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Abstract: Harmony in visual compositions is a concept that cannot be defined or easily expressed mathematically, even
by humans. The goal of the research described in this paper was to find a numerical representation of artistic
compositions with different levels of harmony. We ask humans to rate a collection of grayscale images based
on the harmony they convey. To represent the images, a set of special features were designed and extracted.
By doing so, it became possible to assign objective measures to subjectively judged compositions. Given
the ratings and the extracted features, we utilized machine learning algorithms to evaluate the efficiency of
such representations in a harmony classification problem. The best performing model (SVM) achieved 80%
accuracy in distinguishing between harmonic and disharmonic images, which reinforces the assumption that
concept of harmony can be expressed in a mathematical way that can be assessed by humans.

1 INTRODUCTION

Harmony is an abstract concept that does not have
a formally precise definition. Depending on the do-
main, such as painting, music or architecture, har-
mony means something different to different persons.
When we think of harmony, we associate it with a
compilation of independent elements, which as a re-
sult create a consistent, pleasing arrangement. Even
though there exist well-known patterns that carry har-
monious sentiments in the eyes of the people, like
the golden-ratio (Di Dio et al., 2007) in images, the
inherent source of their harmonic nature is not obvi-
ous. The research described here aimed at exploring
whether the individual perception of harmony in im-
ages can be expressed in mathematical terms. Specif-
ically, our research aims at addressing the question
whether it is possible to use machine learning tech-
niques to generate a mathematically founded model
of a person’s subjective understanding of harmony.

Our hypothesis is that if machine learning mod-
els are able to be trained in order to confidently pre-
dict the labels one would assign to the compositions,
then it would mean that there exists some numerical
representation of a composition that reflects its har-
monic level. Therefore, we need to extract features
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from the compositions that can further be used by ma-
chine learning algorithms. The main difficulty of this
approach lies in the designing of such features that
carry general and meaningful information about the
compositions. We also need to take into considera-
tion that no classical data augmentation techniques -
such as rotation, translation, flipping, etc. - can be
applied in the research, as the resulting images would
be completely new data points that might be assessed
differently.

After presenting a short overview of the state-of-
the-art techniques in Section 2, Section 3 outlines the
dataset and the process of feature extraction used in
our research, and describes the necessary transforma-
tions of the data and how the uncertain nature of the
target variables was handled, followed by the machine
learning framework used, and Section 4 shows the
experimental results achieved through machine learn-
ing.

2 RELATED WORK

On the technical side, visual feature extraction and
image classification are broadly investigated topics
in the field of Artificial Intelligence and Computer
Vision. Research and applications regarding object
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recognition cover several domains. In (Wu et al.,
2007) methods for leaf recognition are examined. In
(LeCun et al., 1990) the classification of handwritten
digits is explored using back-propagation. There are a
number of other use cases, which consider computer
vision based approaches in order to analyze and iden-
tify meaningful patterns. In (Zhao et al., 1998) tech-
niques for face recognition are presented, in (Bharati
et al., 2004) the analysis of surface textures are in-
vestigated in order to assess the quality of produced
goods, and in (Deepa and Devi, 2011) a collection of
Artificial Intelligence based approached are surveyed
for medical image classification.

Feature extraction methods play indispensable
roles in efficient image classification. Feature ex-
traction algorithms such as SIFT (Lowe, 1999) and
SURF (Bay et al., 2006) introduce techniques to find
generally meaningful patterns in images. (Nixon and
Aguado, 2012) covers a broad range of feature extrac-
tion and image processing techniques, and (ping Tian
et al., 2013) reviews feature extraction and represen-
tation techniques for further image classification.

On the philosophical side, the question that lies is
whether an abstract concept like harmony can be ex-
pressed by quantitative measures. On the one hand,
one argument, originating from Plato (Pappas, 2008)
is that concepts like beauty can be associated with
harmony, symmetry and unity. On the other hand,
research suggests that there are also emotional pro-
cesses that contribute to assessing aesthetics (Leder
et al., 2004).

When it comes to evaluating artistic creations of
computer programs, researchers have attempted to
measure the aesthetic value using a ratio of the per-
ceived order over complexity (Davis, 1936). How-
ever, most of the work focuses on describing concepts
like computational creativity and how it can be as-
sessed (Jordanous, 2012) but only a few approaches
exist that try to quantify the concept of harmony in
compositions, e.g. in (Salleh and Phon-Amnuaisuk,
2015) authors are assessing the aesthetic quality of
trochoids.

In this paper, a set of specific features is intro-
duced, which is directly applicable to the problem
of capturing the concept of harmony by carrying in-
formation about the arrangement of artistic composi-
tions. Our expectation is that if a machine learning
model can be trained to identify whether a composi-
tion is harmonic or not, then that would be a first step
to build such a measure for quantifying such an ab-
stract concept.

3 METHODOLOGY

3.1 Dataset Collection

The dataset used in this research consists of a num-
ber of randomly generated visual compositions by the
application ’The Composition Game’ 1. Each com-
position displays a set of black and white shapes on
a square gray background. The position and rotation
of each shape are randomly generated. The size of
each shape is randomly drawn from a preset contin-
uous range. The amount of black and white shapes,
and the amount of circles, rectangles and triangles are
set prior to the image generation. Figure 1 shows a
few examples.

The participants’ task was to evaluate each com-
position and to assign a number to it from a discrete
range from 1 to 5, which they thought expresses the
level of harmony of the image the most, where 5
means very harmonic and 1 means very disharmonic.
We asked one participant to rate 8909 different com-
positions and we refer to this collection of composi-
tions and ratings as the dataset. In the future, we plan
to include data from more participants as the study is
ongoing.

3.2 Feature Extraction

In order to represent each composition as a vector in
an n-dimensional space, we need to assign n numer-
ical values to it. The resulting feature vector is the
concatenation of the extracted values and each com-
ponent of the vector corresponds to a feature.

One of the issues that arises is that some ex-
tracted features are highly dependent on the number
of shapes, which could result in feature vectors hav-
ing different lengths. For example, if a feature to be
used is given by the distances between each shape in
an image and the center of the image, then this feature
would consist of three values in case there are three
shapes in the image wheras it would consist of four
values in case the image contains four shapes. For this
reason, we use statistical properties (minimum, max-
imum, mean and standard deviation) of such features
rather than the individual values themselves. In this
way, the actual information related to such a feature is
not represented in a straightforward form by enumer-
ating all individual values, but through its statistical
counterpart that encodes information in a compressed
way. This representation still carries meaningful in-
formation and keeps the overall database manageable.

1The Composition Game is a concept of artist Marie
van Vollenhoven and is created together with interaction de-
signer Felix Herbst.
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Figure 1: Example compositions from the dataset.

A summary of the designed features that had been
extracted from the compositions is presented below.

3.2.1 Number of Shapes

The feature returns the number of shapes in a compo-
sition.

3.2.2 Number of Specific Shapes

The feature returns the number of triangles, circles,
rectangles and indeterminable shapes. Indeterminable
shapes may appear on compositions when two or
more shapes overlap.

3.2.3 Number of Specific Colors

The feature returns the number of black and the num-
ber of white shapes.

Figure 2: Features 1, 2 and 3.

3.2.4 B&W Ratio

The feature returns the ratio between the number of
black and the number of white shapes. The denomi-
nator of the fraction is always the greater number out
of the two. If one of the numbers is zero, the function
returns zero.

3.2.5 Number of Groups

The feature returns the number of groups in a compo-
sition. Groups are subsets of all shapes in which the
shapes are the closest to each other. The function first
determines the centers of the shapes, then calculates
the Euclidean distance between every possible pair.
After this step, let’s consider the image as a graph.
Each shape (vertex) is then connected to its closest
neighbor. The number of groups in the composition
is the number of disconnected sub-graphs in the graph
(see Figure 3).

Figure 3: Grouping (Feature 5).

3.2.6 Covered Area

The features returns the ratio between the area cov-
ered by the shapes and the area of the image.

3.2.7 Area Covered by Groups

The feature determines the ratio between the area cov-
ered by each group and the area of the image. Then
the statistical properties of the obtained values are ex-
tracted as mentioned above.

3.2.8 Entropy

The feature returns three numbers that indicate how
much the shapes are spread in a composition; the
more spread they are, the higher its entropy (see Fig-
ure 4). By decreasing the sizes of the squares in
each step, the function fits square grids on the image
multiple times. After every iteration, the number of
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gird cells that contain non-gray pixels are determined.
This number is then divided by number of grid cells in
the current iteration. The result of these divisions are
saved after each step. If we then plot the values, we
get a curve which shows how the entropy decreases
over the iterations. In the last step, a second degree
polynomial is fit to the curve. The function returns
the values of a, b and c determined for the polyno-
mial

ax2 +bx+ c (1)

Figure 4: Entropy (Feature 8).

3.2.9 Bounding

The feature first fits a bounding circle and a bound-
ing rectangle around every shape in a composition
(see Figure 5. The radiuses of the bounding circles,
and the widths and heights of the bounding rectan-
gles are stored. The function determines the statisti-
cal properties of the list of radiuses, widths, heights,
width/heights and width*heights.

Figure 5: Bounding (Feature 9).

3.2.10 Color Distribution

This feature returns the number of gray, black and
white pixels in an image (see Figure 6).

3.2.11 Two-third Points

This feature divides the image plane into thirds along
both the horizontal and the vertical axes and analyzes
the surrounding of those 4 points where the aforemen-
tioned lines intersect (see Figure 7). The surrounding
is defined as a square whose center is an intersection

Figure 6: Color distribution (Feature 10).

point itself. The function returns the color distribution
of these four areas. The motivation behind the feature
is that the attention of the spectator is mostly drawn
to the surrounding of these points (Amirshahi et al.,
2014).

Figure 7: Two-Third points (Feature 11).

3.2.12 Balance

This feature determines the color distribution in the
left and the right third of the image. This is an indica-
tor about how well the two sides of the composition
are balanced (see Figure 8).

Figure 8: Balance (Feature 12).

3.2.13 Gravity

This feature calculates how much the pairs of shapes
on left and the right side of the composition “pull”
each other, which is another type of indication of bal-
ance in the overall picture. First, the composition is
split into two equal halves, then the center and area
of the each shape are determined. According to New-
ton’s law (Newton, 1987), the occurring gravitational
force between two arbitrary shapes — one belonging
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to the right plane and the other to the left one – is
computed. The gravitational equation is expressed as

F = γ · m1 ·m2

r
(2)

where F denotes the force between objects m1 and
m2, given their spatial distance r. γ is the gravitational
constant, which in this paper is set to 10−8. The mass
of a shape is interpreted as its area (see Figure 9).

Figure 9: Gravity (Feature 13).

3.2.14 Areas

This feature return the statistical properties of the list
of areas of the shapes in a composition.

3.2.15 Shape-center Distance

This feature calculates the distances between the cen-
ter of each shape and the center of the image, then
returns the statistical properties of these values (see
Figure 10).

Figure 10: Shape-Center distance (Feature 15).

3.2.16 SURF Features

In order to obtain a more general representation of a
composition, traditional computer vision techniques
had been applied. After extracting the SURF features
(Bay et al., 2006) from the images, k = 5, 10, 20, 50,
100, 200 and 500 clusters had been created with k-
means. The main idea of SURF is to extract detectors
and descriptors from images which are not susceptible
to rotation, scaling etc. Using the visual bag of words

approach, each row of the extracted SURF matrices
had been assigned to its nearest cluster center. This
way, each composition receives a unique, histogram-
like representation with k bars.

3.2.17 Convolutional Autoencoder

To obtain a more dense representation of the com-
positions, a Convolutional Autoencoder (Masci et al.,
2011) had been trained on 70% of the dataset. If the
reconstructed images look like the original ones, it
means that the encoding layer does carry sufficient
information about the compositions, thus the com-
pressed form of an image can be used as a new fea-
ture. For this purpose, the images had been resized to
100 x 100 pixels. Figure 11 shows some reconstructed
images from the test set. The results indicate that the
encoding layer does carry enough information about
the original images and can be used to generate new
features for the training phase. The encoded images
have the size of 13 x 13 pixels, which gives 169 new
features for a composition.

3.3 Pre-processing

3.3.1 Feature Transformation

In order to improve the performance of the models
to be learnt, the distribution of every feature in the
dataset was checked and subjected to transformations
if needed. Specifically, in case the distribution of a
feature over the dataset looked like a skewed Gaus-
sian, Box-Cox transform was applied; when a feature
was dominated by a single value, square-rooting was
used, and if the feature followed an exponential dis-
tribution, log transform was applied. In cases where a
feature contained outliers, they were removed. After
transforming the features, the dataset was normalized.

3.3.2 Extending the Dataset

In order to further smooth the dataset some additional
features could be added by performing transforma-
tions on them. Given the polished dataset the fol-
lowing transformations were applied to it: Principal
Component Analysis (PCA) (Jolliffe, 2011) with n =
30 components, and truncated Singular Value Decom-
position (SVD) (Golub and Reinsch, 1971) with n =
9 components. The dataset was then extended by its
own dense representations. Overall, each composi-
tion is represented as a 321 dimensional feature vec-
tor.
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Figure 11: Original (top) and reconstructed (bottom) images.

3.3.3 Fixing the Target Classes

Given the highly subjective nature of the task, we can-
not be certain that participants rate the harmonic na-
ture of the compositions in a consistent way. This
means that we cannot treat the ratings of the compo-
sitions as if they were perfectly expressing their har-
monicity as they experience it. Determining the har-
monicity of a composition may depend on many fac-
tors such the current mood of the participants, which
means they might rate the same images differently in
different situations. In order to smooth out this distor-
tion, participant was asked to re-rate a subset of com-
positions two more times. Provided the re-ratings we
can determine a more robust overall rating for each
composition. Participant was asked to re-rate 300
compositions. Figure 12 shows the deviation from
each class after the re-ratings for the participant.

Figure 12: Re-ratings of participant.

Given the re-ratings, it is possible to determine
how much and how frequently participants deviate
from their initial ratings. Figure 13 shows the dis-
tributions of deviation in each class. For example, in
the second distribution in Figure 13, we can see that
the participant – for the images initially rated as 2’s
– subtracts 1 unit around 5 percent of the time, sub-
tracts 0.5 units around 3 percent of the time, preserves

its rating around 25 percent of the time, adds 0.5 units
around 15 percent of time, and so on.

Figure 13: Distributions of deviation of participant.

By drawing samples from these distributions ac-
cording to the appearing probabilities we can de-
rive what average targets the compositions would get
after several rounds of re-ratings (Bolthausen and
Wüthrich, 2013). Table 1 shows the resulting values.

Figure 14: Simulated convergence of ratings.

The results of the simulation enable us to assign
new values to the ratings, which express the har-
monicity of compositions more reliably. Table 1 con-
tains the old and the new ratings.

From the converged values we saw that the up-
dated ratings in classes [2, 3] and [4, 5] are fairly
close to each other, so these two class pairs were
merged to describe new categories. Thus, the original
five classes are merged into three classes, expressing
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the level of harmony in a more compact way: Bad,
Neutral and Good. Table 2 shows the final labels used
for training.

Table 1: Converged values.

Old rating New rating
1 2.09
2 2.76
3 3.12
4 3.69
5 3.66

Table 2: Mapping between old and new classes.
Old class New class

1 Bad
2 Neutral
3 Neutral
4 Good
5 Good

3.4 Classification Approaches

Given the final dataset with all 321 features per com-
position and a clearer notion about what the targets
(classes) represent, we can proceed with applying a
classification model on the dataset. We utilized state-
of-the-art machine learning models stemming from
different categories:

• Random Forests (Breiman, 2001) follow the bag-
ging principle and construct multiple (shallow)
decision trees during training time and they pre-
dict the class (in our case the rating) as the mode
of predictions of all trees.

• Gradient Boosting (Friedman, 2001) combines
several weak classifiers (in our case decision
trees). The whole idea of boosting is to build
the final model step by step: each iteration of the
model is based on a modified version of the orig-
inal dataset with the goal to reduce the classifica-
tion error of specific data points. We also employ
XGBoost (Chen and Guestrin, 2016) is a fast and
efficient implementation of gradient boosted deci-
sion trees.

• Logistic Regression (Bishop, 2006) is one of the
most widely used classification techniques. We
also employ Ridge classification (Hoerl and Ken-
nard, 1970) which can address the multicollinear-
ity issue that large feature spaces suffer from.

• Support Vector Machines (Cortes and Vapnik,
1995) map the input space into separate categories
divided by hyperplanes as wide as possible. Dif-

ferent kernels can be used in order to transform
the non-linear input space into a higher dimen-
sional linear one.

• Multi-layer Perceptrons (Hinton, 1990) are also
used as the simplest feed-forward artificial neural
network (ANN) for classification.

In order to further improve the performance of the
predictions, we combined the above models using
a simple ensemble way (with a naive voting) (Diet-
terich, 2000) and using stacked generalization (which
learns a new model to learn how to best combine the
predictions) (Wolpert, 1992).

In the training phase, all four possible setups were
explored with regards to the targets:

• BN: Bad vs. Neutral,

• BG: Bad vs. Good,

• NG: Neutral vs. Good,

• BNG: using Bad, Neutral and Good classes.

When training the models, each setup was tested with
three different arrangements of the dataset:

• D1: All features are included,

• D2: SURF features are omitted,

• D3: SURF and Convolutional Autoencoder fea-
tures are omitted.

In all setups, 70% of the dataset was used for train-
ing and the remaining 30% for testing. We used 10-
fold cross-validation for all experiments and we fur-
ther used a validation set on the training set to tune
the hyperparameters of all algorithms. Code and data
will be made available upon paper acceptance.

4 EXPERIMENTAL RESULTS

Table 3 summarizes the cross-validated results (accu-
racy and variance) of the best performing (for the sake
of space) models in each setup. The best performance
in each setup is highlighted.

Given the accuracy scores, there are some addi-
tional results which are to be mentioned. Six out of
eight times, the best performing model turned out to
be the SVM, which is in conclusion, the most suited
model for this problem. Along with the SVM, XG-
Boost and Ridge classifiers also appear frequently as
best performing models given the different experi-
mental setups. Important to note, that however in the
majority of the cases, stacking yields the best average
accuracy scores, the variance of the accuracies are the
highest. The lowest average variance values belong
to the ensemble setups, indicating that the confidence
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Table 3: Experimental results for all training setups.

Training Setup Single model Var Ensemble Var Stacking Var
D1 0.66 (XGBoost) 0.015 0.65 0.006 0.65 (Ridge) 0.022

BN D2 0.66 (GB) 0.014 0.66 0.007 0.67 (SVM) 0.035
D3 0.66 (XGBoost) 0.008 0.65 0.006 0.64 (XGBoost) 0.017
D1 0.74 (XGBoost) 0.034 0.72 0.017 0.73 (Ridge) 0.06

BG D2 0.73 (XGBoost) 0.029 0.73 0.016 0.80 (SVM) 0.042
D3 0.71 (Ridge) 0.03 0.7 0.02 0.71 (Ridge) 0.058
D1 0.59 (LR) 0.041 0.58 0.03 0.58 (SVM) 0.049

NG D2 0.57 (LR) 0.048 0.56 0.023 0.57 (SVM) 0.063
D3 0.57 (XGBoost) 0.019 0.58 0.022 0.60 (SVM) 0.073
D1 0.48 (XGBoost) 0.023 0.46 0.018 0.47 (Ridge) 0.066

BGN D2 0.47 (GB) 0.029 0.48 0.011 0.50 (SVM) 0.038
D3 0.48 (GB) 0.043 0.47 0.016 0.48 (SVM) 0.041

level rises when combining different models for pre-
dictions. Figure 15 shows the average variances over
different experimental setups.

Figure 15: Average variances over setups.

The least reliable performances were obtained
when using the D1 dataset, which means that the
SURF features do not add to the capturing of the
level of harmony. The fact that the SURF histograms
show significant similarities across different classes,
explains why they do not contribute to the predictions.
This outcome is not surprising given the design of
SURF to extract scale- and rotation-invariant interest
point detectors and descriptors which is not desirable
in this type of research. Figure 16 shows averaged
SURF histograms for the original 5 classes with k =
10 cluster centers.

The best mean accuracy (0.80) was obtained using
the BG setup with stacked generalization on the D2
dataset. We can see that the ensemble models made
the predictions more confident and the stacking man-
aged to further increase mean accuracy.

Figure 16: Average frequencies of SURF features for k =
10 cluster centers across 5 classes.

5 CONCLUSION

The goal of this paper is to explore whether the
subjective perception of harmony can be expressed
numerically. The results show that given a suffi-
ciently large collection of randomly generated black
and white images and the above described features,
there exists an experimental setup by which it is pos-
sible for a machine learning model to distinguish be-
tween Good and Bad compositions with 80% accu-
racy. However, the performance of the models de-
creased when all three classes were involved. That
shows that when separating between classes being
most distant in their level of harmony, it is possible to
assign numerical values to subjectively judged com-
positions in order for an algorithm to confidently clas-
sify them. Given the experimental results, we con-
clude that the SVM and XGBoost classifiers are the
most suited for this problem.

The research described here opens several inter-
esting future directions. Among them are, in partic-
ular, the design of more sophisticated and more ex-
pressive features, the collection and pre-processing of
more data from more participants, the extension of the
type and style of artistic compositions, and the explo-
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ration of different scales for rating. Furthermore, the
research introduces the need for interdisciplinary col-
laboration (e.g. by actively involving artists), serving
as a bridge between feature design and art.
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Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J.
(2011). Stacked convolutional auto-encoders for hi-
erarchical feature extraction. In International Con-
ference on Artificial Neural Networks, pages 52–59.
Springer.

Newton, I. (1987). Philosophiæ naturalis principia math-
ematica (mathematical principles of natural philoso-
phy). London (1687), 1687.

Nixon, M. and Aguado, A. S. (2012). Feature extraction
and image processing for computer vision. Academic
Press.

Pappas, N. (2008). Plato’s aesthetics.
ping Tian, D. et al. (2013). A review on image feature ex-

traction and representation techniques. International
Journal of Multimedia and Ubiquitous Engineering,
8(4):385–396.

Salleh, N. D. H. M. and Phon-Amnuaisuk, S. (2015). Quan-
tifying aesthetic beauty through its dimensions: a case
study on trochoids. International Journal of Knowl-
edge Engineering and Soft Data Paradigms, 5(1):51–
64.

Wolpert, D. H. (1992). Stacked generalization. Neural net-
works, 5(2):241–259.

Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y.-X., Chang, Y.-F.,
and Xiang, Q.-L. (2007). A leaf recognition algorithm
for plant classification using probabilistic neural net-
work. In Signal Processing and Information Technol-
ogy, 2007 IEEE International Symposium on, pages
11–16. IEEE.

Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D. L.,
and Weng, J. (1998). Discriminant analysis of princi-
pal components for face recognition. In Face Recog-
nition, pages 73–85. Springer.

Can We Detect Harmony in Artistic Compositions? A Machine Learning Approach

195


