Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for

Cost-effective Video Surveillance

David Montero, Luis Unzueta, Jon Goenetxea, Nerea Aranjuelo, Estibaliz Loyo, Oihana Otaegui

Keywords:

Abstract:

and Marcos Nieto
Vicomtech, Mikeletegi 57, 20009 Donostia-SanSebastian, Spain

Face Recognition, Face Clustering, Video-Surveillance.

In this paper, we present a cost-effective Video-Surveillance System (VSS) for face recognition and online
clustering of unknown individuals at large scale. We aim to obtain Performance Indicators (PIs) for people
flow monitoring in large infrastructures, without storing any biometric information. For this purpose, we
focus on how to take advantage of a central GPU-enabled computing server, connected to a set of video-
surveillance cameras, to automatically register new identities and update their descriptive data as they are re-
identified. The proposed method comprises two main procedures executed in parallel. A Multi-Stage Dynamic
Batching (MSDB) procedure efficiently extracts facial identity vectors (i-vectors) from captured images. At
the same time, an On-Demand I-Vector Clustering (ODIVC) procedure clusters the i-vectors into identities.
This clustering algorithm is designed to progressively adapt to the increasing data scale, with a lower decrease
in its effectiveness compared to other alternatives. Experimental results show that ODIVC achieves state-of-
the-art results in well-known large scale datasets and that our VSS can detect, recognize and cluster in real

time faces coming from up to 40 cameras with a central off-the-shelf GPU-enabled computing server.

1 INTRODUCTION

In recent years, there has been a growing interest in
obtaining a detailed operational experience of peo-
ple flow monitoring in large infrastructures, by means
of Performance Indicators (PIs), such as “waiting
times”, ”’process throughput”, ”queue length overrun”
and area occupancy” (Mayer et al., 2015). Current
non-cooperative solutions are typically integrated in
the terminal infrastructure or use data from existing
processes, such as entrance pass scans or mobile de-
vices and Wi-Fi signals, from which PIs can be de-
rived. As stated in (Mayer et al., 2015), for this kind
of applications, computer-vision-based facial recog-
nition technology has been used mainly as a source to
infer “waiting times”, by comparing biometric infor-
mation from entry and exit points.

Our motivation is to enhance and extend the ap-
plicability of computer-vision-based facial recogni-
tion technology to more cases than the estimation of
“waiting times” in a specific area of a large infras-
tructure. More specifically, our goal is to build a face
recognition-based solution from which all the PIs can
be derived for the whole infrastructure, trying to sim-
plify as much as possible the required hardware setup,

436

Montero, D., Unzueta, L., Goenetxea, J., Aranjuelo, N., Loyo, E., Otaegui, O. and Nieto, M.

and with a better handling of data so that privacy is-
sues can be avoided. This requires building an ac-
curate and efficient face recognition system that can
manage large-scale data, without storing the biomet-
ric information of the individuals. Deep Neural Net-
work (DNN)-based large-scale clustering approaches
are promising methodologies for this purpose (Wang
et al., 2019; Shi et al., 2018; Otto et al., 2018).

Deploying computer vision algorithms to build
a cost-effective Video-Surveillance System (VSS) is
challenging. The latest trends rely on distributed com-
puting infrastructures, based on cloud (Lim et al.,
2018), fog (Nasir et al., 2018) and/or edge comput-
ing paradigms (Chen et al., 2019). These solutions
are capable of processing multiple sensor data streams
more efficiently at a bigger scale, compared to the
traditional centralized infrastructures (Tsakanikas and
Dagiuklas, 2017). The main open questions in the
design of a VSS (distributed or centralized) are what
equipment should be used and how to take advantage
of the available computing capabilities. This work fo-
cuses on the second question when an off-the-shelf
GPU computing server is considered. This solution
directly addresses the centralized infrastructure case,
but is likely extendable to distributed infrastructures.

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance.

DOI: 10.5220/0010236204360443

In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP, pages

436-443
ISBN: 978-989-758-488-6

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance

These are the main contributions of our work:

e A cost-effective VSS for face recognition and on-
line clustering of unknown individuals at large
scale, without storing their biometric information,
to obtain PIs for people flow monitoring.

e A Multi-Stage Dynamic Batching (MSDB) pro-
cedure to efficiently extract face attributes and
i-vectors from captured images. This in-
cludes MB-MTCNN, a multi-batch version of
a Multi-Task Cascaded Convolutional Network
(MTCNN) (Zhang et al., 2016a), and an efficient
dynamic batching strategy for the processing of
dynamic lists of facial images.

e An On-Demand I-Vector Clustering (ODIVC) al-
gorithm, designed to progressively adapt to the
data scale, with a lower decrease on its effective-
ness compared to state-of-the-art alternatives.

The paper is organized as follows. Section 2
presents the related work. Section 3 describes the
proposed VSS, followed by the computation improve-
ments and optimizations in section 4. Section 5 pro-
vides experimental results that show the potential of
our approach. Finally, section 6 concludes the paper.

2 RELATED WORK

The main challenges in our context are two: (A) how
to cluster faces by identity, using an online and unsu-
pervised approach, with the necessary accuracy and
scalability; and (B) how to build a cost-effective VSS
to deploy this technology.

2.1 Face Clustering

In recent years, face clustering in large-scale uncon-
strained scenarios has become a major challenge. The
huge number of faces and the intra-class changes due
to environmental variations (e.g., pose, illumination,
occlusions, resolution, noise) lead to complex distri-
butions of face representations. This makes it unsuit-
able to apply classic algorithms like K-Means (Lloyd,
1982), which tend to generate similar sized clusters,
or spectral clustering (Shi and Malik, 2000).
State-of-the-art methodologies combine DNN-
based face recognition models to extract i-vectors
with clustering algorithms that can group them in dis-
tinguishable identities, despite the intra-class variabil-
ity. In (Shi et al., 2018) the ConPaC algorithm is pro-
posed, which is based on the estimation of an adja-
cency matrix using pairwise similarities between i-
vectors. In (Wang et al., 2019) GCN is presented,
where a DNN decides which pairs of nodes should be

linked. In (Lin et al., 2018) an Agglomerative Hier-
archical Clustering approach is adopted, considering
the distance in the embedded space and the dissimilar-
ity between groups of faces. In (Otto et al., 2018) an
approximate rank-order clustering is presented, which
predicts whether a node should be linked to its k Near-
est Neighbors (kNN), and merges all linked pairs.

Nevertheless, these methodologies use offline al-
gorithms. They process entirely the gathered data ev-
ery time a new i-vector arrives with increasing com-
putational cost. In addition, most of them suffer from
scalability problems. For instance, the complexity of
ConPaC can scale up to O(TN?), where N is the num-
ber of i-vectors and 7' the number of iterations. (Wang
et al., 2019) and (Otto et al., 2018) reduce the com-
plexity using kNN graphs to reduce the number of
comparisons, but the cost is still too high for consid-
ering them for online applications.

To overcome these problems, we present On-
Demand I-Vector Clustering algorithm (ODIVC). It is
suitable for large-scale real-time applications, as it is
devised to dynamically adapt to the inclusion of data
samples without repeating the whole process.

2.2 Computing Infrastructures for
Automated Video-Surveillance

New automated surveillance systems incorporate
modern video sensors capable of capturing high def-
inition footage and DNN-based processing pipelines
in real-time. These systems frequently require large
computational resources and large storage size. Both
requirements could be resolved by integrating the
VSS in a distributed computing infrastructure, rely-
ing on cloud, fog and/or edge computing paradigms.
However, this introduces new challenges to be ad-
dressed (Tsakanikas and Dagiuklas, 2017).

A VSS relying on cloud computing (Lim et al.,
2018) needs to take into account the latency and extra
communication cost introduced between the sensors
and the cloud infrastructure. Furthermore, it needs
to deal with the latency introduced in IP networks,
which is not only large but also fluctuating. Fog com-
puting is a complementary technology to cloud com-
puting, as it extends cloud capabilities to the edge
of the network, comprising devices that have enough
power to perform non-trivial computational tasks. A
representative example of fog-based VSS is presented
in (Nasir et al., 2018). Finally, edge computing refers
to transferring computational and storage capacities
from data centers to the video sensors, minimizing the
network latency. Its application in a VSS requires the
usage of special hardware and software close to the
video sensors (Chen et al., 2019).

437

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

NIP CAMERAS GPU COMPUTING SERVER
\
t ((CPU w (" ram CPU \ (GPU 6 HDD
‘
‘ 1 |/ | CAPTURING THREADw . -
| ‘ IMAGES
‘ ‘ IMAGE PROCESSING THREAD DATABASE
2 ’ CLUSTERING THREAD J % k
Q G I'VECTORS ‘ ‘
v L AN AN AN AN /)
Figure 1: Overall processing architecture and data flow diagram of the proposed VSS.

As stated in (Tsakanikas and Dagiuklas, 2017), a Ve ~N
promising approach for a VSS could be a distributed AL cru [R
architecture, where certain characteristics of each ap- . TAGE PROCEPPING THREAD 9
proach are utilized to maximize its efficiency. In any Pl MSDB Stage #1: Normalized Pace Patch Extraction
case, effectively deploying DNN-based technology in . [Face and Landmark }:c% \Face Paton]
such kind of equipment to build a cost-effective VSS, \ ceeon e)
is a challenge to be addressed. m w

(MSDB Stage #2: Face Attributes Based Filtering)
3 PROPOSED GPU COMPUTING Face Attributes Extraction)% Face Filtering
. N\ J/
SERVER-BASED VSS Sz NIV 0 GV
; MSDB Stage #3: I-Vector Extraction]
3.1 Capturing Thread Q J =,

The capturing thread is in charge of three tasks:
camera connection handling, stream decoding and
image acquisition. The effective camera manage-
ment involves not only creating the connections when
the system startups, but also periodically checking
whether they are still working and reconnecting in
case of a lost connection. Image streaming uses a
compression method to reduce the network overload
(e.g., H.264, H.265, etc) (Jankar and Shah, 2017), so
a decoding phase is needed before feeding the images
into the processing thread. This can cause a delay in
the results. To reduce this effect, the capturing thread
decodes each image stream separately. Thus, the cur-
rent image is ready when the image processing thread
needs to get the next frame. The computational cost
of the capturing thread is low compared with the rest
and it only uses a small amount of the CPU for frame
decoding, mask applying, and connection checking.

3.2 Image Processing Thread
The image processing thread applies the DNN-based
face analysis algorithms to the captured images,

in order to get the required i-vectors for the re-
identification. It consumes most of the computation

438

Figure 2: MSDB procedure in the image processing thread.

time of the entire VSS (90-95%). Thus, to improve
the global performance, the system exploits the GPU
resources for the DNN inferences, using the CPU for
minor tasks like processing flow control, image crop-
ping and managing patch lists (Figure 2).

This procedure has three sequential stages: 1) nor-
malized face patch extraction, 2) facial attribute-based
filtering, and 3) i-vector extraction.

The first stage detects all the faces present in the
input image list and their facial landmarks, which are
used for the face patch normalization following the
method described in (Wang et al., 2018). For an effi-
cient detection of the facial regions and landmarks in
the N images from the capture process we propose a
multi-batch version of MTCNN (MB-MTCNN), de-
scribed in section 4.1, with a batch size equal to the
number of images (i.e. N). This stage generates a list
of M face regions with a set of five facial landmarks.

The VSS captures images from uncontrolled en-
vironments, so the detected faces may have different
orientations, lighting conditions, partial occlusions,
etc., which can negatively influence in the i-vector ex-
traction, reducing the accuracy of the re-identification

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance

process (Tan and Triggs, 2010). It is well known that
the impact of these factors can be reduced by prepro-
cessing the face patches before extracting the i-vector,
as stated in (Chaudhari and Kale, 2010).

Thus, the second stage checks if the facial patch
is suitable for re-identification using a set of automat-
ically detected attributes and previously defined fil-
tering considerations. In our context, we use head
orientation and a set of angle thresholds for the fil-
tering process, but other descriptive attributes could
also be considered (e.g. age, gender, ethnic group,
etc.). These attributes are estimated with Multi-Task
Cascaded Convolutional Networks (TCDCN) (Zhang
et al., 2016b). All the patches that do not match the
established rules are removed.

Finally, the last stage extracts the i-vectors from
the list of filtered face patches given by the filtering
stage. For our experiments we use a DNN model
based on ResNet100 architecture (He et al., 2016)
with ArcFace loss (Deng et al., 2019). We use this
architecture, despite its complexity, because we need
to generate the i-vectors as robust as possible in or-
der to get highly-reliable PIs. The DNN inferences
applied to the dynamic lists of cropped facial images
are made following efficient dynamic batching proce-
dures, as explained in section 4.2.

3.3 Clustering Thread

This thread analyzes the incoming i-vectors to auto-
matically register new people and update their de-
scriptive data with new samples as they are re-
identified, in an unsupervised way. Algorithm 1
shows our proposed ODIVC procedure for this task.
The identities database is represented with four
lists: C, containing the representative i-vector (cen-
troid) of each registered identity; SC, containing the
sum of the candidates i-vectors of each registered
identity; uid, with the unique identification num-
bers for those identities; and nm, with the number
of detections matched with each identity. Thus, the
database is expressed as <C, SC, uid, nm>. The new
identity candidates do not get a unique identification
number until they have reached a certain number of
matched detections. This is done to filter erroneous
new identity candidates, created with unsuitable faces
passed through the filters of the detection stage.
When the VSS is launched, the identities database
is empty. Therefore, the first incoming i-vector will be
used as the representative i-vector of the first identity
candidate in the database. From then on, every new
incoming i-vector is compared with the centroid of
every registered identity. The comparison is done by
computing the cosine similarity, as the employed face

Algorithm 1: On-Demand I-Vector Clustering.

Input: new i-vector u, database of identities
<C, SC, uid, nm> (initially empty),
low similarity threshold threshy,,,
[-1,1], high similarity threshold
threshyigp, [-1,1], minimum cluster
members for low threshold nm,,;,

Output: Updated DB <C, SC, uid, nm>

Wnorm = ||ll||2

sim =, - C

match = -1, simpeg = -1

if sizeof(R) > O then

idxpess = maxldx(sim)

SiMpess = SiM[idXpeg]

end

while simp,g > thresh,,, do

if nm[idxpes| > nmyi, or

SiMpes > threshyg;, then

match = idXpeg
break

end

sim[idxpeg | = -1

idxpes; = maxldx(sim)

SiMpesr = Sim[ibest]

end

if match > —1 then

nm[match] = nm[match] + 1

SC[match] = SC[match] + Wporm

C[match] = ||SC[match]||>

else

uidye,, = generateNewUID()

Append u,,,, to C & SC, uid,,,, to uid
and 1 to nm

end
return <C, SC, uid, nm>

recognition model was trained to work with this met-
ric (Deng et al., 2019), but other similarity measures
may be considered. To speed up the computation
of the cosine similarity, every incoming i-vector and
centroids are normalized, so that only the dot prod-
uct between them needs to be computed. Besides, the
calculation of the dot product is parallelized. Once the
cosine similarity is extracted, the algorithm searches
for the best candidate above a predefined minimum
threshold (threshy,,,). If the selected identity has more
than nm,,;, members, then the centroid is considered
robust enough for using thresh,,,, and the i-vector is
matched to that identity. Otherwise, the similarity
measure must be higher than threshy,g,. This search-
ing process is repeated until there is a match or until
the best similarity measure is lower than threshy,,,. If
there is a match between the incoming i-vector and a
registered identity, the new i-vector is used to update

439

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

the sum and the normalized centroid of the identity,
as shown in the algorithm. Otherwise, it becomes
directly the representative centroid of a new iden-
tity. The time complexity of the algorithm is O(MC),
where M is the i-vector dimensionality and C is the
number of active identities.

Alternative registration and updating strategies
might be considered, for example, a set of i-vectors
per identity represented by their median for the com-
parisons (which theoretically is more robust to out-
liers than the running average). However, we regis-
ter each individual with only a single i-vector and up-
date it with the running average strategy. This ensures
the minimal amount of information is stored, which is
critical to handle large scales. In addition, according
to our experiments, it is less susceptible to noise, i.e.
erroneous faces that have reached the clustering stage.

The RAM memory is the fastest option to store
these data but it is not safe to system failures (e.g.
power supply failures). To avoid data loss, the sys-
tem also stores the registration information in a per-
sistent database, to use it as an information cache if
the system fails or needs to be restarted. Additional
spatiotemporal constraints related to characteristics of
the infrastructure (e.g. one-way zone-to-zone doors,
or one-way exit doors that assure that an individual
has left the infrastructure at least for a certain time,
etc.), allow reducing the number of comparisons and,
in consequence, potential erroneous matches.

4 MSDB OPTIMIZATIONS

4.1 Multi-Batch MTCNN

To improve the computation performance of the face
and landmark detections from full-images in the first
stage of MSDB, we adopt and modify the MTCNN
method (Zhang et al., 2016a), resulting in the pro-
posed MB-MTCNN approach, which includes multi-
batch processing and a series of parallelization strate-
gies on each stage of MTCNN.

We chose MTCNN as the detection network be-
cause of some remarkable characteristics. First, it per-
forms a multi-scale search, generating candidate face
regions at several image scales. This allows us to par-
allelize the generation of candidates by image scale,
and also allows configuring the scales to optimize the
inference time. Furthermore, it provides face regions
and landmarks in a single forward pass, sharing fea-
tures between both kinds of detections and saving in-
ference time. Finally, it needs a small size in memory,
allowing us to use more limited hardware resources.

440

MTCNN has three stages. The first one pro-
cesses the input image at different scales, and gen-
erates facial region candidates using a convolutional
neural network (CNN) called Proposal Network (P-
Net). The second stage refines the candidate regions
using a CNN called Refinement Network (R-Net). The
third stage refines the facial regions generated by R-
Net, and detects five landmarks inside each of them
using a CNN called Output-Network (O-Net).

In MB-MTCNN, the key factor to accelerate this
process is the inclusion of parallel while loops, built
upon flexible and expressive control-flow primitive
operators (TensorFlow, 2017), executed in execution
frames of the GPU that can be nested, allowing further
optimizations. Thus, in the first parallel while loop
of MB-MTCNN, the images are scaled and processed
in batch using P-Net to obtain the region candidates.
With a nested parallel while loop, the candidates of
each scale and image are postprocessed following the
original implementation; scaled to their real size, re-
fined and filtered with a non-maximum suppression
(NMYS). Finally, the candidates from all the scales are
grouped by image in batch and NMS is applied again
to merge candidates of different scales using a parallel
while loop. In the subsequent stages, the candidates
are filtered and refined using R-Net and O-Net net-
works. In these stages, the batches of candidates from
each image are processed in parallel. This is more ef-
ficient than processing all the candidates in one batch,
as it avoids reallocating the candidates for preprocess-
ing and postprocessing.

4.2 Efficient Dynamic Batching for
Facial Images Processing

The number of cropped facial images that reach stages
2 and 3 of MSDB is unknown and can vary in every
iteration. Different dynamic batching methods can be
considered, which depend on the used GPU architec-
ture and DNN deployment tool. We focus on NVIDIA
GPUs and Google’s TensorFlow and NVIDIA’s Ten-
sorRT frameworks, due to their suitability for the in-
ference of DNNs (Yadwadkar et al., 2019).

The naive dynamic batching approach consists in
putting the whole batch of candidates directly into the
network, varying the network’s input size in every it-
eration. In TensorFlow constantly varying the batch
size produces important time overheads, as the net-
work needs to be re-adapted for the new size. Ten-
sorRT, optimizes the network for a given batch size,
allowing handling smaller sizes with a drop in per-
formance. Nevertheless, in both cases there are time
overheads proportional to the network complexity.

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance

Those time overheads due to network re-
adaptation can be avoided using parallel loops, built
upon flexible and expressive control-flow primitive
operators (Agarwal, 2019; Radul et al., 2019). For
instance, one can set the input size of the network
to a certain value, so the original input batch is di-
vided into mini-batches of that size, and process these
mini-batches with TensorFlow’s parallel while loop
(TensorFlow, 2017). The mini-batch size must be set
manually taking into account the expected minimum,
maximum, and average batch sizes. Nevertheless, if
there are big variations in the number of candidates,
the number of mini-batches may be too high for a sin-
gle parallelization, causing a drop in performance.

For this reason, our proposal for stages 2 and 3 of
MSDB is to load and infer multiple instances of the
network, optimized for different batch sizes. Thus,
for each inference, we divide the input batch size in
the minimum number of mini-batches that fit the dif-
ferent network sizes. In order to require less GPU
memory to load and infer each network, we recom-
mend applying optimizations to the trained network
such as layer fusion, kernel auto-tuning, dynamic ten-
sor memory and multi-stream execution.

S EXPERIMENTAL RESULTS

In this section, we present the results of two groups of
experiments conducted to evaluate the proposed clus-
tering algorithm (ODIVC) and VSS. The first group
aims to measure the performance of ODIVC in terms
of accuracy and processing time, comparing it with
other state-of-the-art offline clustering methods. The
second group focuses on testing the performance and
scalability of the proposed VSS and the impact of the
optimizations presented in Section 4.

The server used for the experiments has the fol-
lowing specifications: 1 processor Intel Xeon'TM E5-
1650v4, 1 GPU NVIDIA Quadro P6000 and 2 RAM
modules, each one of 6GB DDR4 2400MHz.

5.1 Face Clustering Performance

For the first experiment, we select the IJB-B dataset
(Whitelam et al., 2017), a well-known dataset of un-
constrained in-the-wild face images. This dataset in-
cludes a clustering protocol consisting of seven sub-
tasks that vary in the number of identities and the
number of faces. We select the last subtask, as it is
the most challenging one, with the highest number
of identities (1,845) and faces (68,195). The perfor-
mance is measured using BCubed F-Measure metric,
following the recomendations in (Amigo6 et al., 2009).

Table 1: Comparison with baseline methods in terms of
BCubed F-Measure and processing time using 1JB-B-1845.
Superscript* denotes results reported from original papers,
otherwise it uses the i-vectors from (Wang et al., 2019).

\ Method [F-Meas [Time |
ARO (Otto et al., 2018) 0.755 00:01:13
PAHC* (Lin et al., 2018) 0.61 00:03:56
ConPaC* (Shi et al., 2018) 0.634 02:53:58
DDC (Lin et al., 2018) 0.800 00:05:32
GCN (Wang et al., 2019) 0.814 00:06:03

\ ODIVC (ours) [0778 [00:00:28 |

Table 2: Comparison with baseline methods in terms
of BCubed F-Measure and processing time using 1JB-C
dataset. All methods use the same i-vectors extracted from
our VSS and the same hardware.

] Method | F-Meas | Time |
ARO (Otto et al., 2018) 0.768 00:09:39
GCN (Wang et al., 2019) 0.890 00:10:32

] ODIVC (ours) [0.931 [00:00:52 |

Since we want to demonstrate that ODIVC is inde-
pendent of the recognition model used and a fair com-
parison with other methods, the same vectors used in
(Wang et al., 2019) are selected for this experiment.
These vectors have 512 dimensions. We adjust the
parameters of ODIVC empirically: threshy,,, = 0.38,
threshyign, = 0.4 and nmyy,;, = 4.

The results of the experiment are presented in Ta-
ble 1. It can be observed that our method achieves
the third position in terms of F-Measure, but outper-
forms the rest of the methods considering the process-
ing time. For instance, it runs 12 times faster than
GCN-A under the same hardware conditions.

In the second experiment we test the performance
of ODIVC using a different face recognition model
and a different dataset. We select the face recognition
model used by our VSS, described in Section 3.2. We
use IJB-C (Maze et al., 2018), another well-known
dataset of unconstrained face images, with 3531 iden-
tities and 140623 faces. We use MB-MTCNN for the
face and landmarks detection. In order to obtain better
quality feature vectors, we filter faces with less than
45 pixels per side and we normalize the patches as de-
scribed in Section 3.2. After filtering, 120661 vectors
belonging to 3529 identities are extracted.

We compare our algorithm with the two best state-
of-the-art methods: GCN (Wang et al., 2019), which
achieved the highest accuracy in the first experiment,
and ARO (Otto et al., 2018), which achieved the best
trade off between accuracy and speed (without con-
sidering ours). For both methods, we adjust the pa-
rameters in order to achieve the best performance.
Furthermore, for GCN, we retrain the network follow-

441

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

Detection time per Image (ms)
T
s & S O &

o

1 5 10 20 30 40 50 60 70 80 90 100
Detection Batch (Number of Cameras)

Figure 3: Detection time per image for different resolutions
and batch sizes in MB-MTCNN (in stage 1 of MSDB), com-
pared to MTCNN (batch=1).

ing recommendations in (Wang et al., 2019). Finally,
we tune the parameters of ODIVC: threshy,,, = 0.37,
threshpig, = 0.4 and nmyy,;, = 4.

The results of this experiment, presented in Ta-
ble 2, show that our method outperform the others in
terms of F-Measure and processing time. Under the
same hardware conditions ODIVC runs more than 12
times faster than GCN and more than 11 times faster
than ARO. These time ratios show that our method
is more scalable than the others. In this experiment
ODIVC achieves a better F-Measure than GCN. We
believe this is because we have reduced the number
of outliers by filtering the smallest faces and using by
a better face recognition network. Therefore, ODIVC
is more sensible to outliers, but it is more accurate
when using robust face representations.

5.2 Video Surveillance System
Performance

We start evaluating the performance of MB-MTCNN
compared to the original implementation. Figure 3
shows the average time of the detection stage per im-
age for different resolutions and batch sizes using our
approach (MTCNN corresponds to batch=1). The re-
sults show a great reduction in the processing time per
image (more than 5 times for 720p). This reduction
increases with the batch size but reaches a saturation
point due to hardware limitations.

We also test the performance of the proposed dy-
namic batching procedure compared to the alterna-
tives mentioned in Section 4.2. We measure the
recognition time per face when the VSS is process-
ing a sequence of images containing variable numbers
of faces. To better visualize time variations, we aug-
ment the number of faces by a factor of 10, so they
may vary from 10 to approximately 1000. The re-
sults are shown in Figure 4, where TF stands for Ten-
sorFlow and TRT for TensorRT. The mini-batch size
selected for the Parallel-Loop-TF approach is 20 and

442

—-— Naive-TRT

—— Naive-TF

P Parallel-TF

=
3
3

Number of faces Time per Face (ms)

N
=]
3

o

0‘.0 2.‘5 5‘.0 7.‘5 16.0 12‘ 5 15‘.0 17‘ 5

Frame Number
Figure 4: Average time per face of the dynamic batching
procedure for stages 2 and 3 of MSDB, compared to alter-
native state-of-the-art approaches.

—— 720p
1000 1 1080p
——- 1440p

800 +

600

400

Processing time per batch (ms)

1 10 20 30 40 50 60
Image batch (Number of Cameras)

Figure 5: Average times per batch (for the image processing
thread) with the considered setup for different resolutions.

those used for Multi-Instance-TRT are 400, 200, 100,
and 20. It can be observed that the Multi-Instance-
TRT outperforms the other approaches, not only in
the average but also in the maximum peak times.
Finally, to test the potential scalability of our VSS,
we run it to process images captured from a scaling
number of videos, at different resolutions and with a
detection batch size set with the same value as the
number of videos. Then, we measure the average
times per image batch in the image processing thread,
the main bottleneck of the system. The results are
shown in Figure 5. In our context, it is enough to de-
liver the PIs with near-real time performance. Hence,
if we consider acceptable that the processing thread
responds every 200 ms, this setup could theoretically
be scaled up to 40 720p cameras. The results reveal
that the proposed VSS allows designing cost-effective
GPU-server-based solutions for our purpose.

6 CONCLUSIONS

In this work, we have presented a cost-effective VSS
for face recognition and online clustering of unknown
individuals at large scale, without storing their bio-
metric information, in order to obtain PIs for peo-
ple flow monitoring in large infrastructures. The

Multi-Stage Dynamic Batching and On-Demand I-Vector Clustering for Cost-effective Video Surveillance

VSS is composed of three main computing threads
executed asynchronously, using CPU and/or GPU
capabilities and sharing data sequentially. Experi-
mental results with challenging scenarios reveal the
high effectiveness and scalability of the proposed
approach. Furthermore, we have presented an on-
line and unsupervised clustering approach (ODIVC),
which achieves state-of-the-art results in well-known
large-scale datasets, with a reduced computational
cost compared to the alternatives.

Future work will focus on extending our VSS to
distributed computing infrastructures, with heteroge-
neous hardware as nodes of the VSS, including GPU
computing servers that process and share data for
video-surveillance purposes.

REFERENCES

Agarwal, A. (2019). Static automatic batching in Ten-
sorFlow. In 36th ICML, volume 97, pages 92-101.
PMLR.

Amigé, E., Gonzalo, J., Artiles, J., and Verdejo, M. (2009).
Amig6 e, gonzalo j, artiles j et ala comparison of ex-
trinsic clustering evaluation metrics based on formal
constraints. inform retriev 12:461-486. Information
Retrieval, 12:461-486.

Chaudhari, S. T. and Kale, A. (2010). Face normalization:
Enhancing face recognition. In 2010 3rd ICETET,
pages 520-525.

Chen, J., Li, K., Deng, Q., Li, K., and Yu, P. S. (2019).
Distributed deep learning model for intelligent video
surveillance systems with edge computing. [EEE
Trans. on Industrial Informatics, pages 1-1.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Ar-
cface: Additive angular margin loss for deep face
recognition. In 2019 IEEE CVPR, pages 4685-4694.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
CVPR, pages 770-778.

Jankar, J. R. and Shah, S. K. (2017). Computational analy-
sis of hybrid high efficiency video encoders. In ICISS,
pages 250-255.

Lim, K.-S., Lee, S.-H., Han, J. W., and Kim, G. W. (2018).
Design considerations for an intelligent video surveil-
lance system using cloud computing. In PDCAT,
pages 84-89.

Lin, W., Chen, J., Castillo, C. D., and Chellappa, R. (2018).
Deep density clustering of unconstrained faces. In
2018 IEEE/CVF CVPR, pages 8128-8137.

Lloyd, S. P. (1982). Least squares quantization in pcm.
IEEE Trans. Inf. Theory, 28:129-136.

Mayer, C. A., Felkel, R., and Peterson, K. (2015). Best
practice on automated passenger flow measurement

solutions. In Journal of Airport Management, vol-
ume 9, pages 144-153.

Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T.,
Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Ch-
eney, J., and Grother, P. (2018). Iarpa janus bench-
mark - c: Face dataset and protocol. In 2018 ICB,
pages 158-165.

Nasir, M., Muhammad, K., Lloret, J., Kumar, A., and Saj-
jad, M. (2018). Fog computing enabled cost-effective
distributed summarization of surveillance videos for
smart cities. Journal of Parallel and Distributed Com-
puting, 126.

Otto, C., Wang, D., and Jain, A. K. (2018). Clustering mil-
lions of faces by identity. /[EEE TPAMI, 40(2):289—
303.

Radul, A., Patton, B., Maclaurin, D., Hoffman, M. D.,
and Saurous, R. A. (2019). Automatically batching
control-intensive programs for modern accelerators.
ArXiv, abs/1910.11141.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. /EEE TPAMI, 22:888-905.

Shi, Y., Otto, C., and Jain, A. K. (2018). Face cluster-
ing: Representation and pairwise constraints. /EEE
Transactions on Information Forensics and Security,
13(7):1626-1640.

Tan, X. and Triggs, B. (2010). Enhanced local texture fea-
ture sets for face recognition under difficult lighting
conditions. IEEE Transactions on Image Processing,
19(6):1635-1650.

TensorFlow, A. (2017). Implementation of control flow in
tensorflow. TensorFlow Whitepaper.

Tsakanikas, V. and Dagiuklas, T. (2017). Video surveillance
systems-current status and future trends. Computers &
Electrical Engineering, 70.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J.,
Li, Z., and Liu, W. (2018). Cosface: Large margin co-
sine loss for deep face recognition. In 2018 IEEE/CVF
CVPR, pages 5265-5274.

Wang, Z., Zheng, L., Li, Y., and Wang, S. (2019). Linkage
based face clustering via graph convolution network.
2019 IEEE/CVF CVPR, pages 1117-1125.

Whitelam, C., Taborsky, E., Blanton, A., Maze, B., Adams,
J., Miller, T., Kalka, N., Jain, A. K., Duncan, J. A.,
Allen, K., Cheney, J., and Grother, P. (2017). larpa
janus benchmark-b face dataset. In 2017 IEEE
CVPRW, pages 592-600.

Yadwadkar, N. J., Romero, F., Li, Q., and Kozyrakis, C.
(2019). A case for managed and model-less inference
serving. In HotOS ’19, pages 184—-191.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016a). Joint
face detection and alignment using multitask cascaded
convolutional networks. IEEE Signal Processing Let-
ters, 23(10):1499-1503.

Zhang, Z., Luo, P, Loy, C., and Tang, X. (2016b). Learning
deep representation for face alignment with auxiliary
attributes. JEEE TPAMI, 38(5):918-930.

443

