
Training an Agent to Find and Reach an Object in Different 
Environments using Visual Reinforcement Learning 

and Transfer Learning 

Evelyn Conceição Santos Batista1, Wouter Caarls1, Leonardo A. Forero2  

and Marco Aurélio C. Pacheco1 
1Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil 

2Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil 

Keywords: Autonomous Agent, Transfer Learning, Reinforcement Learning, Deep Learning, Vizdoom, DQN. 

Abstract: This paper consists of a study on deep learning by visual reinforcement for autonomous robots through 
transfer learning techniques. The simulation environments tested in this study are realistic environments 
where the challenge of the robot was to learn and transfer knowledge in different contexts, taking advantage 
of the experience of previous environments in future environments. This type of approach, besides adding 
knowledge to autonomous robots, reduces the number of training epochs for the algorithm even in complex 
environments, justifying the use of transfer learning techniques. 

1 INTRODUCTION 

The learning process of autonomous agents is a field 
of research increasingly developed and explored 
because of the constant improvements in 
sophisticated algorithms and specialized hardware 
(Day et al., 2015), (Miyahara, 2017), (Szegedy et al., 
2015). These improvements have contributed to the 
development of applications in the area of 
autonomous simulation, which include autonomous 
cars (Nguyen et al., 2018), (Bisht et al., 2017), aerial 
and marine autonomous vehicles (Meggitt et al., 
2016), (Chen et al., 2018), and autonomous robots 
(Ravindran et al., 2018), (Ly et al., 2015). In each of 
these cases, techniques are studied to allow robots to 
acquire innovative abilities or to adapt to an 
environment through learning algorithms, making it 
possible for them to constantly learn and develop new 
abilities for different purposes (Naik et al., 2016) 
(Alberri et al., 2018). 

In this context, an autonomous robot must interact 
with its environment to achieve its goals. It must be 
capable of gathering information about its 
environment, making decisions based on this 
information and initiating a specific action based on 
those decisions.  

In recent years, there has been a need for more 
autonomous robotic systems in several areas. More 

specifically, there has been a need for robots to develop 
the ability to make decisions without human 
interference in order to better achieve pre-established 
goals. Because of that, most research tends to focus on 
developing applications that give autonomy to robots, 
as the agents recognize the environment through 
sensors and act independently in those environments 
through actuators. The autonomous system allows 
robots to make decisions quickly, taking into 
consideration the diverse variables of an environment. 
Consequently, the system has several applications, 
such as in autonomous cars, intelligent drones, and 
robots with agrarian or safety applications. 

With that in mind, the objective of this paper is to 
simulate autonomous robots in complex 
environments in order to develop their autonomy 
further and raise the level of complexity of their tasks. 
In order to do so, a visual reinforcement technique, 
known as deep reinforcement learning, is used. 
Because it is very difficult to train an automaton in 
the real world, this works aims at performing 
simulations so that the agent does not have to learn 
everything in a real environment. In addition, transfer 
learning is used in order to allow the transference of 
the simulated learning to the real world. 

This paper is organized as follows: Section 2 
describes the concepts of Reinforcement Learning 
and Deep Q-networks. Section 3 presents the 
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architecture implemented, introduce the 
environments and the proposed method. Section 4 is 
the results obtained and finally in section 5 we talk 
about the conclusions and future implementations. 

2 THEORETICAL 
BACKGROUND 

2.1 Autonomous Agent 

Agent-based processing can be characterized by an 
input state which produces an output after being 
processed. The input state is determined by the 
environment in which the agent acts and the output is 
determined by the effects caused by the agent in the 
environment. Despite the various similarities between 
agent theory and control theory, agents are best 
applied to specific situations which demand 
autonomy and intelligence, such as complex and 
dynamic environments.  

2.2 Q-Learning 

Q-Learning (Watkins and Dayan, 1992) is a 
reinforcement learning algorithm (Sutton and Barto, 
1998), which learns the value of state-action pairs. In 
it, the state-action value function ܳగሺݏ, ܽሻ must be 
estimated for the policy ߨ, for all states s, and for 
actions a. This algorithm is defined mainly by the 
updates of the function shown in equation 1. 
 
ܳሺݏ௧, ܽ௧ሻ ← 	ܳሺݏ௧, ܽ௧ሻ ൅ ௧ݎሾߙ ൅ ,௧ାଵݏ௔ᇲܳሺݔܽ݉ߛ ܽ

ᇱሻ െ ܳሺݏ௧, ܽ௧ሻሿሽ (1)
 

In which an agent in time t, situated in state ݏ௧ 	 ∈
ܵ, appoints one of the possible actions, ܽ௧ 	∈  ௦௧, inܣ	
a state according to the selection policy (߳-greedy 
(Sarkar et al., 1994)). Equation 1 updates the 
evaluation function for this state-action pair 
considering the value of the obtained reward,ݎ௧ and 
the max evaluation function for all possible actions in 
future state s. In order to do so, the discount factor ߛ 
is used. This factor determines how the reinforcement 
learning agent’s future reward will impact the 
immediate reward. In addition, the learning rate α 
defines the extent to which newly acquired 
information replaces old information. 

The goal of the Q-Learning algorithm is to 
estimate the Q function for all visited states and taken 
actions, recording it in a table. For each action taken, 
a reward (r) will be awarded - which can be 
favourable or not - so that on subsequent visits to the 
same state (s), the most appropriate action can be 
determined. 

2.3 Deep Q-Networks (DQN) 

As previously explained, Q-Learning uses a table to 
represent the Q function. This allows for a precise 
representation of the value of the long-term rewards, 
which can be obtained in every state for each of the 
actions available. However, this representation also 
presents a very important problem: increasing the 
complexity of the state also increases the size of the 
Q table exponentially. 

In order to create a model capable of solving a 
complex problem while guaranteeing that the size of 
the Q table is still able to be stored in memory a 
function approximator is required. In order to do so, 
we use an approximation of the Q function using the 
neural network employed in 2013 by the DeepMind 
team in the project Playing Atari with Deep 
Reinforcement Learning (Mnih et al., 2013). 

In order to use Deep Q-Learning, it is first 
necessary to initialize a replay memory (Mnih et al., 
2013), which stores previous transitions, and 
initialize the Q function with random weights. For 
each epoch, a state is initialized. The state consists of 
a sequence of images taken from the simulator and 
preprocessed. For each step an action is chosen in 
accordance to a greedy policy. Then, the action is 
executed in the simulator and the reward is obtained, 
along with the next image. The image is processed 
and integrated into the state. The transitions are stored 
in the replay memory and a mini-batch of transitions 
is chosen from that memory. The mini-batch is used 
to calculate a future reward and a neural network is 
used to estimate the Q reward. 

2.4 Transfer Learning 

Transfer learning implies the reuse of a pre-trained 
model to solve a new problem, that is, the use of a 
trained neural network on another set of data, usually 
bigger and more complex, to solve a new problem. 

The only trained layer is the added one. Therefore, 
in order to save training time, the output layer of the 
last trained layer is calculated for all training images. 
This output vector is known as bottleneck features. 
When training the network, the bottleneck features 
are passed on to the added layers, which are trained 
normally. Consequently, the training is faster and 
usually has good results. 

Since Deep Q-Learning algorithms require great 
computational power to be trained, Transfer Learning 
techniques are used to decrease the training time and 
processing for agents. Accordingly, Transfer 
Learning is used throughout this study in order to 
reduce the time spent on training without 
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compromising the results. Some examples of Transfer 
Learning in Deep reinforcement learning can be seen 
in (Asawa et al., 2017), (Yin and Pan, 2017), 
(Parisotto et al., 2015). 

3 PROPOSED METHOD 

In accordance with this study’s objective, many 
environments were created in order to test the 
learning capabilities of autonomous robots using 
transfer learning techniques in simple and complex 
environments. Additionally, many scenarios were 
created in order to investigate the transfer learning in 
DQNs. 

3.1 Environments Developed through 
the Game Doom 

 

Figure 1: Doom Environments (A: environment with the 
task of collecting spheres, B: environment with barriers, C: 
environment with the task of colecting a box, D: 
environment with non-segmented doors, and E: 
environment with segmented doors). 

Some environments were developed in the Doom 
game setting using API ViZDoom (Kempka et al., 
2016) and the open source Doom editor, Slade 3 
(Slade 3). The API from ViZDoom gives direct 
access to the ZDoom game engine (Zdoom), which 
allows to send commands to the game agent 
synchronously and to receive input from the current 
state of the game. The interaction with the Doom 
game engine was done using ACS scripts within the 
Doom editor to calculate rewards for all scenarios. 

The Doom environment (Figure 1) was used on 
the first batch of tests. In this case, four scenarios with 
different difficulty levels were created. In the first 
scenario, the agent had to find and collect a sphere 
(Figure 1.A). In the second scenario (Figure 1.B), the 
agent had to go through a path with a barrier in order 
to find and collect the sphere. In the third scenario, 
the agent had to retrieve a box (Medkit) (Figure 1.C). 
The fourth scenario included non-segmented doors 
(Figure 1.D) and the agent had to locate a door. 

Lastly, the fifth scenario had segmented doors (Figure 
1.E) and the agent had to locate the correct door 
amongst three existing ones. 

3.2 Unreal Environment 

Apart from ZDoom, this study included a platform for 
creating games called Unreal (Zhong et al., 2017). 
The template Realistic Rendering (Abadi et al., 2016) 
was taken from Unreal. This simulator was chosen 
because its images resembled reality (Figure 2) and 
fit with the objective of increasing the level of 
complexity for every environment created for the 
tests, along with including obstacles such as tables 
and plants. In this scenario, there are three doors and 
the agent must choose between them in order to reach 
the correct one. 

 

Figure 2: Unreal Environment - Realistic Rendering. 

3.3 Reward Value 

The reward values for the environments of object 
collection are 100 on reaching the goal and -1 for each 
step taken to reach the destination. Meanwhile, the 
rewards for the navigation environments are 200 if 
the agent finds the door and -10 in case of collisions 
with the wall. 

3.4 The Architecture of the Network 
Chosen 

For simpler environments such as Doom, a neural 
network model was created through Tensorflow [24] 
and used as base. The model was slightly modified. It 
is a simple model, with 2 convolutional layers and 2 
full connected, as shown in Figure 3 and Table 1. 

 

Figure 3: Neural network architecture used in VizDoom 
training environments. 
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Table 1: Neural network architecture used in VizDoom 
training environments. 

Layer Output Kernel 
size 

Stride Activation 

Conv2d 8 (6,6) (3,3) ReLU 
Conv2d 16 (3,3) (2,2) ReLU 
Fully 
Connected 128   ReLU 

Fully 
Connected 

8    

 
The hyperparameters used in the training of the 

environments created with the use of ZDoom are 
shown in Table 12. 

Table 2: Doom Hyperparameters. 

Hyperparameters Values 
Epochs 100 
steps per epoch 2000 
batch size 128 
discount rate 0.99 
learning rate 0.0002 
replay memory size 10000 
test episodes per epoch 20 

 
For the Realistic Rendering environments, a 

deeper network (Figure 4 and Table 3) was used. This 
choice was made because the environment was more 
complex than the ones created through ZDoom. It 
presented a texture with more details and more 
objects scattered around, making it difficult for the 
agent to navigate to the goal. 

 

Figure 4: Neural network architecture used in Unreal 
training environments. 

Table 3: Neural network architecture used in Unreal 
training environments. 

Layer Output Kernel size Stride Activation 
Conv2d 8 (6,6) (3,3) ReLU 
Conv2d 16 (3,3) (2,2) ReLU 
Conv2d 32 (6,6) (2,2) ReLU 
Conv2d 64 (6,6) (2,2) ReLU 
Fully 
Connected 128   ReLU 

Fully 
Connected 

8    

 
The hyperparameters used in the training are 

shown in Table 4. 
 
 
 

Table 4: Unreal Hyperparameters. 

Hyperparameters Values 
Epochs 8000 

steps per epoch 2000 
batch size 128 
discount rate 0.95 
learning rate 0.0001 
replay memory size 10000 
test episodes per epoch 20 

3.5 Training Summary 

The objective of this work was to make an automaton 
learn to navigate through an unknown environment. 
In order to do so, a neural network was trained. The 
network input, described above, only required 4 
frames (Mnih et al., 2013). Each frame needed a 
preprocessing before it was given as input to the 
neural network. The preprocessing environment 
created with ZDoom required a resizing of each 
image to (30, 45), a grayscale, and a normalization. 

The environments created with Unreal were 
semantically segmented before they were resized. 
The segmentation was necessary because the 
previously trained network learned from images of a 
segmented environment. Consequently, images from 
the Realistic Rendering environment should look like 
the images previously trained. In some trainings, 
transfer learning is used to avoid reworking and 
retraining of already trained weights. After 
preprocessing the images, they are given as input to 
the network that was previously described. Through 
this process, the agent is trained. 

3.6 Graphics Creation 

The graphs were designed to display the results of 
each epoch as follows: 1) each epoch can consist of 
multiple episodes; 2) an epoch has a maximum of 
2000 steps and the agent must reach his goal within 
this limit of steps; 3) each time a goal is reached, an 
episode is completed; 4) an epoch can be equal to one 
episode if the agent does not reach the goal during the 
2000 steps. 

Considering the stochasticity of the algorithm, the 
same experiment was run 10 times and the average 
rewards accumulated in each epoch were made. To 
obtain the average of each epoch, the accumulated 
rewards of each episode within an epoch were 
averaged. 
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4 RESULTS 

The results of the training are reported below. 
The experiments were separated as follows: 

 Best initialization for the agent and the object; 
 Transfer learning to new tasks by testing layer 

cutting for transfer learning; 
 Transfer learning to a new environment; 
 Transfer learning for environments with different 

textures; 
 Transfer learning from a simple environment to a 

complex one. 

4.1 Best Initialization for the Agent 
and the Object 

In this experiment, the environment with the 
objective of collecting spheres (Figure 1.A) was used 
to train the agent. Some changes were made in the 
agent’s and the sphere’s initialization An example 
would be making the agent start the simulation in a 
fixed place and the sphere in different locations or 
having the sphere and the agent start in the fixed 
places. The results show that these different types of 
initialization affect the results of the agent’s training. 

4.1.1 Starting the Simulation with the Agent 
and the Sphere in Fixed Positions 

In this environment, the agent and the object were 
created in the same position for all episodes. The 
results are shown in Figure 5 and Table 5. 

 

Figure 5: Training results for agent and object initialization 
in fixed positions. 

The agent learned to reach the objective within 
approximately 30 epochs. It is important to notice that 
the reward difference between Figure 1.A and Figure 
1.B occurs because, once the validation takes place, 
the agent has to execute up to 2000 steps. If it does 
not reach the objective, the 2000 steps take place. If it 
reaches the objective, less steps are given, and the 
reward is greater. The idea was to transfer from fixed 
to random positions. However, random positions 

learns faster than fixed positions, so therefore it does 
not make sense to try to transfer 

4.1.2 Starting the Simulation with the Agent 
in a Fixed Position and the Sphere in 
Random Positions 

In this experiment, the agent was placed in a fixed 
position and the sphere in random positions so that 
the model could gain a greater generalization 
capacity.  

The results obtained in this case were better than 
the ones achieved through the fixed agent and sphere 
initialization, since this experiment generalized 
learning at practically the same training time and 
number of epochs (30), as seen in Table 5 and Figure 
6. 

 

Figure 6: Result of the start training for the agent in a fixed 
position and for the object in random positions. 

4.1.3 Starting the Simulation with the Agent 
and the Sphere in Random Positions 

Finally, an environment with random initialization of 
the agent and objective was trained. This environment 
presented the highest capacity to generalize the 
model, as the agent was able to reach the objective 
anywhere it was placed. In addition, it was concluded 
that this was the best initialization due to the epoch 
difference needed for the agent to learn. Even though 
the results were similar, the agent's learning was 
generalized to find a sphere from any position. The 
difference between the two first experiments 
performed previously was small, since approximately 
40 epochs were needed for the agent to learn in this 
experiment, as shown by Figure 7 and Table 5. 

 

Figure 7: Result of agent and object initialization training at 
random positions. 
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The next tests used the simulation initializations 
considered the best. In other words, they used random 
agents and targets. 

Table 5: Best Agent and Goal Initialization Test Results. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std.  
Final 
Train 

Mean 
Train 

Std.  
Train 

Mean 
Val. 

Std. 
Val. 

Fixed 
agent 
and 

enviro
nment 

13.26 95.37 2.60 78.45 21.19 -176.2 71.7 

Rando
m 

Target 
Fixed 
Agent 

13.60 94.46 2.95 74.56 24.67 -93.98 47.86 

Rando
m 

Target 
and 

Agent 

18.02 94.43 5.93 56.49 45.53 -115.2 99.94 

4.2 Transfer Learning to New Tasks by 
Testing Layer Cutting for Transfer 
Learning 

In order to test the robustness of transfer learning, the 
target object was modified, verifying if the training 
results would be similar. In this case, an environment 
containing a (“medikit”) box as its objective (Figure 
1.C) was used. 

This environment was trained without the use of 
transfer learning, obtaining results (Table 6) which 
proved to be similar to the scenario which had the 
sphere as its objective. However, it had the longest 
rise time, taking up to 45 epochs to be trained, since 
the box is smaller than the sphere and, due to its color, 
does not stand out in the environment. 

Table 6: Results of agent training in the box-picking 
environment. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Box 
without 

TL 
21.42 90.16 11.47 11.56 87.50 -514.0 218.5 

 
Different tests were performed to test the transfer 

learning. In the first test, the trained net could have its 
weights updated. In the second test, the weights of the 
two convolutive layers were fixed. In the third test, 
only the weights of the first convolutive layer were 
fixed, that is, the weights were not retrained. All 
experiments used an environment-trained network as 
a pre-trained network. That was done in order to 
retrieve spheres so that the environment could be 
trained. The goal of the environment, in this case, was 
to reach the box, as mentioned previously. 

4.2.1 Training Which Combined All the 
Network Weights Previously Trained 

In this experiment, all net weights were reused and 
none were fixed. The greatest difference shown by the 
results was in the validation, as the agent already has 
some knowledge prior to the training and received 
greater rewards once the training process began. This 
is shown by Table 7 and Figure 8. 

 

Figure 8: Results of the training which combined all the 
network weights previously trained. 

Table 7: Table with a comparison between the presence and 
absence of transfer learning in the training which combines 
all transfer weights previously trained.  

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Box 
without 

TL 
21.42 90.16 11.47 11.56 87.50 -514.06 218.59 

Box with  
TL of 
sphere 

environ-
ment 

18.02 91.25 5.59 48.51 47.05 -52.04 110.24 

4.2.2 Applying Transfer Learning to Two 
Convolutional Layers with Fixed 
Weight 

In this experiment, only the weights of the fully 
connected layers were adjusted, that is, no new frame 
elements were used during the training, as all 
convolutional layers had their weights fixed and 
could not be trained again. As the environments were 
practically the same - the only change was the goal 
(sphere - box) - the results exceeded the baseline even 
without training the convolutional layers, as seen by 
Table 8 and Figure 9. 

 

Figure 9: Training output using two-layer convolutional 
transfer learning with fixed weights. 
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Table 8: Comparison table showing the use of transfer 
learning in the training using two fixed weight 
convolutional layers. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Box 
without 

TL 
21.42 90.16 11.47 11.56 87.50 -514.0 218.59 

Box with  
TL of 
sphere 

environ-
ment 

21.76 67.29 30.28 7.23 95.24 13.81 24.95 

4.2.3 Using Transfer Learning in the First 
Convolutional Layer with Fixed 
Weights 

The last experiment was trained using the first 
convolutional layer of the transfer learning. The 
results obtained were better than those of the previous 
experiment (Table 7 and Table 8), although the rise 
time did not present a significant difference. Overall, 
the results of the training with transfer learning were 
better than those without transfer learning, as shown 
by Table 9 and Figure 10. 

 

Figure 10: Results of the training with transfer learning 
using the first convolutional layer with fixed weights. 

Table 9: Comparison table of the training with and without 
transfer learning, using the first convolutional layer with 
fixed weights. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Box 
without 

TL 
21.42 90.16 11.47 11.56 87.50 -514.06 218.59 

Box with  
TL of 
sphere 

environ-
ment 

13.26 92.62 5.67 35.38 64.43 52.04 16.52 

 
Upon analyzing the results, it was concluded that 

the first layer with fixed weights was the best 
parameterization method when it came to the use of 
transfer learning in the experiments. After all, the 
results produced by it were better because less epochs 
were required for the agent to be trained. 

 
 
 

4.3 Using Transfer Learning in a New 
Environment 

Given the previous results, obstacles were inserted in 
the environment to make it more complex. Instead of 
now changing the target, we change the environment 
instead. The scenery chosen was similar to the one 
used in previous experiments. The only difference 
was that a barrier was placed between the agent and 
the object (Figure 1.B).  

The environment was initially trained without 
transfer learning in order to allow a comparison 
between results with and without transfer learning. 

The results shown by the network were as 
expected. The level of complexity of the environment 
increased; therefore, the agent took longer to learn 
how to reach the target. It needed approximately 72 
epochs in order to succeed, as shown by Table 10 and 
Figure 11. 

The agent was trained once more using transfer 
learning by applying the weights of the trained net in 
the environment with the objective of collecting 
spheres (Figure 1.A). 

The results shown by the training with transfer 
learning were better than those without transfer 
learning. The rise time was smaller, and the averages 
of the validation rewards were higher. It is important 
to mention that, although the agent learns faster with 
transfer learning, the final rewards were slightly 
lower as the weights of the first convolution layer 
were fixed. 

 

Figure 11: Training results of the new environment using 
transfer learning. 

Table 10: Comparison table of the results shown by the new 
environment with and without transfer learning.  

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Sphere / 
Barrier 
without 

TL 

24.14 85.06 17.34 -38.75 114.13 -715.76 100.59 

Sphere / 
Barrier 
with TL 

of 
Sphere 

Environ
-ment  

20.10 81.94 23.34 -55.05 118.88 -5.2 39.63 
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4.4 Using Transfer Learning in 
Environments with Different 
Textures 

In order to prepare the tests for the simulated real 
environment, environments with significant 
differences between each other were created. An 
example are the experiments described in this paper, 
where the agent’s objective was to reach a doorway 
in an environment that is segmented (Figure 1.E) and 
one that is not segmented (Figure 1.D). 

The agent was trained separately in each of the 
experiments in order to compare results. The first 
environment trained was not segmented (Figure 1.D) 
and its results (Table 11) were satisfactory. Overall, the 
agent required 50 epochs to be successfully trained. 

Table 11: Table with the results of the agent’s training in 
the environment with a non-segmented door. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Door 
without 

TL 
15.64 1.41 1.64 -11.47 5.69 -132.83 59.66 

 
In order to use textures that were not from the 

Doom, the environment was manually segmented 
(Figure 1.E) and trained to discover how the agent 
would behave. The results are shown in Table 12. 
Even though the objective of the previous 
environments was also a door, the fact that the 
textures were simpler in this experiment made it 
possible for the agent to learn quicker, with 
approximately 40 epochs. 

Table 12: Table with the results of the agent’s training in an 
environment with the segmented door. 

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Segment
ed Door 

14.96 1.09 1.99 -12.66 5.50 -155.29 81.18 

 
Once the training was over, the transfer learning 

was used to transfer the knowledge of the trained 
network with a segmented environment to the non-
segmented environment. 

Contrary to the non-segmented environment, the 
segmented environment had simpler textures, without 
details. That divergence resulted in a learning 
difference for the agent, shown by Figure 12 and 
Table 13. The results indicate that the texture affects 
the learning process. Accordingly, the use of transfer 
learning in an environment with a simpler texture and 
then the transference of this learning to a more 

complex texture resulted in a faster training. 
Consequently, the agent learned after 42 epochs. 

 

Figure 12: Results of the training with transfer learning in 
environments with different textures. 

Table 13: Table comparing the learning rate of different 
textured environments.  

Model 
Rise 
Time 

(s) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Door 
without 

TL 
15.64 1.41 1.64 -11.47 5.69 -132.83 59.66 

Door 
with TL 
of Door 
Segment

ed 
environ

ment  

11.02 1.24 1.92 -2.02 6.75 -98.24 71.44 

4.5 Transfer Learning: From a Simple 
Environment to a More Complex 
Environment 

After the results were obtained in the Doom 
environment, a more complex environment (Figure 2) 
was developed similar to the real one. It presented 
several challenges, such as furniture, plants and 
intricate lighting. The objective of the environment 
was to find the door. However, in this case, three 
identical doors were created and only one of them was 
considered correct. 

The agent was trained without the use of transfer 
learning. The training required more epochs because 
the environment was more complex. It took 6255 
epochs for the agent to learn (Figure 14 and Table 14). 

 

Figure 13: Pre-processing of the frame in the Realistic 
Rendering environment. 

In order to use transfer learning in the environment 
trained with segmentation (Figure 1.E), the images 
from the Realistic Rendering were semantically 
divided using the segmentation for patterns created by 
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Unreal. After this process, the images were placed in 
scales of gray so that the frames could match the 
trained environment (Figure 13). 

Regarding the use of transfer learning, the results 
(Figure 14 and Table 14 ) showed that the technique 
made a difference. Although the environment was 
significantly more complex, the fact that the network 
had previous knowledge, even from a distinct 
environment, made the rewards higher from the 
beginning of the training and decreased the rise time. 

Upon analyzing the experiments, it was 
concluded that, in the environments where the door 
was the main objective, the agent learned the 
trajectory to the door. Meanwhile, in the 
environments where the objective was to retrieve a 
box or a sphere, the agent learned that the objective 
was to reach objects regardless of where they were 
placed. 

 

Figure 14: Results regarding the application of transfer 
learning from a simple environment to a complex one. 

Table 14: Table comparing the application of transfer 
learning from a simple environment to a complex one. 

Model 
Rise 
Time 

(h) 

Mean 
Final 
Train 

Std. 
Final 
Train 

Mean 
Train 

Std. 
Train 

Mean 
Val. 

Std. 
Val. 

Realisti
c 

Renderi
ng 

without 
TL 

11.55 8.70 1.45 1.78 1.39 -0.91 1.66 

Realistic 
Renderi
ng with 
TL of 

Segment
ed Port 
Environ

ment 

9.58 6.54 0.35 3.57 0.29 3.33 0.99 

 
The training of each environment can take time 

depending on the difficulty level. For example, the 
training of an agent in the Realistic Rendering 
environment using transfer learning in a Xeon 
Platinum 8160 processor takes about 18.24h. Using 
the same processor with an optimized Tensorflow for 
the Intel® processor, the training time will decrease, 
becoming 9.58h (Table 15). 

 
 
 
 

Table 15: Time Comparison. 

DQN – Realistic 
Rendering using 
transfer learning 

Xeon Platinum 
8160 Processor 

Xeon Platinum 
8160 Processor 
with optimizer 
Tensorflow 

Training time 18.24h 9.58h 

5 CONCLUSION AND FUTURE 
WORK 

This work presented a study on the simulation of an 
autonomous robot that interacted with the 
environment through a camera. In order to do so, a 
deep learning algorithm by visual reinforcement 
(Deep Q-Learning) was used, along with knowledge 
transfer techniques in convolutive networks. The 
main objective was to test the methods and algorithms 
together in order to simulate the robot’s performance 
in different environments and to use the experience 
from the previous environments to reach the objective 
quicker in complex environments.  

The Deep Q-Learning choice as basis for the 
simulation was based on a review of literature and 
was motivated by major advances in Deep Learning, 
which permit fast image processing through 
convolutive network after a training stage. As a result, 
camera guided robots increasingly extend their 
autonomy and overcome limitations in traditional 
reinforcement learning algorithms. 

The transfer learning methodology was applied to 
complex and dynamic environments, proving that it 
can be used to test real robots. In addition, it improved 
the processing time and allowed the development of 
applications in realistic robot simulation 
environments for these transfer learning techniques. 
As a result, the methodology presents an efficient way 
of performing simulations.  

The performance of the methodology was 
superior to that presented by other researches, 
showing the stability and robustness of the robotic 
system. These characteristics are essential to real 
robots. The scenarios used in the simulation are 
highly complex and dynamic, demonstrating that the 
methodology conceived in this work works for robots 
and real scenarios. 

As future research, the authors propose using real 
robots to test Deep Q-Learning in real environments 
and extend the methodology to more specific tasks, in 
order to verify how different the results would be 
from the ones achieved in this study, as the efficacy 
of transfer learning is already known. 
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