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The recently presented Driver Monitoring Dataset (DMD) extends research lines for Driver Monitoring Sys-

tems. We intend to explore this dataset and apply commonly used methods for action recognition to this
specific context, from image-based to video-based analysis. Specially, we aim to detect driver distraction by
applying action recognition techniques to classify a list of distraction-related activities. This is now possible
thanks to the DMD, that offers recordings of distracted drivers in video format. A comparison between di-
fferent state-of-the-art models for image and video classification is reviewed. Also, we discuss the feasibility
of implementing image-based or video-based models in a real-context driver monitoring system. Preliminary
results are presented in this article as a point of reference to future work on the DMD.

1 INTRODUCTION

Currently, cars that are known commercially as au-
tonomous still require human participation. These yet
belong to level 2 of the standard Driving Automation
Classification from the Society of Automotive En-
gineers (SAE International, 2018); it means that the
car has partial automation, but the human is still re-
sponsible for driving. Is in Level 3 where the driver
can engage in other activities inside the car while the
vehicle is driving by its own. To make this transition,
go up from level 2 to level 3, driver’s state or condition
must be an input to the autonomous driving systems.
This is because, in level 3, mode transitions between
manual and automated driving still will occur; iden-
tifying if the person is capable of regaining vehicle’s
control is important to make decisions.

All the efforts that we can direct to characterize
and detect the driver’s condition are necessary, be-
cause it could help a smart system to anticipate po-
tential risk scenarios. Hence the relevance of Driver
Monitoring Systems (DMS). This task of driver mo-
nitoring may include various scenarios and multiple
aspects of the driver, from hands position to distrac-
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tion level, on this research we focus on distraction de-
tection. The NHTSA establishes 3 types of distrac-
tion: visual, manual and cognitive. To detect driver
distraction, without implementing intrusive detection
methods, it is required to identify a list of activities
known to have a certain cognitive load (like having a
conversation on the phone), or any other visual and/or
manual distraction; allowing us to infer if the driver
is distracted through the identification of these activi-
ties. Therefore, distraction detection becomes an ac-
tion recognition task.

For monitoring the driver inside the car, com-
puter vision techniques are quite convenient as they
are non-intrusive methods. Convolutional Neural
Networks (CNN’s) have demonstrated their advan-
tages and outstanding results on image analysis
(Krizhevsky et al., 2012). Therefore, these algorithms
of Deep Learning have become the first option for
computer vision problems. Since images of the driver
are the principal source of information for these sys-
tems, CNN’s are considered in this research.

As we intend to detect distractions, we want to
explore and get some initial metrics of the recently
published Driver Monitoring Dataset (DMD) (Ortega
et al., 2020) to find if the temporal dimension of ac-
tions is worth to consider or a sole image-based ana-
lysis should be enough. Also, how some models used
for general action recognition or video classification
can perform with the available data of this dataset.
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2 RELATED WORK

The lack of public and appropriate datasets for the
detection of distracted drivers has limited the deve-
lopment of methods for this specific action detection
application. The DMD proposes to be robust enough
to extend research around driver monitoring. Also, it
comes in video format, offering the temporal dimen-
sion for action detection.

2.1 Datasets

Researchers often construct their own datasets only
for their studies purposes, many of which are never
published. Among the most important and compara-
ble datasets with the DMD distraction-dedicated ma-
terial are:

-State Farm’s Kaggle Competition (StateFarm,
2016). In a competition on Kaggle website, the State
Farm insurance company published a dataset on the
platform. This one contains side-view images from
drivers performing a list of 10 distraction-related acti-
vities, including normal driving, talking on the phone,
and operating the radio, among others. However, the
dataset is restricted for the competition and is not allo-
wed to be used for other purposes.

-AUC Distracted Driver Dataset (Abouelnaga
et al.,, 2018). Given the use limitations of the pre-
vious dataset, Abouelnaga et al. team of researchers
carried out their own distracted driver dataset. It com-
plies with the same characteristics as the one from
State Farm and is available to the scientific commu-
nity under a usage agreement. It has the same list of
distraction activities as State Farm’s Dataset but this
one is bigger in size.

-Drive&Act Dataset (Martin et al.,, 2019). This
dataset has a slightly different approach than the
DMD, since it aims to support the identification
of driver actions in autonomous driving scenarios.
Within this context, it is understood that the driver
does not actively participate in the driving task, so
his/hers activities become those of a common passen-
ger and not of a driver. Therefore, there are mul-
tiple not-related-to-driving activities, few of them
like “Normal driving” are shared with the DMD, but
others belong outside a driving context like “working
on a laptop”. Drive&Act offers data in video format
from 6 inside-car perspectives and 3 channels of in-
formation (RGB, infrared and Depth). The material
of this dataset is available publicly also under the ac-
ceptance of a usage agreement.

2.2 Algorithms

For action recognition, two approaches have been de-
termined: an image or a video analysis. For image-
based algorithms, the intention is to identify an ac-
tion (understood as a time-dependent sequence) from
a still image. In video-based algorithms, spatial and
temporal dimensions are both taken into account.

Image-based. For driver’s distraction detection, the
authors of the AUC Dataset implement a CNN’s en-
semble and extract features from images, perform-
ing image classification. These methods of prior fea-
ture extraction have been adopted on many investiga-
tions for driver state identification algorithms: skin-
segmentation (Xing et al., 2019), hands detection
(Rangesh and Trivedi, 2018), face detection (Yuen
et al., 2016), head pose estimation (Borghi et al.,
2017) and body landmarks detection for driver pos-
ture estimation (Deo and Trivedi, 2018). Distraction
detection by image classification with CNN’s archi-
tectures like VGG-16 (Babheti et al., 2020), AlexNet,
GoogleNet, and residual network also have been stud-
ied (Tran et al., 2018).

General human action recognition problems have
been approached with still-image-based algorithms,
giving good results (Zhang et al., 2016). Some of the
strategies involve human pose estimation (Yang et al.,
2010), human and/or object detection to find human-
object interactions (Girish et al., 2020) and combina-
tions with general scene understanding (Chan et al.,
2019).

Video-based. This research is supported by advances
in video detection of general human actions, since
there is not much evidence for driver distraction de-
tection in video.

2D CNN’s are widely used for learning spatial
features from each video frame. However, with an
arrangement of 2D CNN’s and calculations of optical
flow, spatial-temporal information can be considered
and accomplish action recognition tasks (Chen et al.,
2020).

An alternative to analyse videos is to have a 2D
CNN (for spatial features), followed by an LSTM (for
temporal dependencies). The combination of these
two have proven to be a good option for action recog-
nition (Donahue et al., 2014).

On the other hand, 3D CNN'’s or 3DConvNets
have proven to out-stand 2D CNN’s in action recog-
nition tasks (Tran et al., 2015). This extra dimension
of the kernels or filters allows the network to capture
the motion information encoded in multiple contigu-
ous frames. This means that the computed features
are both spatial and temporal.
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3 DMD: DRIVER MONITORING
DATASET
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Figure 1: Annotation tool (Tato) interface.

The DMD! was created to fill the gap of a multi-
purpose dataset for driver monitoring. It promises to
support driver state estimation and the analysis of var-
ious aspects of driver monitoring; since it presents
material of unfavourable driving situations. This
dataset covers different fronts like driver fatigue de-
tection, driver gaze estimation, hands-on-wheel track-
ing and what we made use of: distracted-driver-
related material in video format.

All recordings were made from 3 in-vehicle pers-
pectives with 3 cameras strategically positioned to
capture the face, hands and body of the driver. Each
camera offers 3 channels, they include RGB, infrared
and depth information. A total of 37 volunteers par-
ticipated in the creation of the DMD, where 27% were
women and 73% were men and it has 40:45 hours of
video material. For all these advantages, it has been
demonstrated that this is a very all-rounded dataset
and deserves to be explored; giving many insights
for future work in driver monitoring systems develop-
ment.

Continuing with the distraction approach of
the DMD, it has been planned to have a list of 13
distraction-related activities performed by the driver,
two of them belong to normal driving behaviour
(Safe Driving and Standstill/Waiting). These are:
Safe Driving, Texting(Right hand), PhoneCall(Right
hand), Texting(Left hand), PhoneCall(Left hand),
Operating the Radio, Drinking, Reach side,
Hair&Makeup, Talking to Passenger, Change
Gear, Reach Backseat, Standstill/Waiting. The
activities are then annotated by frame intervals. The
boundaries for each activity were defined, meaning
that the beginning and end of each activity are
established under an annotation criteria.

The annotations come in Video Content Descrip-

Uhttps://dmd.vicomtech.org/
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tion (VCD) format 2. This is the first annotation
toolset compliant with the ASAM OpenLABEL stan-
dard. VCD is defined with JSON schemas and
supports spatio-temporal annotations for the descrip-
tion of objects, events, actions, contexts and relations
from a scene or a data sequence.

4 EXPERIMENTS

Only a lite version of the DMD is available under re-
quest as of the date of this paper. We explore the
possibilities of this dataset implementing models used
for action recognition and see how they perform, as
we wait for the full dataset to be public.

We examine two approaches for driver distraction
detection in a real context scenario: an image-based
and a video-based analysis. Both methods have been
in discussion for action recognition tasks as presented
in Section 2.

4.1 Dataset Preparation

The material used in this research contains the
distraction-related material from 1 group; this in-
cludes the recordings from 5 subjects with a size of
about 43,8 GB. The data used is in RGB format and
belongs only from the side-view camera that captured
the driver’s body.

4.1.1 Labelling

For the annotation of the temporal distraction-related
activities of the DMD, we have created a Temporal
Annotation Tool (TaTo). It was developed in Python
using the OpenCV library and creates annotations in
VCD format. With this software, frame intervals of
a video can be labelled from a list of classes the user
defines. It shows a timeline for more efficient navi-
gation through the video and better visualization of
annotations (see Figure 1), supporting a frame-per-
frame annotation and frame-block annotation using
key-frames.

It is expected that the community uses this tool
to better adequate the DMD to their research require-
ments if needed. TaTo can be found on the Web3,
is open-source and can be adapted to other tempo-
ral annotation use cases. On the same repository, a
Dataset Exploration Tool (DEx) can also be found.

Zhttps://ved.vicomtech.org/

3https://github.com/Vicomtech/
DMD-Driver-Monitoring- Dataset/tree/master/
annotation-tool
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This tool offers to prepare the DMD material for train-
ing, that includes exporting data in videos or images
and cutting material by frame intervals.

4.1.2 Sub-datasets and Data Splits

We have prepared the data to serve as input to our
models, this involves resizing images from 1280 x
720 pixels to 224 x 224 and 112 x 112 pixels (only
for Conv2DLSTM model), cutting material into spe-
cific frame length videoclips and splitting data by
the following subset proportions: 80% for training
and 20% for testing. We defined 3 sequence (action)
lengths: 70 (2,35s), 50 (1,68s) and 30 (1,00s) frames.
The resulting number of observations for each sub-
dataset by data split is shown in Table 1.

Table 1: Number of videoclips and images per data split for
each of the sub-datasets created for analysis.

Data split 30f 50f 70f  Images
Train 3772 2164 1623 89956
Valid 894 508 379 22488
Test 940 535 402 28111
Total 5606 3207 2404 140555

4.1.3 Classes

Because of the nature of some actions, most of their
corresponding frame intervals in the videos are not
sufficiently long to reach 70 frames, meaning that the
driver did not take a minimum of 70 frames long to
perform that activity. This causes that, when cutting
frame intervals by the sequence length, some classes
end up having a very small quantity of videoclips if
not none. Besides, few classes already have little re-
presentation within this first group of the DMD. For
these reasons, we only work with the first 9 activities.
They are identified with “0” to “8” labels, taking into
account the order as they were presented in Section 3.
Figure 2 shows the resulting class distribution of each
of the sub-datasets material.

4.2 Image Approach

We propose to use transfer learning to potentiate our
models, using MobileNet and InceptionV3 as feature
extractors. Models were trained with a batch size of
32 and a learning rate of 1e—3 with Adam optimizer.

MobileNetV1-based & InceptionV3-based Models.
We defined the architecture shown in Figure 3 which
uses a MobileNetV1 model (Howard et al., 2017) and
an InceptionV3 (Szegedy et al., 2015) model, pre-
trained with ImageNet dataset, as feature extractor.

30 Frames 50 Frames [l 70 Frames

B Images
40 35%

Percentage (%)

Classes

Figure 2: Data distribution by classes. Activity labels
are: 0:Safe Driving, 1:Texting(Right), 2:PhoneCall(Right),
3:Texting(Left), 4:PhoneCall(Left), 5:Operating the radio,
6:Drinking, 7:Reach Side, 8:Hair&Makeup.

The first 20 layers (28 in total) of the base model are
frozen and the rest are set as trainable to perform fine-
tuning. The 2 fully-connected layers with 1024 filters
have a dropout of 0,5 and the one with 512 filters has
a dropout of 0,2.
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Figure 3: Model architecture based on MobileNetV1 for
image classification. Same architecture for models based
on InceptionV3.

4.3 Video Approach

In this research, we want to avoid additional
preprocessing or previous manual feature ex-
traction processes (optical flow calculation or
skin-segmentation). Therefore, we only will consider
end-to-end learning models. All these models were
trained with a learning rate of le—3 with Adam op-
timizer for all, 70-frames, 50-frames and 30-frames
sequence lengths.

MobileNetV1 + LSTM Arrangement. To capture
both spatial and temporal information from videos,
we propose to use a time-distributed arrangement of
MobileNets that will extract the features of each of
the frames from the input video in parallel, followed
by an LSTM for the temporal dependencies. Due to
the good results and light-weight advantages of Mo-
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bileNets, this model was included in the proposed ac-
tion recognition architecture that is shown in Figure
4.
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Figure 4: Model architecture with LSTM arrangement for
video classification. F represents the sequence length (30,
50 or 70).

Conv3D-based Architecture. For a Conv3D-based
architecture, we took as reference the one presented
in (Tran et al., 2015). We reduced it to half the num-
ber of layers and filters in each layer. As a result, we
ended up with the number of layers and filters speci-
fied in Figure 5.

Input
70x112x112

Output

C )
x32 x64 x128 X256 x256 x1024
Conv3D + MaxPooling3D Flatten FC Softmax

Figure 5: Model architecture based on reduced Conv3D for
video classification.

Conv2DLstm-based Architecture. We brought
Conv2DLSTM into consideration and constructed a
simpler architecture based on this type of layer to
compare, as is shown in Figure 6. These have convo-
lutional structures in both the input-to-state and state-
to-state transitions of an LSTM, making the input size
of the cell to be a 3D tensor where the last two dimen-
sions are spatial, representing the rows and columns
(Shi et al., 2015) and taking into account spatial and
temporal dimensions. This type of layer is denomi-
nated as Conv2DLstm in TensorFlow framework.
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Figure 6: Model architecture based on simple
Conv2DLSTM layer for video classification.

4.4 Performance Evaluation

In order to know the computational effective time of
prediction of each model, we calculated the elapsed
time each model spent on predicting a unit of their
correspondent classification target; this means that,
for an image classification model, we measure the
time it takes to predict one image and, for a video
classification model, the time it takes to predict a
video. To compare between models, we divided
the resulted times from video-based models by their
sequence length to have the time of prediction per
frame. These tests were run on a server with a GPU
Nvidia Tesla T4 with 16GB with no optimization
methods.

Besides, we developed a script to perform ‘“real-
time” inference. It makes predictions on a specific
video or a camera input directly, allowing the insta-
llation of this distraction detection models in a real
scenario. The interface shows the prediction score of
each of the classes through a bar graph (see Figure 7).

We implemented this system in a driving simula-
tor to test the models, also made inference on some
videos not included in any of the training data splits;
this way, some qualitative appreciations on models
performance could be done.

5 RESULTS

Dataset. When generating the sub-datasets, even
though the original material is the same, when ex-
porting to images and videoclips, images end up with
a greater number of observations. As seen in Table
1, for the image sub-dataset there is a big difference
in the number of examples compared to any of the
videoclip sub-datasets. However, for video analysis,
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Figure 7: Comparison of inference on video with image-based and video-based models.

Table 2: Action recognition inference accuracy and computational performance (milliseconds per frame) with image and
video-based models. For video-based models, the total time of inference of one video is also presented.

Data Model Top-1 Accuracy. (%) Computational effective time (ms/f)
30-frame videoclips MobileNetV1 + LSTM 97,3% 96,73ms - (3,22ms/frame)
Conv3D-Based 97,2% 62,48ms - (2,08ms/frame)
Conv2DLSTM-Based 95,8% 93,48ms - (3,12ms/frame)
50-frame videoclips MobileNetV1 + LSTM 96,0% 133,63ms - (2,67ms/frame)
Conv3D-Based 95,6% 64,45ms - (1,29ms/frame)
Conv2DLSTM-Based 95,8% 136,87ms - (2,78ms/frame)
70-frame videoclips MobileNetV1 + LSTM 95,7% 197,69ms - (2,81 ms/frame)
Conv3D-Based 95,5% 73,55ms - (1,05ms/frame)
Conv2DLSTM-Based 93,5% 171,13ms - (2,45ms/frame)
Images MobileNetV1-Based 99,5 % 41,79ms/frame
InceptionV3-Based 99,3% 52,00ms/frame

this version of the DMD still offers a decent amount
of videos, the smallest being 2404 videoclips.

Looking at Figure 2, is clear that the material dis-
tribution among classes is not balanced. To give an
example, the activity “5.Operating the Radio” has a
very low representation in the dataset compared to
“0.Safe Driving”. This is also reflected in test data
split, meaning that some classes have more observa-
tions for testing than others.

Image Approach. Models for image recognition
achieve better results in accuracy compared to video-
based models, as can be seen in Table 2. The best
accuracy was given by the MobileNet-based model
with 99,5% on the test split. Also, the same ar-
chitecture but with InceptionV3 as feature extractor
achieved a very close result. This shows that trans-
fer learning techniques work very well on this prob-
lem, meaning that the representation learnt from ima-
ges from ImageNet help and potentiate the analysis
on the DMD.

Due to a slight difference in performance, Mo-
bileNet has proven to be a lighter network that can
predict faster than InceptionV3.

Video Approach. The best model, in terms of accu-
racy, is the MobileNet + LSTM model trained with
30-Frame videoclips, having an accuracy of 97,3%.
The Conv2DLSTM was always last on the list, with
the lowest accuracy results for the 3 sequence lengths.

Transfer learning have also enhanced our Mo-
bileNetV1 + LSTM model; this can be evidenced
by comparing results with the more basic and
convolutional-based neural network: conv2DLSTM.
These two models, in the end, share the same archi-
tecture, a convolutional network module to process
spatial information followed by an LSTM module for
temporal information.

Video-based models have a lower accuracy com-
pared with image-based models. Important to also no-
tice that, as the sequence length increases, the accu-
racy decreases; this could indicate that the activities
analysed are not very time dependent and that image-
based algorithms could be enough for action recogni-
tion.

5.1 Qualitative Results

For video-based models, “Drinking” activity is often
confused with “Hair&Makeup” (as illustrated in Fi-
gure 7a). Also this models seemed to be more con-
fident when predicting the “Operating the Radio” ac-
tivity than image-based (as illustrated in Figure 7b).
When performing “Drinking” and
“Hair&Makeup” activities, drivers sometimes
hold the corresponding objects at wheel level, this
causes that the network misclassifies them as “Safe
Driving” or “Text Left/Right”Is hard even for
humans to determine the exact end of an activity and
the beginning of another. The DMD had followed an
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annotation criteria that define these limits and with
which the model must be consequent with its predic-
tions; but still, there are moments of ambivalence and
doubt of when the network should start classifying
a certain movement as a specific activity. Besides,
some unintentional movements of drivers activate
some classes, confusing the network.

5.2 Computational Performance

MobileNet is known to be more efficient since it has
fewer parameters and computations. This behaviour
is observed when compared with InceptionV3 models
in image classification context; however, when added
a LSTM layer for video classification, it becomes the
least efficient video-based option among the architec-
tures considered.

Image-based models might have better accuracy
in this study, but video-based models had shown
to be computationally more feasible. It is impor-
tant to highlight that Conv3D-based models present
a decrease of 2-4% in accuracy compared with the
MobileNetV1-Based model; but at the same time,
they have a major reduction of their computational
effective time compared to the image-based models.
It is clear that sacrificing a couple of points in accu-
racy and winning in computational performance is
a great trade-off to consider. These are the reasons
why video-based, specially Conv3D-based, models
are considered the best option to implement in a real-
context scenario.

6 DISCUSSION AND FUTURE
WORK

This first experiment of distracted driver detection
with the DMD opens possibilities of future research
in this field, raises issues that deserve discussion and
whose definition is crucial to further investigations:

e How much variation in human-pose within an ac-
tion performance is considered being better ana-
lysed by video-based algorithms or image-based?
Leaving us with the next point:

e Can an image-based algorithm generalize all vari-
ations of an activity? Meaning that the action it-
self implies changes in time, like body-pose vari-
ations. Can an image-based approach recognize
that the activity of drinking includes two distinct
body positions?: “lifting the bottle” and “holding
the bottle up” on the head for drinking.

e How much distance must exist between two ac-
tions to be identified differently? Is the ac-
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tivity “Texting Left” divergent enough to “Tex-
ting Right”?.  Also, the activities that share
the same starting movement like “Drinking” and
“Hair&Makeup”, which is “lifting”, could be
hardly distinguishable at the beginning. This last
takes us to the next issue:

e What actions can be decomposed into atomic ac-
tions like “Lifting”, which can be a sub-action
of “Drinking” or “Hair&Makeup”; or “Holding
object”, that could be extracted from “Texting-
left/right” activities.

e Then, again, which actions are more appropriate
to be analysed from videos and which from still
images?. “Lifting” and “Leaving aside” are order
or time-dependant. These two activities can not
be differentiated from an image, it requires a se-
quence of frames to determine the action.

e What actions can be supported by object
recognition or human-pose detection.  Acti-
vities like “Drinking” can be separated from
“Hair&Makeup” if the bottle presence on the
scene is considered as well as the hair comb’s.
Also, “Radio” activity might be better recognized
if human-pose was an input.

e Wishing on taking this exercise to a larger scale,
how many activities must be considered to accom-
plish a complete driver distraction monitoring?.
Or, what changes the course of this exploration:

e Can driver monitoring be only based on 2 classes
to discriminate between “Safe driving” and “Not
safe driving”? Where the latter would cover the
list of activities presented on this paper and any
other that the driver performs that is outside limits
of safeness.

To further explore the advantages of this dataset, the
inclusion of the other 2 camera perspectives (Hands
and face cameras) to the analysis and the depth and in-
frared channels of information, can be contemplated.
The extraction of manual features before classifica-
tion, pre-processing like the calculation of the opti-
cal flow or object detection, are some strategies we
believe are worth trying and are workable with the
DMD.

7 CONCLUSIONS

In this study, we have tested different model archi-
tectures of image and video classification for an ac-
tion recognition task, including transfer learning tech-
niques. The results obtained suggest that distraction
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detection gets a better outcome when applying image-
based solutions. However, when computational per-
formance must be taken into account, video-based
neural networks are more feasible, especially models
with 3D convolutions. We have demonstrated the
possibilities the DMD offers to the scientific commu-
nity, extending the discussion for better solutions to
action recognition problems applied to a driver mo-
nitoring context. Finally, we share some thoughts on
some issues this line of research might encounter and
propose some future work with the DMD.
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