
Latent Video Transformer

Ruslan Rakhimov1,∗, Denis Volkhonskiy1,∗, Alexey Artemov1, Denis Zorin1,2 and Evgeny Burnaev1

1Skolkovo Institute of Science and Technology, Moscow, Russia
2New York University, New York, U.S.A.

Keywords: Video Generation, Deep Learning, Generative Adversarial Networks.

Abstract: The video generation task can be formulated as a prediction of future video frames given some past frames. Re-
cent generative models for videos face the problem of high computational requirements. Some models require
up to 512 Tensor Processing Units for parallel training. In this work, we address this problem via modeling
the dynamics in a latent space. After the transformation of frames into the latent space, our model predicts
latent representation for the next frames in an autoregressive manner. We demonstrate the performance of our
approach on BAIR Robot Pushing and Kinetics-600 datasets. The approach tends to reduce requirements to
8 Graphical Processing Units for training the models while maintaining comparable generation quality.

1 INTRODUCTION

Video prediction and generation is an important prob-
lem with a lot of down-stream applications: self-
driving, anomaly detection, timelapse generation
(Nam et al., 2019), animating landscape (Endo et al.,
2019) etc. The task is to generate the most probable
future frames given several initial ones.

Recent advances in generative learning allow gen-
eration of realistic objects with high quality: im-
ages, text, and speech. However, video generation
is still a very challenging task. Even for short videos
(16 frames) of low resolution, neural networks require
up to 512 Tensor Processing Units (TPUs) (Luc et al.,
2020) for parallel training. Despite this, the quality of
the generated video remains low.

In this work, we introduce a Latent Video Trans-
former. We combine the idea of representation learn-
ing and recurrent video generation. Instead of work-
ing in pixel space, we conduct the generation process
in the latent space. Our model tends to significantly
reduce computational requirements without signifi-
cant deterioration in quality.

The key novelty in our model is the usage of a
discrete latent space (van den Oord et al., 2017). It
allows us to represent each frame as a set of indices.
Thanks to discrete representation we can use autore-
gressive generative models and other approaches from
natural language processing.

*Equal contribution

We analyzed the results of our model on two
datasets: BAIR Robot Pushing (Ebert et al., 2017)
and Kinetics 600 (Carreira et al., 2018). On both
datasets, we obtained quality comparable to state-of-
the-art methods.

To summarize, our contributions are as follows:

• We proposed a new autoregressive model for
video generation, that works in the latent space
rather than pixel space;

• We reduced computational requirements compar-
ing to previously proposed methods.

2 RELATED WORK

2.1 Video Generation

Video generation is a long-standing problem. One can
formulate it in different ways. Future video predic-
tion, unconditional video synthesis or video to video
translation (Wang et al., 2018a; Pan et al., 2019; Wang
et al., 2019). There exist other rare setups like gener-
ating video from one image (Shaham et al., 2019).
Video prediction and unconditional video synthesis
have been addressed for a long time and the solutions
include recurrent models (Finn et al., 2016a; Wang
et al., 2018b; Wang et al., 2018c; Byeon et al., 2018),
VAE-based models (Denton and Fergus, 2018a; Den-
ton et al., 2017; Lee et al., 2018; Hsieh et al., 2018;
Denton and Fergus, 2018b), autoregressive models

Rakhimov, R., Volkhonskiy, D., Artemov, A., Zorin, D. and Burnaev, E.
Latent Video Transformer.
DOI: 10.5220/0010241801010112
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP, pages
101-112
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

101



(Ranzato et al., 2014; Srivastava et al., 2015; Xingjian
et al., 2015; Kalchbrenner et al., 2017; Weissenborn
et al., 2019; Ho et al., 2019), normalizing flows (Ku-
mar et al., 2019), GANs (Mathieu et al., 2015; Von-
drick et al., 2016; Saito et al., 2017; Tulyakov et al.,
2018; Acharya et al., 2018; Saito and Saito, 2018;
Clark et al., 2019; Luc et al., 2020) and optical flow
(Patraucean et al., 2015; Ohnishi et al., 2018).

In the first attempts, fully deterministic models
have been used. Later generative models were ap-
plied. Similar to image generation, video genera-
tive models inherited similar benefits and drawbacks.
Variational autoencoder (VAE)-based models try to
model videos in latent space but produce blurry re-
sults. Later GANs were applied to address those is-
sues, but they suffer from mode-dropping behavior.
Some models (Lee et al., 2018) try to combine VAE
and GANs.

The recent state-of-the-art approaches DVD-
GAN-FP (Clark et al., 2019) and its modification
TRIVD-GAN-FP (Luc et al., 2020) follow the success
of BigGAN (Brock et al., 2018). They use 2D resid-
uals blocks for independent frames prediction with
Convolutional Gated Recurrent units between frames.

Another branch of generative models is autore-
gressive (AR) models. PixelCNN (Van den Oord
et al., 2016; Salimans et al., 2017) generates new im-
ages by producing a new pixel value conditioning on
previous (seen, already generated) ones in the raster-
scan order. Later, PixelSnail (Chen et al., 2017) in-
creased the quality of generated samples by utilizing
an attention mechanism. Recently, such an approach
was applied to video generation (Kalchbrenner et al.,
2017; Weissenborn et al., 2019). The latest work,
Video Transformer (Weissenborn et al., 2019), uti-
lizes autoregressive video generation along with sub-
scaling (Menick and Kalchbrenner, 2018) and atten-
tion mechanism (Vaswani et al., 2017).

The main challenge of AR models is a genera-
tion speed. Even though the latest AR model (Video-
Transformer (Weissenborn et al., 2019)) applied the
subscaling mechanism (Menick and Kalchbrenner,
2018), introduced block-local attention, the genera-
tion speed is still quite slow.

Also, DVD-GAN-FP, TRIVD-GAN-FP, Video
Transformer (VT) — they are all suffering from sig-
nificant resource requirements, even for generating
low-resolution video with frames of size 64x64. For
instance, VT needs 128 TPUs and 1M steps for train-
ing.

Our work is in the field of autoregressive mod-
els and follows the setup of VideoTransformer (Weis-
senborn et al., 2019). The key novelty is that we miti-
gate GPU memory consumption and accelerate infer-

ence speed by working in a discrete latent space.

2.2 Discrete Latent Space

Autoencoder is a neural network trained in a self-
supervised manner. Autoencoder takes an input (im-
age, text, audio, etc.) and transfers (encodes) it into
a more compact latent representation. The learning
consists of finding such an encoder and decoder so
that we can encode and decode the input as closely as
possible.

Usually, latent space is continuous. However,
some works like VQ-VAE (van den Oord et al., 2017),
VQ-VAE2 (Razavi et al., 2019) model it as discrete
with a categorical distribution inside. They demon-
strated good reconstruction and generation quality.
As generating from uniform distribution directly pro-
duced inferior results, autoregressive models were ap-
plied to learn the prior inside the latent space.

We follow this pipeline but for video modeling.
First, encoding conditioning frames to discrete latent
space, generate new (latent) frames using an autore-
gressive model, and decode the generated frames back
to pixel space. Parallel to this work, a similar pipeline
was applied to audio generation (Jukebox (Dhariwal
et al., 2020)).

Discrete latent space also occurred to be useful in
other works. Discrete quantization was added to a dis-
criminator in GAN (Zhao et al., 2020). (Kaiser et al.,
2018) uses discrete variables to increase the speed of
the autoregressive model for neural machine transla-
tion.

3 LATENT VIDEO
TRANSFORMER

Consider a video X to be a sequence of T frames
{xt}T

t=1. Each frame xt ∈ RH×W×3 has height H,
width W and 3 RGB channels. Given the first T0
frames, the goal is to generate the remaining T −T0
frames. For this purpose, we propose a model: Latent
Video Transformer (LVT). In general, it consists of
two parts: a frame autoencoder and an autoregressive
generative model.

We use the frame autoencoder to learn a compact
latent representation so that we can transfer the task
of video modeling from the pixel space to the latent
space. The recurrent model is then used for generat-
ing new frames. The key novelty compared to exist-
ing models that operate in the latent space is a dis-
crete structure of the latent space. Discrete represen-
tation helps us to use autoregressive generative mod-
els and other approaches, tailored for working for dis-

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

102



crete data, e.g. those used for natural language pro-
cessing.

3.1 Frame Autoencoder

We train a frame autoencoder to transfer individual
images (frames) to latent space. The particular choice
of the autoencoder is VQ-VAE (van den Oord et al.,
2017) — variational autoencoder with discrete latent
space.

VQ-VAE (see Fig. 1) learns to encode an in-
put image x ∈ RH×W×3 using a codebook e ∈ RK×D,
where K denotes the codebook size (i.e., latent space
is K-way categorical) and D represents the size of an
embedding in the codebook.

In general VQ-VAE consists of an encoder which
encodes the image into more compact representation
E(x) = ze(x) ∈Rh×w×D; a bottleneck, that discretizes
each pixel by mapping it to its nearest embedding ei
from the codebook and produces z(x) ∈ [K]h×w×1; a
decoder D takes as input discrete latent codes z(x),
maps indexes to corresponding embeddings, and de-
codes the result of mapping zq(x) ∈ Rh×w×D back to
input pixel space.

VQ-VAE is trained with the following objective:

L = ‖x−D(zq(x))‖2 +‖ze(x)− sg[e]‖2, (1)

where sg[] is the stop gradient operator, which re-
turns its argument during the forward pass and zero
gradients during backward pass. The first term is a
reconstruction loss, and the second term is regulariza-
tion term to make the encodings less volatile. We use
EMA updates over the codebook variables.
Decomposed Vector Quantization. If the size K of
the codebook e is large, then the model tends to index
collapse. It means that some embedding vector ei is
close to a lot of encoders outputs. In this case, it re-
ceives a strong update signal (Kaiser et al., 2018). As
a result, the model would use only a limited number
of vectors from e.

In order to overcome this issue, we exploit Sliced
Vector Quantization (Kaiser et al., 2018). We intro-
duce several codebooks {e j ∈ RK×D/nc}nc

j=1 and split
the output of encoder ze(x) along the channel dimen-
sion into nc parts with individual codebook per each
part (see Figure 1). The output from discretization
bottleneck in this case is z ∈ [K]h×w×nc .

3.2 Latent Video Generator

Frame encoder transforms the first T0 frames to a dis-
crete representation Z0 ∈ [K]T0×h×w×nc .

The autoregressive model is used to generate new
T −T0 frames conditioned on Z0. As such model, we
use the Video Transformer (Weissenborn et al., 2019),
autoregressive video generative model, but apply it in
the latent space in contrast to the pixel space in the
original paper. Next, we describe the architecture of a
video transformer. We refer to a latent representation
of a video as latent video and individual elements of
it as latent frames and pixels. For exhaustive architec-
ture details, we refer the reader to the original paper
(Weissenborn et al., 2019).

The model takes as input a tensor Z ∈ [K]T×h×w×nc

and primes the generation process on first T0 given la-
tent frames, i.e. Z:T0,:,:,: = Z0. The other latent frames
could be randomly filled as the generation process is
conditioned only on already generated or priming pix-
els.

First, the model utilizes the idea of subscaling
(Menick and Kalchbrenner, 2018): let’s generate a la-
tent video as a sequence of non-overlapping slices.
After defining a subscale factor s = (st ,sh,sw), it di-
vides latent video into s = stshsw slices of size T/st×
h/sh ×w/sw. The generation process happens slice
by slice, pixel by pixel inside one slice, channel by
channel for one pixel:

p(Z) =
T hw−1

∏
i=0

nc−1

∏
k=0

p
(

Zk
π(i)|Zπ(<i),Z

<k
π(i)

)
(2)

Pixels in each slice Z(a,b,c) are generated in raster-
scan order and slices are generated in the subscale or-
der: Z(0,0,0),Z(0,0,1), . . . ,Z(st−1,sh−1,sw−1).

The model follows the original Transformer
(Vaswani et al., 2017) and consists of an encoder and
a decoder. To generate a new pixel value inside slice
Z(a,b,c), firstly, the encoder outputs the representation
of already generated slices Z<(a,b,c). This representa-
tion goes to the decoder, which mixes it with a rep-
resentation of already generated pixels inside a cur-
rent slice Z(a,b,c). This autoregressive order is pre-
served by padding input latent video inside the en-
coder, and masking used in convolutions and atten-
tion inside the decoder. After generating a new pixel
value, we replace the respective padding with the gen-
erated output and repeat the generation process recur-
sively. The generation process in case of spatiotem-
poral (st > 0,sh > 0,sw > 0) subscaling can be seen at
Fig. 2.

Finally, when the generation process is done, the
latent frame decoder takes as input Z ∈ [K]T×h×w×nc

(now all values are valid), maps it to already learned
embeddings Zq ∈ RT×h×w×D and decodes it back
frame by frame to an original pixel space X ∈
RT×H×W×3.

Latent Video Transformer

103



Copy gradients

... ... ... ...

NNE D

Figure 1: Frame autoencoder architecture. An input image is passed through the encoder and split along the channel dimension
into nc = 4 parts. Then we map pixels in each part to the corresponding nearest embeddings in the codebook. These nearest
embeddings are then passed as an input to the decoder.

1 9 2 10

17 25 18 26

3 11 4 12

19 27 20 28

33 41 34 42

49 57 50 58

35 43 36 44

51 59 52 60

5 13 6 14

21 29 22 30

7 15 8 16

23 31 24 32

37 45 38 46

53 61 54 62

39 47 40 48

55 63 56 64

One-hot

Conv3D
stride = (st, sh, sw)

Self-Attention

Layernorm

MLP

41 42

43 44

45 46

47 48

E
nc

od
er

D
ecoder

Select pixel

Embed

Masked Conv3D

Masked 
Self-Attention

Layernorm

MLP

Channel
Predictor

Figure 2: Video Transformer adapted to latent codes. Num-
bers represent generation order. Pixels are colored if they
are already generated. White-colored pixels are zero-
padded. Pixels with the same color belong to the same slice.
The example represents the generation of the last pixel of
slice Z(1,0,1) for a latent video of size (t,h,w) = (4,4,4)
and (st ,sh,sw) = (2,2,2).

4 EXPERIMENTS

4.1 Experimental Setup

We model the videos of length T = 16 and spatial size
64×64 similar to the setup of prior works in this field
(Clark et al., 2019; Weissenborn et al., 2019).
Measures of Quality. Video prediction is a chal-
lenging problem, as there are many possible future
outcomes for given conditioning frames. There-
fore conventional metrics as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) that require ground truth correspondence
were later displaced by the better-suited metric —

Fréchet Video Distance (FVD) (Heusel et al., 2017).
FVD applies idea from Fréchet Inception Distance
(Heusel et al., 2017) for videos and computes Fréchet
distance between real and generated samples based on
statistics calculated on logits from action-recognition
Inception3D network trained on Kinetics-400 (Kay
et al., 2017) dataset. The metric was shown to bet-
ter correlate with human perception, than previously
used ones.

We also report bits per dimension1 (bits/dim) —
negative log2-probability averaged across all gener-
ated (latent) pixels and channels.
Frame Autoencoder. The encoder contains two
strided convolutional layers with ReLU activation
function, stride 2 and kernel size 4× 4, followed by
a convolution layer with kernel size 3× 3, the same
padding, followed by two residual blocks (ReLU,
3× 3 conv, ReLU, 1× 1 conv). The decoder has a
symmetrical structure containing two residual blocks,
followed by two transposed convolutions with stride
2 and window size 4× 4. For Kinetics-600 dataset,
we use four residual blocks instead of two both in en-
coder and decoder.

In our experiments we explore two setups for the
codebook structure: (the default one) nc = 1, K = 512
and nc = 4, K = 2048. The embedding dimension
inside codebook is D = 256. The encoder and dis-
cretization bottleneck converts 64× 64× 3 RGB im-
age into 16×16×nc discrete latent codes indices.

We trained VQ-VAE using Adam optimizer with
learning rate 0.0003 for 500K steps in case of BAIR
Robot pushing dataset and 1M steps in case of

1Due to the nature of frame autoencoder, it is not possi-
ble to compute bits/dim directly. We provide bits/dim in the
latent space. Other works provide this metric for the pixel
space. One can consider bits/dim in the latent space as the
lower bound to real bits/dim on images.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

104



Kinetics-600 dataset using a batch of 32 images.
Latent Video Generator. As no public code was
available, Video Transformer implementation was
written from scratch using the setup of a medium size
model and following the implementation and training
details from the original paper (Weissenborn et al.,
2019).

Different from the original transformer, an atten-
tion block in the encoder and the decoder is not block-
local and spans across the whole input. It is possible
due to the reduction of the input size via VQ-VAE.
In almost all our experiments we also compare differ-
ent subscaling types: (i) spatiotemporal (s= (4,2,2)),
(ii) spatial (s = (1,2,2)), and (iii) single frame (s =
(T,1,1)).

Each model was trained on 8 Nvidia V100 GPUs
for two days for 600K steps. Sampling one video of
16 frames with 5 priming frames takes about 30 sec-
onds on 1 Nvidia V100 GPU, compared to one minute
used by the original Video Transformer (Weissenborn
et al., 2019). The approximate size of a latent video
generator is 50M parameters.

We provide quantitative and qualitative results on
two datasets: BAIR Robot Pushing (Ebert et al.,
2017) and Kinetics 600 (Carreira et al., 2018).

4.2 BAIR Robot Pushing

BAIR Robot Pushing (Ebert et al., 2017) dataset con-
sists of 40K training and 256 test videos of robotic
arm motion with a fixed camera position. First,
we evaluate the VQ-VAE’s reconstruction error with
varying number of codebooks used inside the dis-
cretization bottleneck. We provide mean squared er-
ror (MSE) and FVD for reconstructed videos of 16
frames length (see Table 1).

Table 1: VQ-VAE performance on BAIR Robot Pushing
dataset.

nc MSE(↓) FVD(↓)
1 0.0016 222.71
4 0.0004 47.41

In terms of video prediction, following the setup
of previous approaches (Weissenborn et al., 2019;
Clark et al., 2019; Luc et al., 2020), we train video
generator conditioning on one frame and report met-
rics for videos of 16 frames. FVD and bits/dim are
computed on videos with five priming frames and one
priming frame accordingly (see Table 2). We report
the mean and standard deviations of 10 runs.

It can bee seen that both VQ-VAE and Video
Transformer demonstrate better accuracy when us-
ing four codebooks inside the discretization bottle-
neck. Preliminary experiments showed that a further

increase of the number of codebooks would lead to
overfitting. Finally, we compare our approach to oth-
ers (see Table 3). We also provide the baseline solu-
tion: what if we take the last ground truth frame and
use it as a prediction for all future frames.

We achieve comparable performance in compari-
son to other methods. We also provide samples for
qualitative assessment (see Fig 3).

4.3 Kinetics-600

Kinetics-600 (Carreira et al., 2018) dataset consists
of 350k train and 50k test videos. There are 600
classes presented. Following the setup of previous
approaches (Weissenborn et al., 2019; Clark et al.,
2019; Luc et al., 2020), we cropped each video to
the size of the smallest side. Then we resized them
to 64× 64 using Lanczos filter. First, we evaluate
the VQ-VAE’s reconstruction error with varying num-
ber of codebooks used inside the discretization bottle-
neck. For that, we provide mean squared error (MSE)
and FVD for reconstructed videos of 16 frames (see
Table 4).

VQ-VAE with four codebooks outperforms in
terms of both metrics, and therefore later, we conduct
the experiments under only this setup as the evalua-
tion time for Kinetics-600 is particularly significant
due to the large size of test data.

In terms of video prediction, following the setup
of previous approaches (Weissenborn et al., 2019;
Clark et al., 2019; Luc et al., 2020), we train the video
generator conditioning on one frame and report met-
rics for videos of 16 frames. FVD and bits/dim are
computed on videos with five priming frames and one
priming frame accordingly (see Table 5).

We compare our approach to others (see Table 6).
Here the baseline is the prediction of the next frame
by the previous known frame.

Our results are inferior to others on this dataset.
We conclude that it is caused by error accumulation
inside the Transformer model. We link it to the high
complexity and diversity of the Kinetics-600 dataset.
We want to emphasize that only four other approaches
tried to model videos from this dataset, and all of them
use six times bigger generative models (up to 350M
parameters) than ours. In the meantime, increasing
the size of our model led to a very slow convergence.

We also provide samples from our model for qual-
itative assessment (see Fig. 4). One can notice arti-
facts in the second video. We found approximately
half of the videos to be good and half of the videos to
have artifacts. We provide more visualization results
in the Appendix.

Latent Video Transformer

105



Table 2: Video prediction performance on BAIR Robot Pushing dataset. Best results in bold.

Subscaling type nc Bits/dim(↓) FVD(↓)
Single Frame 1 1.28 258.89±2.85
Spatial 1 1.79 524.43±9.41
Spatiotemporal 1 1.25 275.71±5.41
Single Frame 4 1.53 125.76±2.90
Spatial 4 2.99 920.37±7.71
Spatiotemporal 4 1.62 145.85±1.68

Table 3: Comparison of different methods for video prediction on BAIR Robot Pushing dataset.

Method bits/dim(↓) FVD(↓)
Baseline - 320.90
VideoFlow (Kumar et al., 2019) 1.87 -
SVP-FP (Denton and Fergus, 2018c) - 315.5
CDNA (Finn et al., 2016b) - 296.5
LVT (ours, nc = 1) 1.25 275.71±5.41
SV2P (Denton and Fergus, 2018a) - 262.5
LVT (ours, nc = 4) 1.53 125.8±2.9
SAVP (Lee et al., 2018) - 116.4
DVD-GAN-FP (Clark et al., 2019) - 109.8
TriVD-GAN-FP (Luc et al., 2020) - 103.3
Axial Transformer (Ho et al., 2019) 1.29 -
Video Transformer (Weissenborn et al., 2019) 1.35 94±2

Figure 3: Samples from BAIR Robot Pushing dataset. Each row represents a single video with first 5 frames being real and
others generated.

Figure 4: Samples from Kinetics-600 dataset. Each row represents a single video with first five frames being real and others
generated.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

106



0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fr
eq

ue
nc

y,
 %

Figure 5: Sorted codes frequencies for BAIR Robot Pushing dataset.

Table 4: VQ-VAE performance on Kinetics-600 dataset.

nc MSE(↓) FVD(↓)
1 0.002 396.58
4 0.0004 25.95

Table 5: Video prediction performance on Kinetics-600
dataset. Best results in bold.

Subscaling type nc Bits/dim(↓) FVD(↓)
Single Frame 4 2.14 224.73
Spatial 4 4.22 2845.06±612.07
Spatiotemporal 4 2.47 338.39±0.21

4.4 Ablation Study of Attention

The Video Transformer contains memory and time
costly operation of multi-head attention. In general
case multi-head attention computes feature yq as:

yq =
M

∑
m=1

Wm

[
∑

k∈Ωq

Am (xq,xk)�Vmxk

]
, (3)

where m,q,k are the indexes of attention head,
query and key elements respectively. Wm and Vm are
learnable matrices. Am computes the attention weight
for an each key element. We also normalize attention
weights, s.t. ∑k∈Ωq Am (q,k,zq,xk) = 1.

In our default setup, the attention weights are
computed as:

Am (xq,xk) ∝ exp
(

x>q Q>mKmxk +bkq

)
, (4)

where Qm,Km are learnable matrices for retrieving
key and content embeddings, and bkq is computed as
the sum of per-dimension relative distance biases be-
tween pixels k and q. We would refer to this type of
attention as “query-key + relative distance”.

We also explore two other variants:
• “key + relative distance”: Am (xq,xk) ∝

exp
(
u>mKmxk +bkq

)
, where um is a lernable

vector,
• “relative distance only”: Am (xq,xk) ∝ exp

(
bkq
)
.

The empirical comparison of these different types
of attention can be seen at Table 7.

Similar to (Zhu et al., 2019) we find that query-
key term inside self-attention module does not play a
crucial role in the success of Latent Video Generator
and can be replaced with cheaper variants with a cost
of slight quality reduction.

4.5 Adaptive Input and Adaptive
Softmax

We analyzed how often each latent code from the
codebook was used for encoding images from train
videos in BAIR Robot Pushing dataset. We found
that 218 latent codes out of 512 constitute the 80%
of probability mass (see Fig. 5). Based on this
fact, we tried to improve metrics using Adaptive In-
put (Baevski and Auli, 2018) and Adaptive Softmax
(Grave et al., 2017). Neither of them brings an im-
provement to quality (see Table 8), despite their suc-
cessful applications in natural language processing.
For an interested reader, we refer to the original pa-
pers for particular details.

4.6 BAIR Visualizations

We present visualizations of BAIR robot pushing
dataset in Fig. 6. At the first row of each figure there
is a video: 5 real and 11 generated frames. Rows 2-5
contain codes visualizations. Each code row corre-
sponds to one codebook. Since a single code is just
a matrix of indexes, we decode it with a technique
called indexed color. In other words, we assigned
each index in a code to a specific color. Rows 6-9 rep-
resent binary mask denoting whether the latent code
between consecutive frames changes or not (yellow
means a change).

One can see that results on the BAIR dataset are
quite realistic. Also, it is important to note that some
of the codes stay the same from frame to frame. The
static background causes it. Codes that are responsi-
ble for non-static objects change from frame to frame.

4.7 Kinetics-600 Visualizations

We present good samples along with codes on the
Kinetics-600 dataset in Fig. 7. Bad samples with
codes are presented in Fig. 8. One can see that bad
samples and good samples are different in their codes
and code differences. For latent transformer, it is eas-
ier to predict the latent code of the next frame if it is
similar to the latent code of the current frame.

Latent Video Transformer

107



Figure 6: Sample from BAIR robot pushing dataset. The first row represents a single video with the first five frames being
real and others generated. Rows 2-5 represent four latent codes, one row for each codebook. Rows 6-9 represent binary mask
denoting whether the latent code between consecutive frames changes or not (yellow means a change).

Figure 7: Good sample from Kinetics-600 dataset. The first row represents a single video with the first five frames being real
and others generated. Rows 2-5 represent four latent codes for real video, one row for each codebook. Rows 6-9 represent
binary mask denoting whether the latent code between consecutive frames changes or not (yellow means a change). Rows 10-
13 represent four latent codes for generated video, one row for each codebook. Rows 14-17 represent binary mask denoting
whether the latent code between consecutive frames changes or not (yellow means a change).

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

108



Figure 8: Bad sample from Kinetics-600 dataset. The first row represents a single video with the first five frames being real
and others generated. Rows 2-5 represent four latent codes for real video, one row for each codebook. Rows 6-9 represent
binary mask denoting whether the latent code between consecutive frames changes or not (yellow means a change). Rows 10-
13 represent four latent codes for generated video, one row for each codebook. Rows 14-17 represent binary mask denoting
whether the latent code between consecutive frames changes or not (yellow means a change).

Table 6: Comparison of different methods for video prediction on Kinetics-600 dataset.

Method Bits/dim(↓) FVD(↓)
Baseline - 271.00
LVT (ours) 2.14 224.73
Video Transformer (Weissenborn et al., 2019) 1.19 170±5
DVD-GAN-FP (Clark et al., 2019) - 69.15±1.16
TriVD-GAN-FP (Luc et al., 2020) - 25.74±0.66

Table 7: Attention comparison on BAIR Robot Pushing dataset. The results are obtained using the model with a single frame
subscaling type modeling the latent space with nc = 4 codebooks.

attention type Bits/dim(↓) FVD(↓) params (M) inference time (sec)
query-key + relative distance 1.53 125.76±2.90 49.87 35
key-only + relative distance 1.57 130.27±4.26 41.50 32
relative distance only 1.58 141.62±4.34 33.09 30

5 CONCLUSION

In this work, we tackled the video generation prob-
lem. Given several first frames, the goal was to pre-
dict the continuation of a video. Modern methods

for video generation requires up to 512 Tensor Pro-
cessing Units for parallel training. We were focused
on the reduction of the computational requirements
of the model. We showed that one could achieve
comparable results on video prediction by training

Latent Video Transformer

109



Table 8: Effects of applying adaptive input / softmax in decoder architecture. The results are obtained using the model with a
single frame subscaling. Latent space is modelled with nc = 1.

Subscaling type Decoder Input Decoder Output Bits/dim(↓) FVD(↓)
Single Frame 128d Embedding 512d Softmax 1.28 258.89±2.85
Spatial 128d Embedding 512d Softmax 1.79 524.43±9.41
Spatiotemporal 128d Embedding 512d Softmax 1.25 275.71±5.41
Single Frame 128d Embedding 512d Softmax (tied emb) 1.27 265.10±3.85
Single Frame Adaptive Input 512d Softmax 1.26 259.73±6.35
Single Frame 128d Embedding Adaptive Softmax 1.37 265.99±4.16
Single Frame Adaptive Input Adaptive Softmax 1.36 259.88±5.25
Single Frame Adaptive Input Adaptive Softmax (tied emb) 1.35 259.55±8.50
Single Frame Adaptive Input Adaptive Softmax (tied emb/proj) 1.34 264.79±4.27

a model using the usual research setup — 8 V100
GPUs. To achieve such a result, we moved the video
generation process from pixel space to a latent space.
We demonstrated decent results on the dataset BAIR
Robot Pushing. In the meantime, in some cases, we
observe visual artifacts on the Kinetics-600 dataset.
For future work, one can consider joint training of
Frame Autoencoder and Latent Video Generator.

ACKNOWLEDGEMENT

The authors acknowledge the usage of the Skoltech
CDISE HPC cluster Zhores for obtaining the results
presented in this paper. The authors were supported
by the Russian Science Foundation under Grant 19-
41-04109. They also acknowledge Vage Egiazarian
for thoughtful discussions of the model and the ex-
periments.

REFERENCES

Acharya, D., Huang, Z., Paudel, D. P., and Van Gool, L.
(2018). Towards high resolution video generation with
progressive growing of sliced wasserstein gans. arXiv
preprint arXiv:1810.02419.

Baevski, A. and Auli, M. (2018). Adaptive input represen-
tations for neural language modeling. arXiv preprint
arXiv:1809.10853.

Brock, A., Donahue, J., and Simonyan, K. (2018). Large
scale gan training for high fidelity natural image syn-
thesis. arXiv preprint arXiv:1809.11096.

Byeon, W., Wang, Q., Kumar Srivastava, R., and Koumout-
sakos, P. (2018). Contextvp: Fully context-aware
video prediction. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 753–
769.

Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., and
Zisserman, A. (2018). A short note about kinetics-
600. arXiv preprint arXiv:1808.01340.

Chen, X., Mishra, N., Rohaninejad, M., and Abbeel, P.
(2017). Pixelsnail: An improved autoregressive gen-
erative model. arXiv preprint arXiv:1712.09763.

Clark, A., Donahue, J., and Simonyan, K. (2019). Adver-
sarial video generation on complex datasets. arXiv
preprint arXiv:1907.06571.

Denton, E. and Fergus, R. (2018a). Stochastic video
generation with a learned prior. arXiv preprint
arXiv:1802.07687.

Denton, E. and Fergus, R. (2018b). Stochastic video gener-
ation with a learned prior. In International Conference
on Machine Learning, pages 1174–1183.

Denton, E. and Fergus, R. (2018c). Stochastic video
generation with a learned prior. arXiv preprint
arXiv:1802.07687.

Denton, E. L. et al. (2017). Unsupervised learning of dis-
entangled representations from video. In Advances in
neural information processing systems, pages 4414–
4423.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A.,
and Sutskever, I. (2020). Jukebox: A generative model
for music. arXiv preprint arXiv:2005.00341.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). Self-
supervised visual planning with temporal skip connec-
tions. arXiv preprint arXiv:1710.05268.

Endo, Y., Kanamori, Y., and Kuriyama, S. (2019). Animat-
ing landscape: self-supervised learning of decoupled
motion and appearance for single-image video synthe-
sis. arXiv preprint arXiv:1910.07192.

Finn, C., Goodfellow, I., and Levine, S. (2016a). Unsuper-
vised learning for physical interaction through video
prediction. In Advances in neural information pro-
cessing systems, pages 64–72.

Finn, C., Goodfellow, I., and Levine, S. (2016b). Unsuper-
vised learning for physical interaction through video
prediction. In Advances in neural information pro-
cessing systems, pages 64–72.

Grave, E., Joulin, A., Cissé, M., Jégou, H., et al. (2017). Ef-
ficient softmax approximation for gpus. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1302–1310. JMLR. org.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilib-
rium. In Advances in neural information processing
systems, pages 6626–6637.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

110



Ho, J., Kalchbrenner, N., Weissenborn, D., and Salimans,
T. (2019). Axial attention in multidimensional trans-
formers. arXiv preprint arXiv:1912.12180.

Hsieh, J.-T., Liu, B., Huang, D.-A., Fei-Fei, L. F., and
Niebles, J. C. (2018). Learning to decompose and
disentangle representations for video prediction. In
Advances in Neural Information Processing Systems,
pages 517–526.

Kaiser, Ł., Roy, A., Vaswani, A., Parmar, N., Bengio, S.,
Uszkoreit, J., and Shazeer, N. (2018). Fast decoding in
sequence models using discrete latent variables. arXiv
preprint arXiv:1803.03382.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Dani-
helka, I., Vinyals, O., Graves, A., and Kavukcuoglu,
K. (2017). Video pixel networks. In Proceed-
ings of the 34th International Conference on Machine
Learning-Volume 70, pages 1771–1779. JMLR. org.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C.,
Vijayanarasimhan, S., Viola, F., Green, T., Back, T.,
Natsev, P., et al. (2017). The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine,
S., Dinh, L., and Kingma, D. (2019). Videoflow: A
flow-based generative model for video. arXiv preprint
arXiv:1903.01434, 2(5).

Lee, A. X., Zhang, R., Ebert, F., Abbeel, P., Finn, C., and
Levine, S. (2018). Stochastic adversarial video pre-
diction. arXiv preprint arXiv:1804.01523.

Luc, P., Clark, A., Dieleman, S., Casas, D. d. L.,
Doron, Y., Cassirer, A., and Simonyan, K. (2020).
Transformation-based adversarial video prediction on
large-scale data. arXiv preprint arXiv:2003.04035.

Mathieu, M., Couprie, C., and LeCun, Y. (2015). Deep
multi-scale video prediction beyond mean square er-
ror. arXiv preprint arXiv:1511.05440.

Menick, J. and Kalchbrenner, N. (2018). Generating
high fidelity images with subscale pixel networks
and multidimensional upscaling. arXiv preprint
arXiv:1812.01608.

Nam, S., Ma, C., Chai, M., Brendel, W., Xu, N., and Kim,
S. J. (2019). End-to-end time-lapse video synthe-
sis from a single outdoor image. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 1409–1418.

Ohnishi, K., Yamamoto, S., Ushiku, Y., and Harada, T.
(2018). Hierarchical video generation from orthog-
onal information: Optical flow and texture. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Pan, J., Wang, C., Jia, X., Shao, J., Sheng, L., Yan, J., and
Wang, X. (2019). Video generation from single se-
mantic label map. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 3733–3742.

Patraucean, V., Handa, A., and Cipolla, R. (2015). Spatio-
temporal video autoencoder with differentiable mem-
ory. arXiv preprint arXiv:1511.06309.

Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert,
R., and Chopra, S. (2014). Video (language) mod-
eling: a baseline for generative models of natural
videos. arXiv preprint arXiv:1412.6604.

Razavi, A., van den Oord, A., and Vinyals, O. (2019). Gen-
erating diverse high-fidelity images with vq-vae-2. In
Advances in Neural Information Processing Systems,
pages 14837–14847.

Saito, M., Matsumoto, E., and Saito, S. (2017). Temporal
generative adversarial nets with singular value clip-
ping. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2830–2839.

Saito, M. and Saito, S. (2018). Tganv2: Efficient training of
large models for video generation with multiple sub-
sampling layers. arXiv preprint arXiv:1811.09245.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
(2017). Pixelcnn++: Improving the pixelcnn with dis-
cretized logistic mixture likelihood and other modifi-
cations. arXiv preprint arXiv:1701.05517.

Shaham, T. R., Dekel, T., and Michaeli, T. (2019). Singan:
Learning a generative model from a single natural im-
age. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4570–4580.

Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015).
Unsupervised learning of video representations using
lstms. In International conference on machine learn-
ing, pages 843–852.

Tulyakov, S., Liu, M.-Y., Yang, X., and Kautz, J. (2018).
Mocogan: Decomposing motion and content for video
generation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1526–
1535.

Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals,
O., Graves, A., et al. (2016). Conditional image gen-
eration with pixelcnn decoders. In Advances in neural
information processing systems, pages 4790–4798.

van den Oord, A., Vinyals, O., et al. (2017). Neural dis-
crete representation learning. In Advances in Neural
Information Processing Systems, pages 6306–6315.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016). Gen-
erating videos with scene dynamics. In Advances in
neural information processing systems, pages 613–
621.

Wang, T.-C., Liu, M.-Y., Tao, A., Liu, G., Kautz, J., and
Catanzaro, B. (2019). Few-shot video-to-video syn-
thesis. arXiv preprint arXiv:1910.12713.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz,
J., and Catanzaro, B. (2018a). Video-to-video synthe-
sis. arXiv preprint arXiv:1808.06601.

Wang, Y., Gao, Z., Long, M., Wang, J., and Yu, P. S.
(2018b). Predrnn++: Towards a resolution of the
deep-in-time dilemma in spatiotemporal predictive
learning. arXiv preprint arXiv:1804.06300.

Wang, Y., Jiang, L., Yang, M.-H., Li, L.-J., Long, M., and
Fei-Fei, L. (2018c). Eidetic 3d lstm: A model for
video prediction and beyond.

Weissenborn, D., Täckström, O., and Uszkoreit, J. (2019).
Scaling autoregressive video models. arXiv preprint
arXiv:1906.02634.

Latent Video Transformer

111



Xingjian, S., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-
K., and Woo, W.-c. (2015). Convolutional lstm net-
work: A machine learning approach for precipitation
nowcasting. In Advances in neural information pro-
cessing systems, pages 802–810.

Zhao, Y., Li, C., Yu, P., Gao, J., and Chen, C. (2020).
Feature quantization improves gan training. arXiv
preprint arXiv:2004.02088.

Zhu, X., Cheng, D., Zhang, Z., Lin, S., and Dai, J. (2019).
An empirical study of spatial attention mechanisms in
deep networks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 6688–
6697.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

112


