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Abstract: Multi-agent formation control has been a much-researched topic and while several methods from control 
theory exist, they require astute expertise to tune properly which is highly resource-intensive and often fails 
to adapt properly to slight changes in the environment. This paper presents an end-to-end decentralized 
approach towards multi-agent formation control with the information available from onboard sensors by using 
a Deep Reinforcement learning framework. The proposed method directly utilizes the raw sensor readings to 
calculate the agent’s movement velocity using a Deep Neural Network. The approach utilizes Policy gradient 
methods to generalize efficiently on various simulation scenarios and is trained over a large number of agents. 
We validate the performance of the learned policy using numerous simulated scenarios and a comprehensive 
evaluation. Finally, the performance of the learned policy is demonstrated in new scenarios with non-
cooperative agents that were not introduced during the training process.

1 INTRODUCTION 

Multi-agent systems are rapidly gaining momentum 
due to their several real-world applications in disaster 
relief scenarios, rescue operations, military 
operations, warehouse management, agriculture and 
many more. All these tasks require the teams of 
robots to cooperate autonomously to produce the 
desired results as displayed by many animals and 
insects in nature which emulate swarming behaviour. 

One of the major challenges for multi-agent 
systems is autonomous navigation while adhering to 
the three rules of Reynolds (Reynolds and Craig, 
1987). Modern control theory presents numerous 
solutions, supported with rigorous proofs, to this 
problem and demonstrates the feasibility of multi-
agent formation control and obstacle avoidance. 
(Marko and Stiepan, 2012), (Anuj et al., 2020), 
(Egerestedt, 2007) present an artificial potential field 
approach and have demonstrated stable autonomous 
navigation of a swarm of unmanned aerial vehicles 
(UAVs). While this approach does the work, it 
neglects the non-linearities in the system dynamics 
and thus fails to demonstrate optimal behaviour in 
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conjunction with the vehicle dynamics. Further, these 
approaches require extensive tuning to provide 
desired performance. 

Further, in (Hung and Givigi, 2017), a Q-learning 
based controller is presented for flocking of a swarm 
of UAVs in unknown environments using a leader-
follower approach. This approach does not yield an 
optimal solution as state space and action space is 
discretized to limit the size of the Q-table. As the 
number of states increases, computing the Q-table 
becomes increasingly inefficient. Another 
disadvantage of this approach is the single point of 
failure offered by the leader agent.  

In (Johns and Rasmus, 2018), Reinforcement 
learning is utilized to improve the performance of a 
behaviour-based control algorithm which serves as 
both a baseline from which the RL algorithm 
compares with and a base from which the RL 
algorithm starts training. This approach produces 
significant results but is not an end to end solution 
which can be directly applied to any kind of system. 
Appropriate tuning of the behaviour-based control 
algorithm is still required for the efficient 
performance of the complete controller.  
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The contribution of this paper is to propose a 
decentralized, end-to-end framework that is scalable, 
adaptive, and fault-tolerant which directly maps the 
sensor data to optimal steering commands. To 
overcome the problems offered by discrete state space 
and discrete action space controllers, we propose a 
policy gradient-based controller, which utilizes a 
Deep neural network map the continuous state space 
directly to a continuous action space. The 
effectiveness of policy learned from the proposed 
method is demonstrated through a series of simulation 
experiments where it is able to find the optimal 
trajectories in complex environments. 

The rest of the paper is organised as follows: 
Section II gives a short introduction to Policy 
Gradient methods and leads on for the mathematical 
formulation of our problem statement in the context 
of RL. Section III introduces the proposed algorithm 
and the underlying structure of the complete 
controller for decentralized implementation. 
Subsequently, section IV describes the simulation 
environment, the computational complexity of our 
approach and presents the quantitative results 
obtained. Further, it also provides the experimental 
results in unknown environments to demonstrate the 
generalization capability of the learned policy. 
Finally, Section V concludes the paper with 
recommendations for future work. 

2 PRELIMINARIES 

2.1 Markov Decision Process 

A Markov decision process (Bellman and Richard, 
1957) is a finite transition graph which satisfies the 
markov property. For a single agent MDP can be 
represented by a tuple ܼ ൌ ሺܵ, ,ܣ ܴሻ  where ܵ ൌ
ሼݏଵ, … , ܣ ,  is the set of states	ሽ்ݏ ൌ ሼܽଵ,… , ்ܽିଵሽ is 
the set of actions and ܴ ൌ ሼݎଵ,… , ݎ் ିଵሽ is the set of 
rewards obtained by through transition between states 
 The objective is to .(represents the terminal state ்ݏ)
find the solution of this MDP to maximize the 
expected sum of rewards by finding the optimal 
policy, value function or action-value function. 

2.2 Deep Q-learning 

Deep Q-learning (Mnih et al., 2015) is one of the 
well-known methods in Deep RL and has been shown 
to provide extremely efficient results. It uses deep 
neural networks for estimating the action-value 
function for a given problem to identify the optimal 

action in any state. The estimator function can be 
described as: 

ܳగሺݏ, ܽሻ ൌ ௦ᇲ~௉ܧ ቂݎሺݏ, ܽሻ ൅ maxߛ
௔ᇲ

ܳగሺݏᇱ, ܽᇱሻቃ (1)

where, ܧ  is the denotes the expectation operator. 
Therefore, if the neural network representing the Q 
function is given by parameters ߮, the loss function 
can be given by: 

ሻܦ,ሺ߮ܮ ൌ ൫௦,௔,௥,௦ᇲ൯~௉ሾሺܳܧ
గሺݏ, ܽሻ െ  (2)	ሻଶሿݕ

ݕ ൌ ሺݎ ൅ ሺ1ߛ െ ݀ሻmax
௔ᇲ

ܳగᇱሺݏᇱ, ܽᇱሻ  is called the 

temporal difference and is calculated using target 
network Q^π' which is updated with the same 
parameters as main Q-function periodically. This 
method stores the set of experiences generated over 
time into the Replay buffer which is used to randomly 
sample data for training the loss function given above. 

2.3 Policy Gradient Algorithms 

Policy gradient algorithms explicitly denote the 
policy as ߨఏሺܽ|ݏሻ  represented by a deep neural 
network with parameter ߠ. These parameters can be 
trained by maximizing the objective function 
ఏሻߨሺܬ ൌ ௦ᇲ~௉,௔~గഇሺܴሻܧ , where R is the reward 
function. Thus, to update the policy parameters, 
gradient ascent can be used by calculating the 
gradient of the objective function. 

௞ାଵߠ ൌ ௞ߠ ൅ ఏሻ|ఏೖ (3)ߨሺܬఏ׏ߙ

Where, 

ఏሻߨሺܬఏ׏ ൌ ௦~௉,௔~గഇܧ ൥	෍׏ఏ

்

௧ୀ଴

log ఏߨ ሺܽ௧|ݏ௧ሻܴ	൩ 

These methods can be used for both stochastic as 
well as deterministic policies and thus are suitable for 
problems with continuous action spaces. 

2.4 Algebraic Graph Theory 

A complete multi-agent system can be 
mathematically represented by a weighted undirected 
graph ܩ ൌ ሺܸ, ܸ	ሻ whereܧ ൌ ሼ1,2, … , ܰሽ is the set of 
agents and ܧ ൌ ሼሺ݅, ݆ሻ: ݅, ݆ ∈ ܸ, ݅ ് ݆ሽ	is the edge set. 
The adjacency matrix of graph ܩ  represented by 
ሻܩሺܣ  is a standard matrix in graph theory which 
represents the weights of the edges. This matrix can 
be used to represent the relationship between agents. 
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3 PROBLEM FORMULATION 

In this paper, the task of formation flocking is defined 
in the context of holonomic agents moving on the 
Euclidean plane. The position vector for each agent 
can be denoted by ݌௜

௧ ൌ ሾݔ௜, ௜ሿ்ݕ  and the velocity 
vector by ݒ௜

௧ ൌ ሾݔሶ௜,  ,… ,ሶ௜ሿ், for the UAV i  (i = 1, 2ݕ
N) at time t, where N is the number of UAVs.  The 
goal of the agents is to attain the desired formation 
using the adjacency matric ܣிெ  of the formation 
matrix graph ܩிெ  (where the weight of each edge 
ሺ݅, ݆ሻ of the graph corresponds to the desired distance 
between the agents ݅ and ݆) and navigate to the goal 

position ݌௚௧ ൌ ,௚ݔൣ ௚൧ݕ
்

 while avoiding inter-agent 
collisions. To maintain the formation at the goal 
position, another adjacency matrix ீܣிெ	of graph 
ிெீܩ  (where the weight of each edge ሺ݅,  ௚ሻ of the݌
graph corresponds to the desired distance between the 
agent ݅ and goal position ݌௚. 

Thus, the problem statement can be modelled as a 
sequential MDP defined by a tuple ܼ ൌ ሺܵ, ,ܣ ܴ, ܱሻ 
where, ܵ ൌ ሼ ଵܵ, … ܵேሽ, ܣ ൌ ሼܣଵ,… , ேሽܣ , 	ܴ ൌ
ሼܴଵ, … , ܴேሽ , 	ܱ ൌ ሼ ଵܱ, … , ܱேሽ   is the set of sets of 
states, actions, rewards and observations of all agents.  

At time step t, agent ݅ is present in state ݏ and has 
access to an observation o, which is used to calculate 
action ܽ. As a consequence of this action, the agent 
reaches a new state ݏ′, receives a reward ݎ and has 
access to new observation ݋′. The goal of the agent is 
to learn the optimal policy ߨఏ

∗ሺܽ|ݏሻ where ߠ denotes 
the policy parameters which maximizes the sum of 
obtained rewards. This process continues until all the 
agents reach the goal position where the episode 
terminates. 

The sequence of the tuple ሺ݋, ܽ, ,ݎ  ሻ made by the′݋
robot ݅ can be considered as a trajectory denoted by 
߬. The set of these trajectories collected by all the 
agents is denoted by ܦ and is stored in memory as the 
Replay buffer. ܤ  denotes the minibatch of 
experiences randomly samples from ܦ  for training 
the model. 

4 APPROACH 

4.1 Environmental Setup 

To solve the sequential MDP defined in Section III, 
an environmental model with appropriately defined 
observation space, action space and reward function 
is required.  

4.1.1 Observation Space 

The observation space o consists of the planar 
position of each agent given by ݌௜

௧ along with the goal 
position ݌௚௧ . These values are flattened and passed to 
a fully connected input layer of the policy network to 
calculate the action values. Thus, the size of input 
layer varies with the number of agents which also 
increases the training time for the policy network. 

4.1.2 Action Space 

The holonomic agents considered for the problem 
statement have an action space that consists of a set 
of permissible velocities in the continuous space. The 
output action is the two-dimensional velocity vector 
௜ݒ
௧ ൌ ሾݔሶ௜,  ሶ௜ሿ். The output layer is constrained by theݕ

hyperbolic tangent ሺ݄݊ܽݐሻ activation function which 
limits the output value in the range of (-1,1). This 
output value is then multiplied by ݒ௠௔௫ parameter to 
limit the action value, which is then directly passed to 
the navigation controller of the agent. 

4.1.3 Reward Function 

To achieve the target of formation control and 
navigation in the minimum time possible, the reward 
function is designed as follows: 

௜ݎ
௧ ൌ ሺீݎ ሻ௜

௧ ൅ ሺݎிሻ௜
௧ ൅ ሺݎ஼ሻ௜

௧ (4)

where, the total reward ݎ௜
௧  is the sum of goal 

reward 	ሺீݎ ሻ, formation reward ሺݎிሻ and inter-agent 
collision penalty ሺݎ஼ሻ of an agent ݅ at timestep ݐ. 

The goal reward ሺீݎ ሻ௜
௧ is awarded for the agent ݅ 

for reaching the goal position as: 

݀௚ ൌ ฮ݌௚௧ െ ௜݌
௧ฮ 

ሺீݎ ሻ௜
௧ ൌ ቐ

௚௢௔௟ݎ 	, ቚ݀௚ െ ிெீܣ
௜,௣೒ ቚ ൏ ݀௪௣

௚ܥ
ܰ
ቀቚ݀௚ െ ிெீܣ

௜,௣೒ ቚቁ , ݁ݏ݅ݓݎ݄݁ݐ݋
 (5)

To maintain the desired formation as governed by 
the formation graph ܩிெ, the agents are penalized for 
deviating from their desired relative position with 
other agents as: 

ሺݎிሻ௜
௧ ൌ

௙ܥ
ܰ

෍ หฮ݌௜
௧ െ ௝݌

௧ฮ െ ிெܣ
௜,௝ ห

ே

௝ୀଵ,௝ஷ௜

 (6)

Finally, to avoid inter-agent collisions, the agents 
are penalized as follows: 

ሺݎ஼ሻ௜
௧ ൌ ෍ ቊ

,௖௢௟௟௜௦௜௢௡ݎ ฮ݌௜
௧ െ ௝݌

௧ฮ ൏ ݀௦௔௙௘
0, ݁ݏ݅ݓݎ݄݁ݐ݋

ே

௝ୀଵ,௝ஷ௜

 (7)
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Algorithm 1: Multi-agent TD3. 

1: Initialize policy network with parameters ߠ , Q-
functions with parameters ߮ଵ, ߮ଶ. Empty the replay
buffer ܦ 

2: Set target network parameters equal to main
parameters  

௧௔௥௚௘௧ߠ ← ,ߠ ߮௧௔௥௚௘௧,ଵ ← ߮ଵ, ߮௧௔௥௚௘௧,ଶ ← ߮ଶ 
3: for number of episodes do 
4:    for robot ݅ ൌ 1,2,…ܰ do 
5:        Take observation ݋௧ select action 

ܽ ൌ ݌݈݅ܿ ቀߤఏ೟ೌೝ೒೐೟ሺݏ
ᇱሻ ൅ ,ߝ ܽ௅௢௪, 	ܽு௜௚௛ቁ 

6:        Execute action ܽ in the environment 
7:        Observe next state ݋′, reward ݎ and done signal

݀ to indicate whether o′ is terminal. 
8:        Store ሺ݋, ܽ, ,ݎ ,′݋ ݀ሻ in replay buffer ܦ 
9:        If ݋′ is terminal, reset environment state. 
10:    end for 
11:    if memory can provide minibatch then 
12:        Randomly sample a batch of transitions,  

ܤ ൌ ሼሺ݋, ܽ, ,ݎ ,′݋ ݀ሻሽ from ܦ 
13:   Compute target actions 

ܽᇱሺ݋ᇱሻ ൌ ݌݈݅ܿ	 ቀߤఏ೟ೌೝ೒೐೟ሺ݋
ᇱሻ ൅ ,ݍ ܽ௅௢௪, ܽு௜௚௛ቁ 

ݍ ൌ ,ߝሺ݌݈݅ܿ	 െܿ, ܿሻ 
14:        Compute Bellman target 

,ݎሺݕ ,ᇱ݋ ݀ሻ ൌ ݎ ൅ ሺ1ߛ
െ ݀ሻ min

௞ୀଵ,ଶ
ܳఝ೟ೌೝ೒೐೟,ೖ൫݋

ᇱ, ܽᇱሺ݋ᇱሻ൯

15:        Update Q-functions by one step of gradient
descent using ݈ݎథ 

ఝೖ׏
1
|ܤ|

෍ ቀܳఝೖሺ݋, ܽሻ െ ,ݎሺݕ ,ᇱ݋ ݀ሻቁ
ଶ

ሺ௢,௔,௢ᇲ,ௗሻ∈஻

	݇ ൌ 1,2

 

16:        if time to update policy then 
17:            Update policy by one step of gradient ascent

using ݈ݎఏ 

ఏ׏
1
|ܤ|

෍ܳఝభ൫݋, ሻ൯݋ఏሺߨ
௢∈஻

 

18:            Update target networks with 
௧௔௥௚௘௧ߠ ← ௧௔௥௚௘௧ߠߩ ൅ ሺ1 െ ߠሻߩ  

					߮௧௔௥௚௘௧,௞ ← ௧௔௥௚௘௧,௞߮ߩ ൅ ሺ1 െ ሻ߮௞ߩ  
݇ ൌ 1,2 

19:       end if 
20:    end if 
21: end for 

4.2 Algorithm Design 

The algorithm used in this paper is an extended 
version of the state-of-the-art Twin Delayed 
Deterministic Policy Gradient algorithm (Fujimoto et 
al., 2018), (Lillicrap et al., 2015)) commonly known 
as TD3. TD3 concurrently learns two Q-functions and 
a policy and uses the smaller out of the two Q-values 

to calculate the loss function. We use the paradigm of 
centralized training with decentralized execution, 
which means that the data collected by all the agents 
is used for training the policy network ߨఏሺܽ|ݏሻ, but 
each agent takes action in a decentralized fashion by 
using this policy. 

During each episode of the training process, there 
are two major steps. First, all the agents exploit the 
same policy to calculate their actions and record their 
new observations which are then stored in the replay 
buffer. Second, random batches of experiences are 
sampled from the replay buffer to calculate the 
Bellman target which is used to calculate the loss 
function as given in eq.2. This loss is optimized using 
Adam optimizer (Kingma et al., 2014). Further, for 
policy training, the problem statement requires a 
deterministic policy ߨఏሺܽ|ݏሻ which gives the action 
that maximizes the Q-function. Therefore, the 
objective function can be modified as 

ఏሻߨሺܬ ൌ max
ఏ

,݋௢~஻ൣܳఝሺܧ ఏሻ൧ (8)ߨ

and therefore, the policy gradient can be calculated as 

ఏሻߨሺܬఏ׏ ൌ ఏ׏
1
|ܤ|

෍ܳఝభ൫݋, ሻ൯݋ఏሺߨ
௢∈஻

 (9)

The target networks in the algorithm are updated 
periodically using the Polyak averaging method as 
follows: 

௧௔௥௚௘௧ߠ ← ௧௔௥௚௘௧ߠߩ ൅ ሺ1 െ (10) 	ߠሻߩ

߮௧௔௥௚௘௧,௞ ← ௧௔௥௚௘௧,௞߮ߩ ൅ ሺ1 െ ;					ሻ߮௞ߩ ݇ ൌ 1,2 (11)

where ߩ ≪ 1. 

4.3 Network Architecture 

 

Figure 1: Network architecture of the (a) critic and (b) actor 
neural networks. 
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TD3 algorithm utilizes six neural networks in total, 
three main and three target networks. The target 
networks are employed to stabilize the training 
process. The observation o with dimensions ሺܰ ∗ 2 ∗
1ሻ directly acts as the input for the policy network and 
outputs the action value. While for the Q-network, 
observation o and action a are concatenated to form 
the input layer and the output is a single Q-value 
which gives the quality of that action. The network 
architecture for both policy network and the Q-
network is given in Figure.1. RELU activation 
function is used for the hidden layers while the output 
layer utilizes a ‘tan h’ activation function to limit the 
output velocity by a maximum limit. 

5 SIMULATION AND TESTING 

In this section, first the method of simulation is 
explained. Then, the computational complexity of the 
algorithm and training resources utilized is described. 
Lastly, the quantitative results of various simulations 
in varying environments are demonstrated. 

5.1 Simulation Environment 

The simulation environment is a custom developed 
GUI using Matplotlib library in python. The blue 
circles represent the agents, the red circle is the goal 
and the black circles are the obstacles.  

The start position of the agents, goal position and 
all the obstacles are randomly generated after each 
episode is over. This approach was found to prevent 
the policy from exploiting the errors in the Q-function 
and thus improved the performance of the algorithm 
substantially. 

5.2 Training Configuration 

The complete implementation was carried out using 
TensorFlow 2 on a computer with a Nvidia GTX 1060 
GPU and an Intel i7-8750 CPU with the set of hyper-
parameters as mentioned in Table 1. The complete 
training process took about 22 hours for the learned 
policy to achieve robust performance in a complete 
simulation of 10 agents.  

During the execution, since only the actor network 
is required, the computational resources required are 
minimal and thus the same architecture can be used 
on single-board computers like the Nvidia Jetson 
nano and Raspberry Pi. 

 
 

Table 1: Hyperparameters used for simulation. 

Hyperparameter Value 

 1000 ܤ

 0.99 ߛ

 ఏ 0.0001ݎ݈
 థ 0.001ݎ݈

 0.995 ߩ

 1000000 ܦ

ܽ௅௢௪ -2 

ܽு௜௚௛ 2 

Hyperparameter Value 

 0.1 ߝ

ܿ 0.5 
 ௚௢௔௟ 10ݎ

 ௖௢௟௟௜௦௜௢௡ -50ݎ
݀௪௔௣ 0.5 

݀௦௔௙௘ 1 
 ௙ -0.1ܥ

 ௚ -0.1ܥ

5.3 Experiments and Results 

Since, the observation space consists of the planar 
positions of all the agents and the goal position, the 
training time increases rapidly as the number of 
agents scale up. Figure 3 shows the training time 
required for training the policy on three, five, seven 
and ten agents respectively.  

Further, Figure 3 shows the average reward 
received as training progresses. Figure 4-6 shows the 
performance of the learned policy on a varying 
number of agents for different formations. 

To test the generalization capabilities of the 
learned policy, we introduced non-cooperative agents 
[agents travelling directly towards the goal position in 
a straight line with constant velocity] which were not 
used during the entire training process. But the 
learned policy was able to generalize well with these 
agents as demonstrated in Figure 7. (Non-cooperative 
agents are shown by square boxes) 

 

Figure 2: Increase in training time with increment in 
number of agents. 
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Figure 3: Average rewards progression with increasing 
episodes during training process. 

(a) (b) 

Figure 4: V-formation using 3 agents. 

(a) (b) 

Figure 5: X-formation using 5 agents. 

(a) (b) 

(c) (d) 

Figure 6: Diamond-formation using 10 agents. 

(a) (b) 

Figure 7: Diamond-formation using 8 cooperative and 2
non-cooperative agents. 

6 CONCLUSIONS 

In this paper, we addressed the problem of Multi-
agent formation control and navigation in unknown 
environments by using an end-to-end Deep 
Reinforcement Learning framework. The learned 
policy demonstrates several advantages over the 
existing methods in terms of maintaining the desired 
formation, collision avoidance performance, 
adaptability to the environments and generalized 
performance.  

Multi-agent systems are the future of the robotics 
industry and as they become more prevalent, these 
systems will require adaptive controllers which can 
execute the tasks effectively in unfamiliar situations. 
Thus, integration of Reinforcement Learning with 
multi-agent systems is a step towards developing 
truly intelligent systems which can perform 
efficiently in real-world. We hope that our work can 
serve as the starting step in developing swarming 
systems for future applications. 

Our future work in this area will be aimed towards 
following two goals:  

1. Developing an efficient approach to solve the 
problem of extended training time with increase in 
number of agents. 

2. Applying DRL to mission-specific problems 
such as target search and area coverage and to apply 
better exploration techniques to improve the learning 
time of the policy. 
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