupting the estimate  of ; 
cf. Eq. (32) in Subsection 3.1 

RSNR 
the signal-to-noise ratio in the speed estimates, relative 
to the signal-to-noise ratio in the measurement data; cf. 
Eq. (29) in Subsection 3.1 

 

 

 

 
 

Figure 4: Dependence of RSNR on   and   for both scenarios, both test functions and fixed values of  ,   and  . 

 

 

Figure 5: Dependence of RSNR on   and   or   for both scenarios, both test functions and fixed values of   and  . 

2
S2
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Figure 6: Dependence of RSNR on  and  or  for both scenarios, both test functions and fixed values of  and . 

 

 

Figure 7: Dependence of RSNR on  and  for both scenarios, both test functions and fixed values of ,  and . 

4 SUMMARY 
AND CONCLUSIONS 

Healthcare-oriented monitoring systems based on the 
fusion of data from sensors of various types, which 
allow for estimating the monitored person’s move-
ment speed, may assist healthcare practitioners in 
their efforts to ensure good quality of life of elderly 
persons and can contribute to the reduction of the 
public expenditures related to the healthcare services 
addressed to those persons. 

The technique for fusion of measurement data ac-
quired by means of different sensors, presented in this 

paper, may be used for improving the accuracy of the 
estimates of speed obtained using such systems when 
some a priori information about those data is avail-
able. Guidelines on the selection of the parameters 
characterising that technique, based on numerical ex-
perimentation, are also provided. These results may 
turn out to be useful in the development of monitoring 
systems based on depth sensors and impulse-radar 
sensors. 

The prospects for future studies involve – above 
all – experiments aimed at testing the described meth-
ods on the basis of real-world data. 
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