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Abstract: Research and development of novel molecular compounds in the pharmaceutical industry can be highly
costly. Lack of confidentiality can prevent a product from being patented or commercialized. As an effect,
cross-organizational collaboration is virtually non-existent. In this paper, we introduce a blockchain-based
solution to the collaborative drug discovery problem so that participants can maintain full ownership of the
asset and upload partial information about molecules without revealing the molecule itself. A prototype is also
implemented using the blockchain technology Hyperledger Fabric and analyzed from security and performance
perspectives. The prototype provides a set of functionalities that makes sure that ownership is maintained,
integrity is protected, and critical information remains confidential. From a performance perspective, it provides
a good throughput and latency in the order of milliseconds. However, further improvements could be done to
the scalability of the system.

1 INTRODUCTION

The pharmaceutical industry relies heavily on both
patents and trade secrets to generate value. Intellectual
property (IP) management deeply affects the every-
day activities of businesses, as it affects their ability to
protect and derive value from research (Atkinson and
Jones, 2009). A miss in the search of the prior art can
mean that a product is either un-patentable or that some
other company already owns a patent that will block
the commercialization of the developed product. The
median for developing a new molecule is estimated to
be around $985 million (Wouters et al., 2020). This
imposes a substantial risk of confidentiality breaches
of ongoing molecule research for the private sector
and academia alike. Actors risk that their research gets
unlawfully disclosed if they collaborate across organi-
zations. Furthermore, pharmaceutical companies can
not rely on trade secrets alone as the world is highly
connected. The probability that competitors reverse-
engineer, or independently discover a product is also
non-negligible (Saha and Bhattacharya, 2011). Patents
are needed to protect IP. Technical solutions to share
information on ongoing molecule research across or-
ganizations in a painless and fair way has been lacking
so far (Andrews et al., 2015). We refer to this problem
as the collaborative drug discovery problem (CDDP).

A chemical identifier is a string that denotes a
chemical substance and can be used to create digi-
tal representations of molecules (Heller et al., 2015).
They are a common way to represent molecules and
are ubiquitous in the pharmaceutical industry. InChi
(Heller et al., 2015), InChiKey (Heller et al., 2015),
and SMILES (Weininger, 1988) are common chemical
identifiers. Inchi is a linear string representation of
a molecule that describes its structure. An InChiKey
is a character string of length 27 constructed by hash-
ing an InChi string using the SHA-256 hashing algo-
rithm. InChiKeys can be used as proof-of-knowledge
of a molecule structure without revealing the structure.
SMILES is another linear representation of molecules
and is somewhat easier for humans to interpret than
InChi. Using a program like Open Babel (O’Boyle
et al., 2011), one can easily convert between SMILES
and InChi, as well as derive an InChiKey from an
InChi. To prove knowledge of a molecule at a certain
time, SMILES and InChi could be used interchange-
ably together with other security mechanisms. If the
confidentiality of the molecule has to be protected,
InChiKeys would be used. This way, the structure of
the molecule remains private, but the owner can use the
hash value to prove their knowledge of the molecule
structure at a later time, e.g. when they wish to patent
their discovery.
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Since the introduction of the Bitcoin (Nakamoto
et al., 2008), blockchain technology has been in the
limelight, as it provides a platform where actors who
do not trust each other can collaborate. The blockchain
enables secure and fully-distributed log management
for peer-to-peer networks. The main principle behind
the technology is to include transaction logs into a
chain of blocks where each block contains a secure
one-way hash of the previous block. Bitcoin is a de-
centralized cryptocurrency and builds a peer-to-peer
network where users can submit transactions: A new
block is only allowed to be added to the chain if
it has gone through a mining process which estab-
lishes consensus between the peers in the network.
Blockchain-based solutions help to build trust, trans-
parency, and traceability. There exist two types of
blockchain systems: permissionless and permissioned.
In public or permissionless blockchains such as Bit-
coin and Ethereum (Buterin et al., 2013), anyone can
join the network, while in a permissioned blockchain
such as Hyperledger Fabric (Androulaki et al., 2018)
only invited members can join and participate. Due to
better accountability and auditability, a permissioned
blockchain-based system can provide a better solution
to the CDDP.

In this paper, we propose a decentralized solution
to the CDDP based using the permissioned blockchain
framework Hyperledger Fabric, where molecules are
tokenized using the chemical identifiers and stored on
the blockchain. A prototype has been implemented
that can be used as a stepping stone to fully realize
a system where a multitude of pharmaceutical ac-
tors can share resources while providing strong re-
assurance that the correct actors receive and retain
their intellectual propriety. This is a novel solution
to the problem as previous work is either centralized
or based on public blockchains, which exposes them
to extra risks and limitations. The studied problem is
integral for the development of new molecules, and
any improvement could lead to substantial monetary
benefits for any actor involved in the discovery of
molecules. However, there are few solutions proposed
so far: Astra Zeneca, a major pharmaceutical com-
pany, proposed a platform for collaborative drug dis-
covery (Andrews et al., 2015). Since the solution is
centralized, any participant has to trust Astra Zeneca
not to misuse the database, which is a major draw-
back for the system. The collaborative drug discovery
(CDD) platform (Ekins and Bunin, 2013) is another
centralized platform for molecule sharing. Molecule
(Molecule GmbH, 2020) is yet another company that is
building collaborative drug discovery using Ethereum.
Ethereum is a public blockchain without enough mea-
sures for accountability as anyone can participate in the

network pseudo-anonymously. Furthermore, their so-
lution is exposed to systemic Ethereum-specific risks.
Moreover, it requires users to learn how to handle cryp-
tocurrencies, which makes it harder for both small and
large actors to adopt their platform.

Contributions. Our contributions can be summa-
rized as:

• A New Decentralized Solution to CDDP based
on a Permissioned Blockchain: Previous work
on molecule tracking are either centralized or
based on public blockchains (Andrews et al., 2015)
(Ekins and Bunin, 2013) (Molecule GmbH, 2020).
Furthermore, a systematic review and modeling of
the problem are accomplished which is absent in
previous work.

• A High-level Security Analysis of the Proposed
Prototype: There exists no overarching discussion
on the security properties of Fabric. The paper that
introduces Hyperledger Fabric (Androulaki et al.,
2018) briefly mentions it, and official documenta-
tion (Hyperledger, 2020) of Fabric is still marked
as work in progress. Concurrently, Kusters et al.
(Küsters et al., 2020) discussed accountability of
Fabric.

• A Performance Evaluation of the Proposed Proto-
type: Previous work on performance evaluation of
Fabric (Thakkar et al., 2018), (Nguyen et al., 2019),
(Nasir et al., 2018), (Hao et al., 2018), (Sukhwani,
2018) focus on either a fixed network topology or a
smaller amount of entities. They do not investigate
how Fabric scales when one adds a larger amount
of entities to the network.

The rest of this paper is organized as follows. Hy-
perledger Fabric is briefly introduced in Section 2. The
proposed solution is introduced in Section 3. Security
analysis of the proposed solution and its performance
analysis is provided in Section 4 and Section 5, respec-
tively.

2 HYPERLEDGER FABRIC

Hyperledger Fabric (Androulaki et al., 2018) is an
open-sourced permissioned blockchain framework
with smart contract capabilities. A consortium of or-
ganizations join together to form a Fabric network.
Each entity in the network is uniquely identified by an
identifier, is associated with an organization, and has a
role. Moreover, entities can have admin privileges. A
Fabric network consists of four entities: Peers, Order-
ers, Clients, and Certificate Authorities (CAs). Peers

ICISSP 2021 - 7th International Conference on Information Systems Security and Privacy

122



execute smart contracts and maintain the ledgers. Or-
derers order executed transactions into blocks. Clients
are any computer program that interacts with the Fab-
ric network. Organizations can establish one or more
channels amongst themselves. Channels can be used
to partition data across a Fabric network. Each chan-
nel contains one ledger that is maintained and secured
by the orderers and peers that are part of that chan-
nel. The blocks are chained together using SHA-256
as the hashing algorithm. Smart contracts are called
chaincode in Fabric. One or more chaincodes can be
installed on each channel. The access control is highly
configurable in Fabric and can be defined at the net-
work level, channel level, chaincode level, and inside
of chaincode. One can define access control based on
roles, organization affiliation, and individual certifi-
cates. Any CA can be used to generate certificates,
given that they follow some specifications defined by
Fabric. By default, Fabric uses X.509 certificates. Cer-
tificates can be revoked at a network, channel, or node
level. The state inside of the chaincode is modeled as
a versioned key-value store. The reason the store is
versioned is to prevent double-spend attacks. If a first
transaction reads a key for a version, any following
write to the same key under the same version is marked
as invalid in the transaction lifecycle described below.

Figure 1 illustrates a Fabric network with one chan-
nel (CH1), and seven entities that belong to two orga-
nizations: two clients (C1, C2), two peers (P1, P2),
two CAs (CA1, CA2), and one Orderer (O1). The
number associated with each entity indicates which
organization it belongs to. Each peer has a copy of the
chaincode (CC) installed on the channel. The channel
is configured with a special transaction called channel
configuration transaction (CCT) that defines access
control for entities interacting with the channel. Ad-
mins (A1, A2) create and sign CCTs. Network creation
(NC) policy defines which entities and under what cir-
cumstances they can create channels, and also defines
entities that can update the NC policy itself. The NC
policy is created and signed by admins.

Fabric is similar to other smart contract platforms,
like Ethereum, with some key exceptions. Due to
its permissioned nature, there is no mining or crypto-
economics in Fabric. The key assumption is that since
all messages are signed under a well-known identity,
adversaries could face consequences outside of the net-
work, or have their certificate revoked if they misbe-
have. Fabric uses a novel transaction execution model
called Execute-Order-Validate as depicted in Figure 2:

1. Clients send transaction proposals to peers that
have endorsing capabilities on some channel.
Which peers that can endorse is defined by config-
uration.

Figure 1: A Fabric network with one channel and two orga-
nizations.

2. The peers execute the transaction proposal, but no
state is updated.

3. The peers send the execution results to the client.

4. Once the client has collected enough endorsed
transactions it sends the endorsed transactions to
the orderers. Enough endorsements is also defined
by configuration.

5. The orderers order all endorsed transactions they
receive into blocks.

6. The orderers deliver the block to all peers on that
channel.

7. The peers validate each transaction in every block
and update the ledger accordingly.

Any transaction that would create inconsistencies in
the state database is marked as invalid. At each step,
further action is halted if an identity is lacking the
correct level of authority. The main benefit of using
this transaction model is that peers can execute sev-
eral transactions in parallel as double-spend issues
are caught in the validation step. This should pro-
vide higher throughput of transactions compared to e.g.
Ethereum where the transactions have to be executed
before they are ordered. Moreover, Fabric has query
capabilities. A query is a chaincode invocation that is
stopped after the client receives execution results from
peers. Queries provide higher throughput and lower la-
tency than full transaction invocations. Currently, Raft
(Ongaro and Ousterhout, 2014) is the recommended
consensus protocol for the orderers. There exists no
production-ready Byzantine fault-tolerant protocol for
Fabric yet. As Fabric has no crypto-economic compo-
nent, we should not expect to see a proof-of-work or
proof-of-stake style consensus protocol for the frame-
work.
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Figure 2: Execute-Order-Validate Transaction Lifecycle.

3 PROPOSED SOLUTION

Our proposed solution to the CDDP is a platform that
allows partial or full reveals of tokenized molecules.
Actors should be able to reveal the properties of their
molecules without making them prior art. This way
other actors can search for assets with certain proper-
ties. They can then acquire rights to the asset. Using
this asset, new assets can be developed and uploaded
to the platform. If the newly developed asset is not
part of the prior art, it can potentially be patented.
The ownership of the token can be transferred using
the chaincode. Figure 3 illustrates this cycle: Orga-
nization 1 tokenizes a molecule they want to share.
Organization 2 acquires the token and uses it to de-
velop a novel molecule that will also be tokenized.
Organization 1 uses the Fabric network to prove that
they were the original uploaders of the first molecule
and further contributions to the molecule will also be
stored in the system.

A prototype was implemented to analyze the per-
formance and conduct experimental evaluations. The
prototype consists of a Fabric network with one of
each entity, chaincode implemented in Golang (Hyper-
ledger Foundation, 2020a), and a basic interface that
users can use to to interact with the network.

3.1 Data Format

Tokenized molecules consist of the following fields:

1. Identifier - A unique identifier for an asset.

Figure 3: An overview of the proposed solution.

2. Name - A text string that represents a natural name
for the asset.

3. Timestamp - A timestamp of when the asset was
uploaded or updated.

4. Asset Owner - The owner of the molecule in the
real world.

5. Token Owner - The Fabric user that controls the
token in the ledger.

6. Structure - Any of SMILES, InChi, or InChiKey
that represent the molecule.

7. Keywords - A list of keywords with potentially
associated values. For example, painkiller, or boil-
ing point equals 50◦C. Can be used to search for
molecules with certain properties.

8. License Information - License Information that
tells how the molecule can be used.
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3.2 Functionalities

The following operations are defined for the platform.
Search Molecule and List History are only invoked
as queries, i.e. they only use part of the transaction
lifecycle.

1. Upload Molecule - Tokenize a molecule and save
it in the blockchain.

2. Search Molecule - Search for molecules that match
some query, e.g. structure.

3. Update Molecule - Update information of a
molecule. The owner of a token can change any of
the fields, except for the structure of the molecule.
Due to the nature of Fabric previous states of the
molecules are saved in the ledger and can be re-
tained.

4. List History - List complete history of a molecule.
This is used to prove previous ownership and con-
tributions.

5. Transfer Ownership - Move ownership of a token
from one user to another.

4 SECURITY ANALYSIS

Fabric is quite new, and much work is required on its
security analysis. There is only one recent work on
formal analysis of Fabric, mostly considering it from
the accountability perspective (Küsters et al., 2020). In
this section, we perform a heuristic security analysis
of the proposed solution and implemented prototype,
discuss different security features provided, and how
common attacks are prevented. The chaincode secu-
rity is a different angle that will be tested using one of
the available tools as will be discussed in Section 4.2.
We consider tokenized molecules that are uploaded
to the network as the information that should be pro-
tected. When analyzing the security of the prototype,
we assume an adversary in the Dolev-Yao model. We
assume perfect cryptography, i.e. deployed crypto-
graphic primitives are secure. The system is also as-
sumed to use the latest version of the Transport Layer
Security (TLS). Not anyone can join the network due
to the use of a permissioned blockchain. Moreover,
since there are accountability provisions, users would
consider the consequences of their actions.

4.1 Security of the Scheme

The proposed solution provides the following security
goals:

• Confidentiality - Only invited members can partic-
ipate in the network. This provides confidentiality
against non-members of the network. Furthermore,
confidentiality can be provided inside the network
by using access control mechanisms. Furthermore,
the confidentiality of molecules at the channel level
can be provided by uploading an InChiKey instead
of the molecule structure.

• Integrity - Integrity is protected using a blockchain
in combination with signed messages. Peers
can verify the state of their ledgers by retrieving
blockchain hashes from trusted peers. Using this
they can reconstruct the state independently. Peers
validate each transaction in the final step of the
transaction lifecycle to make sure that the state is
updated correctly, and that transaction proposals
have not been tampered with.

• Availability - Availability is provided by having
several entities that provide the same services. The
prototype only uses one of each entity. In a pro-
duction scenario, it would be easy to add more
entities.

• Accountability - Since all transactions in Fabric
are signed one can hold the appropriate actor ac-
countable (Küsters et al., 2020). Transactions that
lack authorization will be blocked and logged by
orderers and peers.

• Auditability - The blockchain provides auditabil-
ity of authorized transactions. All transactions are
stored in the blockchain, even invalid ones. The
network entities provide logging that can be ana-
lyzed to further enhance auditability.

• Authenticity - Since all messages are signed by
a certified entity, the prototype provides the au-
thenticity of origin. Moreover, since TLS is used,
authentication is mutual.

• Non-repudiation - Any transaction in the network
contains a digital signature. Non-repudiation is
provided by the digital signature since the public
keys are authentic due to the deployed CA.
Another aspect is that an adversary could upload
garbage data with the same InChiKey as another
molecule. This cannot help him to gain any ad-
vantage in any future dispute because when the
legitimate owner and the adversary are to claim a
patent for the molecule, they have to reveal their
molecules to a patent office. It will become known
that the adversary has uploaded garbage data just to
claim an InChiKey. Due to accountability counter-
measures in the permissioned system, the attacker
would face consequences and have his certificate
revoked.
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• Privacy - The prototype’s permissioned nature de-
nies non-members from learning about identities
inside of the network. An organization can enroll
users under any name. However, they can not hide
the fact that a member is part of their organiza-
tion. Data privacy is also protected by the fact that
the network is permissioned. This can be further
enhanced by access control mechanisms. Lastly,
the privacy of molecule data can be provided by
uploading an InChiKey instead of its structure.

Now we discuss how common attacks to the pro-
posed solution are thwarted:

Impersonation Attacks. All messages and transac-
tions are signed and will be verified by the recipients
through corresponding digital certificates and public
keys. This provides origin and entity authentication.
TLS is also used which provides mutual authentica-
tion. An impersonation attack is not feasible unless
the private key of an entity is compromised.

Byzantine Peers. Peers communicate with each
other using gossip (Hyperledger, 2020), i.e. they send
messages to each other in a peer-to-peer manner. A
compromised peer has the potential to attack the sys-
tem and threatens the security consideration in the
following way:

1. Integrity - Since transactions are signed, any alter-
ation will make them invalid, and thus Byzantine
peers cannot threaten the integrity of messages that
are passing through them. However, a Byzantine
peer could output and sign any arbitrary message at
its will. For example, a Byzantine peer could send
an arbitrary execution result to a client in step 3 of
the transaction lifecycle. To mitigate this, a client
should request to have its transactions evaluated
at several peers. The larger the network, the more
peers would have to coordinate to trick a client.

2. Availability - Since gossip is used, the refusal to
propagate information of a Byzantine peer can be
mitigated by communicating with other peers.

3. Confidentiality - A Byzantine peer could be well-
behaved but disclose confidential data. Molecules
that need their confidentiality protected can be up-
loaded as an InChiKey, not revealing their struc-
ture.

In the end, one has to ask if Byzantine peers are likely.
It is assumed to trust peers from one’s own organi-
zation. However, if communication happens across
organizations one could communicate with a peer from
a potentially competing organization.

Byzantine Orderers. As there exists no production-
grade Byzantine fault-tolerant protocol for orderers,
Byzantine orderers could attack a network. This is
potentially a fatal security flaw for future systems de-
ployed in more adversarial environments. However,
since all transactions are signed, the probability of an
orderer diverging from the consensus protocol varies
with how much orderers consider reputation. If an
orderer is caught being malicious its operator could
face legal actions, and subsequently have its certificate
revoked.

Replay Attacks. Freshness is provided by including
nonces in transactions. This way each transaction will
only be handled once by each entity (Hyperledger,
2020).

Man in the Middle (MITM) Attacks. Since all
messages are signed and sent over a secure channel
over TLS, MITM attacks are not feasible. Some traf-
fic analysis might be possible, but this would be of
limited use to the attacker as she would only see that
entities are communicating and not the content of the
messages.

Denial-of-Service (DoS) Attacks. A single node
could be spammed by an attacker that has access to
the network. A healthy network should have a reason-
able amount of peers and orderers to minimize this
risk. However, a Fabric network is susceptible to de-
nial of service attacks from clients that are part of the
network. When running evaluations, a client sending
more transactions than the peers could commit to a
ledger affected the availability of the network. One
should ask if clients are likely to spam the network
as their actions are logged by all peers and orderers.
However, depending on the application it could be hard
to differentiate between attacks and a flood of honest
transactions. This can be mitigated by introducing
some rate limit at the peers.

Sybil Attacks. In a sybil attack one participant of a
network generates a large number of identities in order
to gain a disproportionate influence over the network
(Conti et al., 2018). In the case of Fabric that would
be an adversary possessing several certificates that
they use. Assuming that the CA for an organization is
not compromised, Sybil attacks are not feasible as the
malicious actor can not generate their own identities.
However, the actors controlling a CA could generate
as many identities as they like to. This opens up an
attack vector if a chaincode implementation relies on
identity-based votes.
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Eclipse Attacks. An eclipse attack happens when
all incoming and outgoing connections of a victim en-
tity are to malicious actors (Conti et al., 2018). As
all communications are over TLS, entities will estab-
lish communications with known and authenticated
entities.

Key Compromise. Once the private key of an en-
tity is compromised, it is trivial that an adversary can
use the key to masquerade as the compromised en-
tity. If the user is aware of the key compromise, they
can request a certificate revocation and stop any fur-
ther misuse. Regardless, there are at least two aspects
that are important in any system when it comes to
the key compromise: (1) An adversary should not be
able to impersonate himself as a legitimate user to the
compromised entity; (2) An adversary should not be
able to change or affect communications prior to the
key compromise. It is trivial to show that both fea-
tures are provided: The first feature is provided due to
mutual authentication and use of TLS and digital cer-
tificates and signatures from all involved parties that
will communicate with the compromised entity, so the
adversary cannot do it unless they compromise private
keys of both parties. The second feature is guaranteed
since all transactions will be added to the blockchain
after a successful consensus, which means they cannot
be altered at a later time. Confidentiality will also be
guaranteed if molecules are uploaded in the InChiKey
format.
A compromised CA would allow an adversary to gen-
erate certificates for some entities at their will. Cer-
tificates can be revoked, but if the compromise is not
discovered, an adversary can operate in the system
for a while. Any attack against the integrity would be
caught due to accountability. Misissued certificates
will be revoked as soon as they are discovered, and the
issuing CA will be kept accountable. If the attack is
severe, the network could roll back to a state before
the attack. The adversary could probably operate for a
longer time if they only query the system for informa-
tion. Since we assumed that sensitive molecules are
uploaded as InChiKeys, this would not break the con-
fidentiality, as an adversary would not learn anything
about the hidden molecule structures. It is critical to
protect the CAs and take measures to secure them.

Transactions Malleability. A client proxying mes-
sages to the ordering service via peers is subject to a
malleability attack. This can happen in step 4 of the
transaction lifecycle. In this step, the client sends an
endorsed transaction to the orderer. If the client does
not have access to a direct connection to the ordering
service it must proxy it via a peer. The peer can not

fabricate endorsements. However, it can remove en-
dorsements from the transactions, potentially making
it invalid (Hyperledger, 2020). The prototype allows
direct communication between the orderer and client,
which mitigates this attack. In future scenarios, the
client can mitigate this by proxying the transaction via
a peer from their own organization.

Double-spend Protection. A double-spend is a set
of two transactions that are in conflict with one another
that both get accepted by the network (Conti et al.,
2018). In the case of molecules, this would be akin
to someone writing to a molecule (T 1), followed by
another read and write to the same molecule, under the
same version (T 2). Let put(ki,vi) be an operation that
writes some value vi to the database under the key ki,
for version i. Version i, is a monotonically increasing
number, and get(ki) retrieves the data that was added
using put for version i. A double-spend would look as
follows:

T 1 = put(k1,v1)

T 2 = get(k1); put(k1,v2)

This would break the integrity of the network, as one
user could transfer ownership of a single molecule
to several users. Double-spending is stopped at the
validation step in the transaction lifecycle. If a key in
the ledger is referenced after it has been updated there
will exist a conflict. As a result, the transaction will
be marked as invalid by the peers (Androulaki et al.,
2018).

InChiKey Attacks. We had an assumption on the
infeasibility of cryptographic primitives, but there will
be some attack vectors if an attacker could break
InChiKeys. If an adversary finds the same InChi
that produced the InChiKey, the confidentiality of that
molecule would be broken. However, any hash colli-
sion would not help the adversary, as he should find
the same InChi to prevent the owner of the molecule
from claiming a patent.
InChiKey uses SHA-256 (from SHA-2 family), and
its security is as strong as SHA-256. Some attacks
are feasible on SHA-256 (Dobraunig et al., 2015), but
they are not still practical. InChiKeys used the latest
version of SHA families at the time of its design. How-
ever, the latest version of the secure hash algorithm
(SHA) family of standards is currently SHA-3, which
provides stronger security guarantees. The deployed
hash function used to create InChiKeys can simply
be updated to make it stronger. However, the output
of InChiKeys will then be different for the same in-
put before and after the change of the SHA algorithm,
which means that molecule databases will be required
to rehash their molecule entries. This will lead to two
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lists based on different versions of the InChiKey and
could be used in the transition period to avoid any con-
fusion. Future versions of the proposed platform could
upgrade the InChiKey derivation to use hashes from
the SHA-3 family.

4.2 Chaincode Security

The security of the deployed chaincode can be an-
alyzed independently from the underlying network.
When analyzing the chaincode security we assume
the underlying network to be secure. Chaincode is a
general-purpose program and could have general soft-
ware vulnerabilities such as buffer overflows, integer
overflows, command injections, etc. (Praitheeshan
et al., 2019). Security analysis of chaincode and smart
contracts is an ongoing research topic and several tools
for their static analysis and formal analysis have been
developed (Praitheeshan et al., 2019), (Rouhani and
Deters, 2019), (Beckert et al., 2018). Previous work
mostly focuses on Ethereum as it is the second-largest
blockchain measured in market capitalization, as well
as the oldest smart contract platform. Fabric’s chain-
code is easier to upgrade than public blockchain smart
contracts as one needs to coordinate upgrades with a
smaller set of participants. One key vulnerability is
identified that is relevant for the prototype (Praithee-
shan et al., 2019):

• Timestamp-dependent Contracts: A timestamp-
dependent contract is a smart contract that uses
timestamps in its execution. An entity could
change time to manipulate code execution. In our
case, it is important to know when a user knew
about a certain molecule. Users have an incentive
to pass wrong timestamps as input when creating
or editing molecules. This is mitigated in the pro-
totype by using a timestamp from the peer. This
peer functions as a trusted third party. This service
could be expanded to include several peers from
several organizations.

Yamashita et al. (Yamashita et al., 2019) discussed
potential vulnerabilities and identified some compo-
nents that should not be part of Golang chaincode:

1. Goroutines: Concurrency is discouraged in chain-
code as it is easy to get it wrong.

2. Fields: Chaincode should not rely on fields as they
are stored locally.

3. Global Variables: Chaincode should not contain
global variables as they are stored locally.

4. Non-deterministic libraries should not be utilized.

5. Map Ranges: Map ranges are non-deterministic
and should be avoided.

Two static analysis tool for Golang chaincode was
found, namely, ChainSecurity’s Chaincode Scanner
(chainsecurity, 2020) and reviveCC (sivachokkapu,
2020). Chaincode Scanner can only analyze chaincode
files that meet certain requirements, while reviveCC
can analyze any chaincode file. However, reviceCC
was outdated and could not be used to analyze our
chaincode. The chaincode was analyzed using Chain-
code Scanner and none of the above-mentioned com-
ponents were found. No formal verification tool for
Golang chaincode was found. Beckert et al. (Beckert
et al., 2018) modified KeY, a formal verification tool
for Java to verify correctness of Java chaincode. There
also exists a suite of verification tools for Ethereum:
Oyente, ZEUS, etc. (Praitheeshan et al., 2019).

5 PERFORMANCE EVALUATION

Performance analysis of Fabric is not trivial and could
be a research topic in itself (Thakkar et al., 2018),
(Nasir et al., 2018), (Sukhwani, 2018). We used Hy-
perledger Caliper (Hyperledger Foundation, 2020b)
to perform a performance analysis of the implemented
prototype and chaincode. Caliper can connect to exist-
ing Fabric networks, run benchmarks, and aggregate
the results. The implemented chaincode was tested
using varying network topologies.

Latency, throughput, and success rate for the op-
erations Upload Molecule, List History, and Transfer
Ownership were analyzed. Update Molecule operation
was not analyzed since it is similar to Transfer Owner-
ship. Moreover, Search Molecule operation requires
a large set of already existing molecules to be inter-
esting. Specifications of our testing environment can
be described as following (Performance and Group,
2018):

1. Hardware: We used a PC with 128GB of RAM,
and a Ryzen Threadripper 1950X (3.4GHz base,
4GHz boost with 16 cores). Running all tests on a
single machine removes any networking aspects to
the tests.

2. Network Model: Different network topologies
were tested. Their sizes varied from one up to
26 organizations. Each organization contained two
peers. Having two peers seems to be a reasonable
starting point for analysis as each organization has
access to one backup peer. Moreover, for each
network, the number of orderers varied from one
up to 31 orderers.
The block configuration for the orderers was con-
figured as follows: AbsoluteMaxBytes (how large
a block can be) was 99MB, MaxMessageCount
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(maximum number of messages in a block) was
10, PreferredMaxBytes (how large blocks should
be preferably) was 512KB and the BatchTimeout
(how long the orderers should wait before packag-
ing transactions into a block) was 2 seconds. All
other parameters were default values.

3. Software Components: The chaincode was written
in Golang. For the experiments, LevelDB was used
as the state database in the peers.

4. Type of Data: The data used in experiments was
mock data of size in the order of kilobytes.

5. Workload: Caliper sent transactions at a fixed rate.
For each operation, transactions were sent at the
rates 1 tps, and 5 tps. The duration of each round
was 30 seconds. For each operation, each round
was run 5 times. After every 5 rounds, Caliper
paused its transaction sending for 60 seconds to let
the network stabilize.
In summary, a total of 6 test suites were run: 3 op-
erations (Upload Molecule, List History, Transfer
Ownership), 2 arrival rates (1 tps and 5 tps). Each
round was repeated 5 times and the final result
for each test suite was retrieved by averaging the
results from the 5 repeated rounds.

Evaluation results for four different operations at
the arrival rates of 1 tps and 5 tps are depicted in Fig-
ure 4. For the arrival rate of 1 tps, every network seems
to work fine up to 26 orderers and 16 organizations.
For 5 tps, a success rate close to 1 could be achieved un-
til 11 organizations and 26 orderers for all operations
except Transfer Ownership. For Transfer Ownership
at 5 tps, a success rate of 1 could be achieved until
6 organizations and 26 orderers. List History could
sustain a success rate of 1 until 21 organizations and
16 orderers. After that, the success rate quickly goes
to zero. For 31 orderers, the success rate went to zero
after 11 organizations for all transaction rates, but for
List History it went to 0 at 6 organizations for both
transaction rates.

The latency has, in general, a positive trend and the
throughput a negative. As expected, query transactions
are much faster than full transaction invocations. The
highest average latency for the query transaction was
around 0.08 ms and the highest average latency for a
full transaction was over 40 ms. This is beneficial for
the prototype as we expect there to be more reads than
writes on the platform.

It would be acceptable for end-users of the plat-
form to accept a lower throughput and higher latency
when uploading molecules. Most important is that the
platform provides strong confidentiality and integrity
of the uploaded data. Ideally, the network should be
able to support hundreds of organizations, but a net-

work of up to 16 organizations is sufficient to include
e.g. a handful of universities. This would provide a
good starting point for the network. At this point, it is
hard to know exactly what causes the transaction per-
formance to degrade at higher entity numbers. Better
error reporting, logging, and documentation from both
Fabric and Caliper are needed to understand where
bottlenecks exist. After 16 organizations and 26 or-
derers, we could conclude that the networks are too
unstable to derive satisfactory results. Androulaki et
al. (Androulaki et al., 2018) managed to run a network
with 100 peers at transaction arrival rates that were
orders of magnitude higher than what was used in our
experiments. However, they did not specify exactly
how they configured their networks. This makes it
hard to replicate their results. Moreover, other per-
formance evaluations focus on either a fixed network
or networks of smaller sizes (Thakkar et al., 2018),
(Nasir et al., 2018), and do not analyze how perfor-
mance changes when networks grow larger. Sukhwani
et al. (Sukhwani, 2018) investigated a larger network,
but they used a Byzantine fault-tolerant protocol. The
following strategies could make the system more scal-
able:

1. The election timeout for the ordering service could
be set too low in the default configuration of Fabric
(Hyperledger, 2020). If the ordering service is busy
serving blocks, they could miss leader heartbeats
and as a result, trigger an election. This way they
could end up in a state where they are never able to
catch up and as a result, the whole network halts.

2. In order to enable a high transaction throughput,
a favorable way to design the chaincode is to use
event-sourcing (Betts et al., 2013). Currently, one
loads the asset from the ledger and makes a change
to it. If there is a high transaction arrival rate,
the probability that a particular key version is out
of date once it reaches the verification phase in-
creases. Using event sourcing, one only writes the
difference in changes to an asset. This way, there
will be no read/write-conflicts as all transactions
are write-only. Queries are then constructed by
replaying the events.

3. Varying block creation parameters could fur-
ther improve the performance of the prototype
(Thakkar et al., 2018).

Scaling Fabric to a higher number of participants
seems to be non-trivial. One can not simply use any
configuration for a higher number of participants and
needs to have a deep understanding of Fabric in order
to configure the network. Fabric documentation is
not satisfactory at the moment but hopefully will be
improved.
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(a) Upload Molecule (1 tps). (b) Upload Molecule (5 tps).

(c) List History (1 tps). (d) List History (5 tps).

(e) Transfer Ownership (1 tps). (f) Transfer Ownership (5 tps).

Figure 4: Average latency, throughput, and success ratio for different operations at arrival rates of 1 tps and 5 tps. The
transactions arrive at a fixed rate for 30 seconds.
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6 CONCLUSION

We proposed a solution to the collaborative drug
discovery problem (CDDP), based on permissioned
blockchain. A prototype was implemented using Hy-
perledger Fabric. A heuristic security analysis of the
proposed solution and static analysis of the deployed
chaincode was also accomplished. A performance
analysis of the implemented prototype using Caliper
shows promising results but extra improvements could
be done to the scalability of the system. Larger orga-
nizations could use the proposed platform to auction
out molecules that they are not interested in bringing
to clinical trials or market, smaller organizations could
use it to attract funding for a molecule that they have
developed, and researchers could use it as proof of their
knowledge of properties or structure of a molecule at
a certain date.

Future work includes a formal analysis of the
proposed solution. Since molecules can be highly-
valuable, one needs a strong assurance that the plat-
form works as intended. Moreover, an economic
framework that provides incentives for users to par-
ticipate in the platform would be beneficial. More
work on the concept of tokenization is also needed.
In particular, how does one make sure that uploaded
molecules are authentic? Finally, further research on
the Byzantine generals’ problem is required. Fabric
currently uses Raft as its consensus protocol. How-
ever, Raft is not Byzantine fault-tolerant. This imposes
restrictions on who can run an orderer, as one has to
trust them not to deviate from the consensus protocol.
Another question is how to incorporate a Byzantine
fault-tolerant protocol into the platform that can sup-
port a large number of participants while maintaining
acceptable throughput and latency.
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