
From Quantities in Software Models to Implementation

Steve McKeever a

Department of Informatics and Media, Uppsala University, Sweden

Keywords: Units of Measurement, Quantity Pattern, Libraries, Component based Checking, Testing.

Abstract: In scientific and engineering applications, physical quantities expressed as units of measurement (UoM) are
used regularly. If the algebraic properties of a system’s UoM information are incorrectly handled at run-time
then catastrophic problems can arise. Much work has gone into creating libraries, languages and tools to ensure
developers can leverage UoM information in their designs and codes. While there are technical solutions
that allow units of measurement to be specified at both the model and code level, a broader assessment of
their strengths and weaknesses has not been undertaken. Inspired by a survey of practitioners, we review
four competing methods that support unit checking of code bases. The most straightforward solution is for
the programming language to Natively support UoM as this allows for efficient unit conversion and static
checking. Alas, none of the mainstream languages provide such support. Libraries might seem compelling,
and all popular programming languages have a myriad of options, but they’re cumbersome in practice and
have specific performance costs. Libraries are best suited to applications in which UoM checking is desirable
at run-time. Lightweight methods, such as Component based checking or Black Box testing, provide many
benefits of UoM libraries with minimal overheads but sacrifice coverage and thus robustness. By separating
and analysing the various options, we hope to enable scientific developers to select the most appropriate
approach to transferring UoM information from their software models to their programs.

1 INTRODUCTION

Ensuring numerical values that denote physical quan-
tities are handled correctly is an essential requirement
for the design and development of any engineering
application. Notorious examples such as the Mars
Climate Orbiter (Stephenson et al., 1999) or the Gimli
Glider incident (Witkin, 1983) attest to this. With ever
increasing digitalisation, and removal of humans in
the loop, the need to faithfully represent and manipu-
late quantities in physical systems is ever increasing.
There are many ways in which this can be achieved,
allowing the designer or programmer to rely on the
checker to ensure correctness and not on themselves
or their colleagues. The software engineering bene-
fits of adopting unit checking and automatic conver-
sion support is indisputable. However, it is not al-
ways clear which approach is best suited for a given
problem, coupled with a general lack of awareness of
solutions, means that implementers often reinvent the
wheel or forgo any kind of checking.

Providing unit support in spreadsheets (Antoniu

a https://orcid.org/0000-0002-1970-2884

et al., 2004), Wolfram Mathematica1, simulation tools
and modeling environments has been very effective.
For dedicated workflows that support numerical ap-
plications, the cost of annotating cells or variables
with unit information is typically ingrained in the de-
sign process and thus less intrusive than in a more
general setting. Modelica (Modelica, 2020) supports
UoM and checks descriptions before animating them.
Domain specific languages for the curation and inter-
change of biological models2 support UoM informa-
tion and require unit validation before uploading to
repositories.

For general purpose development we have to look
before the advent of object oriented modeling lan-
guages or formal specification notations. Adding
units to conventional programming languages goes
back to the 1970s (Karr and Loveman, 1978) and
early 80s with proposals to extend Fortran (Gehani,
1977) and then Pascal (Dreiheller et al., 1986). These
efforts were mostly syntax based. A more viable start-
ing point would be (Hilfinger, 1988) that showed how
to exploit Ada’s abstraction facilities, namely opera-

1https://www.wolfram.com/mathematica/
2sbml.org, cellml.org

McKeever, S.
From Quantities in Software Models to Implementation.
DOI: 10.5220/0010247201990206
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 199-206
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

199

tor overloading and type parameterisation, to assign
attributes for UoM to variables and values. The emer-
gence of Object Oriented programming languages en-
abled developers to implement UoM either through a
class hierarchy of units and their derived forms, or
through the Quantity pattern (Fowler, 1997). There
are a large number of libraries for all popular object
oriented programming languages that support this ap-
proach (McKeever et al., 2019).

Software development typically begins at a more
abstract level through diagrams and rules that fo-
cus on the conceptual model that is to be imple-
mented. By extending the Unified Modeling Lan-
guage (UML), quantities can be introduced into an
object-oriented modeling platform. Unit checking
and conversion can be undertaken before code is gen-
erated, either through a compilation workflow that
leverages Object Constraint Language (OCL) expres-
sions (Mayerhofer et al., 2016) or staged computa-
tion (Allen et al., 2004). Similarly (Gibson and Méry,
2017) add units to the Event-B modelling language
and leverage the Rodin theorem prover to detect in-
consistencies before compiling to Java. Compara-
ble ideas have been presented for the formal speci-
fication language Z (Hayes and Mahony, 1995) and
Maude (Chen et al., 2003). More specialised UML
based systems modeling languages such as MARTE3

and SysML4 also have UoM support (Burgueño et al.,
2019). These elegant abstractions lift the declaration
and management of units into software models. How-
ever once the code has been generated, UoM informa-
tion might very well be lost unless the workflow has
been tailored explicitly. This is the research question
that we address, namely what is the most appropriate
approach to transferring UoM information into soft-
ware. We consider aspects such as ease of use, execu-
tion speed, numeric accuracy, ease of integration and
coverage of unit error detection capabilities. These
aspects reflect our study of UoM libraries, survey of
practitioners and preliminary design suggestions sum-
marised in (McKeever et al., 2020).

We lack a definitive estimate of how frequently
unit inconsistencies occur or their cost. Anecdotally
we can glean that it is not negligible from experiments
described in the literature. When applied to a repos-
itory of CellML models, a validation tool (Cooper
and McKeever, 2008) found that 60% of the descrip-
tions that were invalid had dimensionally inconsistent
units. A spreadsheet checker (Antoniu et al., 2004)
was applied to 22 published scientific spreadsheets
and detected 3 with errors. A lightweight C++ unit in-
consistency tool (Ore et al., 2017a) was applied to 213

3https://www.omg.org/omgmarte/
4https://sysml.org

open-source systems, finding inconsistencies in 11%
of them. A further study (Ore et al., 2017c) using
a corpus of robot software with 5.9M lines of code,
found dimensional inconsistencies in 6% of reposito-
ries. Thus, it seems important to ensure UoM infor-
mation existing in Software Models is supported in
derived implementations.

The decision on which approach to choose, if
at all, will depend more on the requirements of the
project and whether the various components of the
system can support UoM types. Very few program-
ming languages provide Native support for quantities
so this is rarely an option. UoM Libraries are not al-
ways the most effective solution. Lightweight meth-
ods, such as Component based checkers or Black Box
testing, often provide ‘good enough’ detection with-
out the drawbacks. UoM libraries are best suited to
run-time checking where performance is not a key
condition but correctness is.

The rest of this paper is structured as follows. In
Section 2 we provide a brief background to UoM and
the Quantity pattern. In Section 3 we describe the four
means of supporting UoM information in implemen-
tations and in Section 4 we summarise the results of
our comparative study, providing suggestions for de-
velopers as to which method to choose depending on
their requirements.

2 BACKGROUND

The technical definition of a physical quantity is
a “property of a phenomenon, body, or substance,
where the property has a magnitude that can be ex-
pressed as a number and a reference” (Joint Com-
mittee for Guides in Metrology (JCGM), 2012). Each
quantity is declared as a number (the magnitude of
the quantity) with an associated unit (Bureau Interna-
tional des Poids et Mesures, 2019). For example you
could assert the physical quantity of length with the
unit metre and the magnitude 10 (10m). However, the
same length can also be expressed using other units
such as centimetres or kilometres, at the same time
changing the magnitude (1000cm or 0.01km). Al-
though these examples are all based on the Interna-
tional System of Units (SI), which is the most used
and well known unit system, there exists several other
systems, such as the Imperial system.

Units can be defined in the most generic form as
either base quantities or derived quantities. The base
quantities are the basic building blocks, and the de-
rived quantities are built from these. The base quanti-
ties and derived quantities together form a way of de-
scribing any part of the physical world (Sonin, 2001).

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

200

For example length (metre) is a base quantity, and
so is time (second). If these two base quantities
are combined they express velocity (metre/second or
metre× second−1) which is a derived quantity. The
International System of Units (SI) defines seven base
quantities (length, mass, time, electric current, ther-
modynamic temperature, amount of substance, and
luminous intensity) as well as a corresponding unit
for each quantity (NIST, 2015). Using an Object Ori-
ented language we could create a class hierarchy for
each base type and use a tree structure to construct
derived types. However this would result in hundreds
of units and thousands of conversions. Also showing
two unit definitions to be equivalent would be non-
trivial.

Fortunately, a normal form exists which makes
storage and comparison a lot easier. Any system of
units can be derived from the base units as a prod-
uct of powers of those base units: basee1×basee2 ×
. . .baseen , where the exponents e1, . . . ,en are rational
numbers. Thus an SI unit can be represented as a 7-
tuple 〈e1, . . . ,e7〉 where ei denotes the i-th base unit;
or in our case e1 denotes length, e2 mass, e3 time and
so on. In Java this would be represented as:
class Unit {
private int [7] dimension
private float [7] conversionFactor
private int [7] offset
...
boolean isCompatibleWith (Unit u)
boolean equals (Unit u)
Unit multiplyUnits (Unit u)
Unit divideUnits (Unit u)

}

The dimension array contains the 7-tuple of base
unit exponentials. The attributes conversionFactor
and offset enable conversions from this unit system
to the SI units. The class Unit also defines oper-
ations to compare and combine units. The method
isCompatibleWith checks whether two units are
compatible for being combined, such as miles and
centimetres. While equals returns true if the units
are exactly the same, which is used when adding or
subtracting quantities. When two quantities are mul-
tiplied then multiplyUnits adds the two dimension
arrays. Correspondingly, divideUnits subtracts
each of the elements of the dimension array.

Using this representation for a unit we can con-
struct the Quantity pattern (Fowler, 1997).
class Quantity {
private float value;
private Unit unit;
....

}

We can include arithmetic operations to the Quantity

class that ensures addition and subtraction only suc-
ceed when their units are equivalent, or multiplica-
tion and division generate a new unit that represents
the derived value correctly. This pattern is the basis
for many UoM Libraries (McKeever et al., 2019) but
can also be described in UML.

The Quantity pattern provides a means of annotat-
ing variable declarations and method signatures with
behavioural UoM specifications. Bearing in mind the
annotation burden, (Ore et al., 2018) found subjects
choose a correct UoM annotation only 51% of the
time and take an average of 136 seconds to make a
single correct annotation. In a Software Model, enti-
ties annotated in this manner are merely decorative.
Tools can be written to ensure that the models use
quantity information correctly, but they need to be
rendered into the codebase to ensure implementations
are robust with regards to UoMs. In the next Section
we explore the various options for transferring UoM
information faithfully into program code.

3 IMPLEMENTATION OPTIONS

Many constructs in Software Models can be directly
translated into code. A UML class diagram can be
used to build the class structure of an Object Ori-
ented implementation. However with UoM annota-
tions the situation is more complex. Applying UoM
annotations requires an advanced checker to ensure
variables and method calls are handled soundly. Two
units are compatible if they both can be represented
as the same derived quantity. For instance degrees
Celsius is compatible with Fahrenheit. Values in Cel-
sius can be converted to values in Fahrenheit. Sur-
face tension can be described as newtons per meter or
kilogram per second squared, and even though they
equate they represent different quantities. For com-
plex derived units, showing compatibility is not so
straightforward, nor is it clear whether such quanti-
ties should be aligned (Hall, 2020). Managing such
quantities at run-time requires UoMs to become first-
class citizens.

Two values can be added or subtracted only if their
units are the same. Multiplication and division ei-
ther add or subtract the two units product of power
representations, assuming both values are compati-
ble. Converting values to ensure compatibility can
create round-off errors. Once a variable has been de-
fined to be of a given unit, then it will remain as such.
Checking that all annotated entities behave according
to these rules ensures both completeness and correct-
ness of the model or program. If a variable or method
call is incorrectly annotated an error will arise. When

From Quantities in Software Models to Implementation

201

Native
Language

Static or
Dynamic
Library

Component
or Interface
Description

Black-Box
Testing

Software Model with UoM

Implemented
through

Figure 1: From a Software Model that includes UoM information to an implementation that supports them.

not all variables or method calls are annotated then
neither completeness nor correctness can be guaran-
teed. All implementation options are affected by the
following three concerns (McKeever et al., 2020):

Lack of Awareness: many developers are totally un-
aware of software solutions that deal with UoM.
Inertia from developers stem from factors like tra-
dition, fear of change and effort of learning some-
thing new.

Technical Internal Factors: many solutions are
awkward and imprecise, introducing a loss of pre-
cision and struggling at times with dimensional
consistencies.

External Factors: modern systems are not built in a
vacuum but form part of an eco-system (Lungu,
2008). It is harder to argue for UoM annotations
when values pass through numerous generic com-
ponents that do not support them, such as legacy
systems, databases, spreadsheets, graphics tools
and many other components that are unlikely to
support UoM without costly updates.

The rest of this section will focus on the technical fac-
tors of each approach.

3.1 Native Language Support

Adding unit checking to conventional imperative,
object-oriented and even functional languages using
syntactic sugaring is beyond the algorithmic scope of
their underlying type checkers. The pioneering foun-
dational work (Wand and O’Keefe, 1991) showed
how to add dimensions to the simply-typed lambda
calculus, such that polymorphic dimensions can be
inferred in a way that is a natural extension of Mil-
ner’s polymorphic type inference algorithm (Milner,
1978). The key feature of UoM is that they cannot
be solved symbolically but equationally using the the-
ory of Abelian groups (Kennedy, 1994). Providing
UoM syntax and an equational checker is what dis-
tinguishes a language with native support. UoM in-

formation is checked at compile-time and can be re-
moved from the generated run-time code. Moreover
unit conversions can be minimised in order to reduce
round-off errors (Cooper and McKeever, 2008).

The only language in the 20 most popular pro-
gramming languages (TIOBE, 2020) that supports
units of measurement is Apple’s Swift language (Ap-
ple, 2020). The only other well-known language to
support units of measurement is F# (Microsoft, 2020)
which has the added benefit of allowing unit variables,
namely undefined unit types, that the compile-time
checker will attempt to resolve. If there is insuffi-
cient information then the program will be rejected.
This feature allows a small degree of incompleteness
in language definitions so the burden of annotation is
mitigated somewhat, but the static checker will de-
rive the missing UoM information so correctness is
ensured. Nonetheless neither Swift nor F# are com-
mon in large software engineering projects.

C++ is still very popular (TIOBE, 2020) and has
a de facto UoM extension that exploits the template
meta-programming feature5. Consequently BoostU-
nits is more than just a library as it supports a staged
computation model, similar to MixGen (Allen et al.,
2004), that is more akin to a language extension and
supports backwards compatibility. None of the other
prominent programming languages have this flexible
compilation strategy. This staged approach is very
similar to native language support and, with appropri-
ate compiler optimisation, no run-time execution cost
is introduced. C++ with the BoostUnits library sup-
ports UoM checking in performance-critical code. In
practice, however, the survey (Salah and McKeever,
2020) found both accuracy and usability issues with
the use of this extension.

Translating a Software Model with UoM informa-
tion into a native language with UoM support ensures
that quantity information is maintained, and that the
implementation more closely represents the specifi-
cation. Even if the original software model was auto-

5github.com/boostorg/units

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

202

matically checked, the code will typically be modified
once in use. Refactoring will have to maintain UoM
information but the compile-time checker will guar-
antee correctness.

Native language support is best suited to safety-
critical applications where a single unit system is
employed, checking must be complete, performed at
compile-time and have no run-time performance cost.

3.2 Static or Dynamic Library Support

As few programming languages support UoM na-
tively, a second approach is to use a library that pro-
vides units of measurement. With advanced abstrac-
tion methods such as classes and generics, develop-
ing libraries that work well with existing code bases
is possible nowadays. Consequently there are many
libraries for all contemporary languages (Bennich-
Björkman and McKeever, 2018). The core issue that
these libraries aim to solve is something that is rel-
atively easy to understand and familiar. However as
Bekolay argued “making a physical quantity library
is easy but making a good one is hard” (Bekolay,
2013). Trying to make a more complete library, in-
cluding more units, more operators, effective conver-
sions, good error messages, efficient and accurate is
far more demanding than a robust implementation of
the Quantity pattern (Fowler, 1997; Krisper et al.,
2017).

In practice there are many problems with their use.
They require too much boilerplate code, they’re rarely
idiomatic to their host language, provide poor error
messages, lack support for user defined types and re-
strict underlying storage to a single floating point rep-
resentation. Certain languages, like Ruby, are less
affective by these shortfalls as they encourage duck
typing and a flexible syntax that facilitates domain
specific language creation. Nonetheless (McKeever
et al., 2020), concludes that UoM types need to be as
straightforward to use as arithmetic types or at least
as close as possible for adoption to occur.

A strength of libraries is that they can support both
compile-time and run-time error detection. Compile-
time checking can be achieved through static over-
loading, or Java generic instantiations. While run-
time checking is achieved through overriding. An ex-
ample of both styles is shown in (McKeever et al.,
2020). Combining the two semantics, even with the
compact Quantity Pattern representation, would dou-
ble the amount of syntax required and further com-
plicate usage. Dynamically typed languages, such as
Ruby or Python, will by definition perform quantity
checking at run-time. Run-time support is a key re-
quirement for certain projects: “In our product line,

our users may very well have one file whose units
are “kg ·m3”, another whose units are “g cc” and
a third whose units are “degrees Celsius”. We there-
fore need to be able to operate on units at run-time,
not compile-time” (Salah and McKeever, 2020).

A weakness of libraries compared to native lan-
guage support is that variables of a Quantity class can
be reassigned at run-time, due to their semantics be-
ing embedded within the dimension array, so that a
meter could become a kilogram. Unit mismatch and
conversion errors can be detected by UoM libraries
but avoiding programming style errors requires fur-
ther discipline that a conventional static checker pro-
vides. Such errors are caused by violations of stan-
dard type systems, such as when an intermediate vari-
able is used with different units. These were found
to account for 75% of inconsistencies in the study of
5.9M lines of code (Ore et al., 2017c).

Their core disadvantage, however, is that their im-
plementation requires boxed values rather than the
standard primitive entities. When units are not part
of the language then there is a cost at both compile-
time and run-time. For applications that carry out
lots of calculations (such as matrix multiplications),
their performance tends to matter more and boxed val-
ues with types would have unnecessary performance
overheads. At first glance, a UoM library might seem
easy to use and include in a software project, but the
inner workings of the UoM library often increase the
complexity of a project.

3.3 Component or Interface Description
Support

Both Native language support and Libraries require
all UoM variables and function definitions to have an-
notations. Lightweight Component or Interface based
approaches aim to liberate the scientific programmer
from the need to annotate each statement. Interfaces
are the dividing line between the implementation of
a particular functionality and its users. Encapsulating
implementation details, interfaces are a collection of
the externally visible entities and function signatures
of a component. They are used by the compiler to
ensure access is handled correctly. A component im-
plementer would want to further restrict access with
semantic details such as UoM annotations. Ideally, an
interface that solves a particular computational prob-
lem for meters would differ from one that solves the
same problem for miles.

A Component based approach seeks to add UoM
information to the interface in order to enforce
unit consistency when composing components and
thereby reduce dimensional mismatch errors. In

From Quantities in Software Models to Implementation

203

class Distance {
public double add_km(boolean t,

double a, double b) {
return ((t)? a+b : a+(b*1.609));}}

...
public class DistanceTest {
public void test_add_km() {
Distance d = new Distance();
assert(d.add_km(true,10.0,10.0)==20.0);
assert(d.add_km(false,10.0,10.0)==26.09);}}

Figure 2: Java code and JUnit test case for simple addition
of two kilometres, or kilometre and mile distances.

(Damevski, 2009), he argues that units of measure-
ment should be inserted in software component in-
terfaces. There is some anecdotal evidence in the
many quotes of (Salah and McKeever, 2020) to sup-
port this approach. Damevski postulates that unit li-
braries are too constraining and incur an annotation
or migration burden. His algorithm attempts to re-
solve UoM at run-time so that if the types of the called
method’s parameters are compatible with the argu-
ments then unit conversions occur. Consider the C++
class Earth (Damevski, 2009):

class Earth {
void setCircumference(in Meter circumference);
Meter getCircumference();
}

It assigns and queries the earth’s circumference using
meters internally but can be called with kilometres and
the return value bound to a variable of, say, type miles.
Unlike libraries, within the class Earth no further an-
notations are required, nor will it be checked. The
variable circumference will be assigned to a double.

Another lightweight methodology was presented
by Ore (Ore et al., 2017a) that uses an initial pass
to build a mapping from attributes in C++ shared li-
braries to units. The shared libraries contain UoM
specifications so this mapping is used to propagate
into a source program and detect inconsistencies at
compile-time. Their algorithm leverages dimensional
analysis rules for arithmetic operators to great ef-
fect (Ore et al., 2017b).

A Component based discipline means that the
consequences of local unit mistakes are underesti-
mated. On the other hand, it allows diverse teams to
collaborate even if their domain specific environments
or choice of quantity systems were, to some extent,
dissimilar. More importantly it would have been suf-
ficient to have caught the Mars Climate Orbiter error.

3.4 Black-Box Testing

A final means of ensuring UoM checking is through
automated testing. Black Box Testing mainly fo-

cuses on input and output of software applications
and it is entirely based on software requirements and
specifications. It seeks to spot incorrect or missing
functions, interface errors, initialisation errors and
errors in data structures. Creating Black Box unit
tests from Software Models is another lightweight ap-
proach. The testing will not be exhaustive, as the
focus would be on the initialisation of variables, the
correctness of assignments and method calls. There
have been many efforts to automatically generate unit
tests from UML descriptions (Cavarra et al., 2002;
Hartmann et al., 2005; Ali et al., 2010; Mussa et al.,
2009), either through behavioural diagrams or with
rule based approaches. However these techniques are
seen to be costly and non-trivial in practice (Kasuri-
nen et al., 2010).

Nonetheless, it is fairly common nowadays to
manually develop tests alongside models, not only for
the purpose of test driven development but also to en-
sure maintainability through refactoring. Including
UoM tests requires no extra tool support and will not
affect the eco-system as shown in Figure 2. Spending
time writing unit tests would equate to adding unit
annotations without the introduction of a library: “I
could use the same time to write tests and that would
really find and prevent errors and at the same time not
introduce a crazy complicated library every other de-
veloper in my team would have to deal with.” (Salah
and McKeever, 2020). However, the UoM knowledge
will be localised to each particular unit so the slight
implementation cost comes at the expense of poten-
tially average checking.

4 CONCLUSION

With greater interoperability, industrial use of com-
putational simulations and penetration of digitalisa-
tion through cyber-physical systems; it seems perti-
nent to faithfully represent key properties of phys-
ical systems such as units of measurement in code
bases (Selic, 2015). Beginning with quantity anno-
tated Software Models that could be diagrammatic or
equational, we sought to elucidate the most appropri-
ate method to migrate this information into code. Alas
Native Language support is not available for popular
programming languages. This situation is unlikely to
change as it would require new language definitions
and expensive compiler rewrites, with an important
criteria of ensuring backwards compatibility with ex-
isting code. It is clear that even the best Libraries cur-
rently cause significant performance issues while not
being relevant for most developers. However some
of the dynamic libraries are able to distinguish be-

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

204

Table 1: Contrasting alternative methods of Implementing Unit of Measurements in Software Projects.

Technique Programming Execution Numeric Ease of Unit Error
Ease of Use Speed Accuracy Integration Detection

Native Support Average Very High Very Good Low Very High
Static Library Low Average Good Low High
Dynamic Library Average Low Good Low High
Static Component Based High High Very Good High Average
Dynamic Component Based High Average Good High Average
Black Box Testing Average High Very Good Very High Average

tween quantities which are of the same kind and quan-
tities that are of different kinds but have the same
units. Component based techniques can be under-
taken at both compile-time and run-time. They forgo
completeness and thus correctness to ensure ease of
adoption. Black Box testing based approaches are
currently undertaken manually but offer many of the
advantages of compile-time component based tech-
niques without additional syntax. However, UoM in-
formation will then be embedded within the unit tests
and not part of the code base.

UoM annotations are initially costly for the de-
veloper but relatively stable to program reorganisa-
tion. Refactoring will rarely require UoM annota-
tion changes unless the underlying data structures are
also modified, thus ensuring maintainability and scal-
ability within potentially safety-critical code. Ap-
proaches that leverage the compiler to optimise unit
conversions without boxed values, such as native sup-
port or static lightweight solutions, will ensure greater
numeric accuracy.

We can summarise the benefits and drawbacks of
each approach in Table 1 using some of the key fac-
tors that we have focused on. Presented in this manner
it becomes clear that static UoM Libraries offer few
compelling advantages over Component or Black Box
based testing. Native language support can offer dis-
tinct advantages as the checking will have greater cov-
erage and can be equational, thereby resolving unit
variables, with the added benefit of compiler optimi-
sations to reduce round-off errors and increase run-
time performance. Although, complex modern soft-
ware tends to favour more lightweight solutions that
integrate seamlessly into existing eco-systems.

Beginning with a Software Model that includes
UoM information we have attempted to show the vari-
ous tradeoffs involved in deciding how best to support
their implementation when taking their software eco-
system into account. Stand-alone safety critical appli-
cations, where all unit information will be known and
supported at compile-time, are very different to the
needs of a rapidly evolving on-line application that
expects to deal with varying UoM input at run-time.

REFERENCES

Ali, S., Hemmati, H., Holt, N., Arisholm, E., and Briand,
L. (2010). Model transformations as a strategy to au-
tomate model-based testing-a tool and industrial case
studies. Simula Research Laboratory, Technical Re-
port (2010-01), pages 1–28.

Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., and
Steele, Jr., G. L. (2004). Object-oriented units of
measurement. In Proceedings of Object-oriented Pro-
gramming, Systems, Languages, and Applications,
OOPSLA ’04, pages 384–403, NY, USA. ACM.

Antoniu, T., Steckler, P. A., Krishnamurthi, S., Neuwirth,
E., and Felleisen, M. (2004). Validating the unit cor-
rectness of spreadsheet programs. In Proceedings
of Software Engineering, ICSE ’04, pages 439–448,
Washington, DC, USA. IEEE Computer Society.

Apple (2020). Swift open source. Online https://swift.org.
Last Accessed on 15th April 2020.

Bekolay, T. (2013). A comprehensive look at representing
physical quantities in python. In Scientific Computing
with Python.

Bennich-Björkman, O. and McKeever, S. (2018). The next
700 Unit of Measurement Checkers. In Proceedings
of Software Language Engineering, SLE 2018, page
121–132, NY, USA. Association for Computing Ma-
chinery.

Bureau International des Poids et Mesures (2019). SI
Brochure: The International System of Units (SI),
9th Edition, Dimensions of Quantities. Online
https://www.bipm.org. Last Accessed 15th April,
2020.

Burgueño, L., Mayerhofer, T., Wimmer, M., and Vallecillo,
A. (2019). Specifying Quantities in Software Models.
Information and Software Technology, 113:82 – 97.

Cavarra, A., Crichton, C., Davies, J., Hartman, A., Jeron, T.,
and Mounier, L. (2002). Using UML for Automatic
test Generation. Proceedings of ISSTA.

Chen, F., Rosu, G., and Venkatesan, R. P. (2003). Rule-
Based Analysis of Dimensional Safety. In RTA.

Cooper, J. and McKeever, S. (2008). A model-driven ap-
proach to automatic conversion of physical units. Soft-
ware: Practice and Experience, 38(4):337–359.

Damevski, K. (2009). Expressing measurement units
in interfaces for scientific component software. In
Proceedings of Component-Based High Performance
Computing, CBHPC ’09, pages 13:1–13:8, NY, USA.
ACM.

From Quantities in Software Models to Implementation

205

Dreiheller, A., Mohr, B., and Moerschbacher, M. (1986).
Programming pascal with physical units. SIGPLAN
Notes, 21(12):114–123.

Fowler, M. (1997). Analysis Patterns: Reusable Objects
Models. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Gehani, N. (1977). Units of measure as a data attribute.
Computer Languages, 2(3):93 – 111.

Gibson, J. P. and Méry, D. (2017). Explicit modelling of
physical measures: from Event-B to Java. In Interna-
tional Workshop on Handling IMPlicit and EXplicit
knowledge in formal system development.

Hall, B. D. (2020). Software for calculation with physical
quantities. In 2020 IEEE International Workshop on
Metrology for Industry 4.0 IoT, pages 458–463.

Hartmann, J., Vieira, M., Foster, H., and Ruder, A. (2005).
A UML-based approach to system testing. Innova-
tions in Systems and Software Engineering, 1:12–24.

Hayes, I. J. and Mahony, B. P. (1995). Using Units of Mea-
surement in Formal Specifications. Formal Aspects of
Computing, 7(3):329–347.

Hilfinger, P. N. (1988). An Ada Package for Dimen-
sional Analysis. ACM Trans. Program. Lang. Syst.,
10(2):189–203.

Joint Committee for Guides in Metrology (JCGM) (2012).
International Vocabulary of Metrology, Basic and
General Concepts and Associated Terms (VIM). On-
line https://www.bipm.org/en/about-us/. Last Ac-
cessed 15th April 2020.

Karr, M. and Loveman, D. B. (1978). Incorporation of
Units into Programming Languages. Commun. ACM,
21(5):385–391.

Kasurinen, J., Taipale, O., and Smolander, K. (2010). Soft-
ware Test Automation in Practice: Empirical Obser-
vations. Advances in Software Engineering, 2010.

Kennedy, A. (1994). Dimension Types. In Sannella,
D., editor, Programming Languages and Systems—
ESOP’94, volume 788, pages 348–362, Edinburgh,
U.K. Springer.

Krisper, M., Iber, J., Rauter, T., and Kreiner, C. (2017).
Physical Quantity: Towards a Pattern Language for
Quantities and Units in Physical Calculations. In Pro-
ceedings of Pattern Languages of Programs, Euro-
PLoP ’17, pages 9:1–9:20, NY, USA. ACM.

Lungu, M. (2008). Towards reverse engineering software
ecosystems. In 2008 IEEE International Conference
on Software Maintenance, pages 428–431.

Mayerhofer, T., Wimmer, M., and Vallecillo, A. (2016).
Adding uncertainty and units to quantity types in soft-
ware models. In Software Language Engineering,
SLE 2016, pages 118–131, NY, USA. ACM.

McKeever, S., Bennich-Björkman, O., and Salah, O.-A.
(2020). Unit of measurement libraries, their popular-
ity and suitability. Software: Practice and Experience.

McKeever, S., Paçaci, G., and Bennich-Björkman, O.
(2019). Quantity Checking through Unit of Measure-
ment Libraries, Current Status and Future Directions.
In Model-Driven Engineering and Software Develop-
ment, MODELSWARD.

Microsoft (2020). F# software foundation. Online
https://fsharp.org. Last Accessed on 15th April 2020.

Milner, R. (1978). A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17:348–375.

Modelica (2020). Modelica and the Modelica Association.
Online https://www.modelica.org. Last Accessed on
15th April 2020.

Mussa, M., Ouchani, S., Sammane, W., and Hamou-Lhadj,
A. (2009). A Survey of Model-Driven Testing Tech-
niques. Proceedings - International Conference on
Quality Software, pages 167–172.

NIST (2015). International System of
Units (SI): Base and Derived. Online
https://physics.nist.gov/cuu/Units/units.html. Last
Accessed October 2nd, 2019.

Ore, J.-P., Detweiler, C., and Elbaum, S. (2017a).
Lightweight Detection of Physical Unit Inconsisten-
cies Without Program Annotations. In Proceedings
of International Symposium on Software Testing and
Analysis, ISSTA 2017, pages 341–351, NY, USA.
ACM.

Ore, J.-P., Detweiler, C., and Elbaum, S. (2017b). Phriky-
Units: A Lightweight, Annotation-Free Physical Unit
Inconsistency Detection Tool. In Software Testing and
Analysis, ISSTA 2017, page 352–355, NY, USA. As-
sociation for Computing Machinery.

Ore, J.-P., Elbaum, S., and Detweiler, C. (2017c). Dimen-
sional inconsistencies in code and ROS messages: A
study of 5.9m lines of code. In Intelligent Robots and
Systems, IROS, pages 712–718. IEEE.

Ore, J.-P., Elbaum, S., Detweiler, C., and Karkazis, L.
(2018). Assessing the Type Annotation Burden. In
Automated Software Engineering, ASE 2018, pages
190–201, NY, USA. ACM.

Salah, O.-A. and McKeever, S. (2020). Lack of Adop-
tion of Units of Measurement Libraries: Survey and
Anecdotes. In Proceedings of Software Engineering
in Practice, ICSE-SEIP ’20. ACM.

Selic, B. (2015). Beyond mere logic: A vision of mod-
eling languages for the 21st century. In Pervasive
and Embedded Computing and Communication Sys-
tems (PECCS), pages IS–9–IS–9.

Sonin, A. A. (2001). The physical basis of dimensional
analysis. Technical report, Massachusetts Institute of
Technology.

Stephenson, A., LaPiana, L., Mulville, D., Peter Rutledge,
F. B., Folta, D., Dukeman, G., Sackheim, R., and
Norvig, P. (1999). Mars Climate Orbiter Mishap In-
vestigation Board Phase 1 Report. Last Accessed on
October 1st, 2019.

TIOBE (2020). The importance of being earnest index.
Online https://www.tiobe.com/tiobe-index/. Last Ac-
cessed on 1st of October.

Wand, M. and O’Keefe, P. (1991). Automatic Dimensional
Inference. In Computational Logic - Essays in Honor
of Alan Robinson, pages 479–483.

Witkin, R. (1983). Jet’s Fuel Ran Out After Metric Conver-
sion Errors. The New York Times.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

206

