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Abstract: In recent years, autonomous driving through deep learning has gained more and more attention. This paper 
proposes a novel Vehicle-to-Vehicle (V2V) communication based autonomous vehicle driving system that 
takes advantage of both spatial and temporal information. The proposed system consists of a novel 
combination of CNN layers and LSTM layers for controlling steering angle and speed by taking advantage of 
the information from both the autonomous vehicle and cooperative vehicle. The CNN layers process the input 
sequential image frames, and the LSTM layers process historical data to predict the steering angle and speed 
of the autonomous vehicle. To confirm the validity of the proposed system, we conducted experiments for 
evaluating the MSE of the steering angle and vehicle speed using the Udacity dataset.  Experimental results 
are summarized as follows. (1) “with a cooperative car” significantly works better than “without”. (2) Among 
all the network, the Res-Net performs the best. (3) Utilizing the LSTM with Res-Net, which processes the 
historical motion data, performs better than “no LSTM”. (4) As the number of inputted sequential frames, 
eight frames turn out to work best. (5) As the distance between the autonomous host and cooperative vehicle, 
ten to forty meters turn out to achieve the robust result on the autonomous driving movement control. 

1 INTRODUCTION 

During the past few years, autonomous self-driving 
cars have become more and more popular because of 
the development of sensor equipment and computer 
vision technology. Many technology companies and 
car manufactures have joined this industry, such as 
Google and General Motors. The purpose of 
autonomous driving is to let the vehicle perceive the 
surrounding environment and cruise with no human 
intervention. Therefore, the most important task for 
the autonomous driving system is to map the 
surrounding environment to the driving control. 

Recently, deep convolutional networks have 
achieved great success in traditional computer vision 
tasks such as segmentation and object detection. It 
seems that the deep learning-based method is 
appropriate for autonomous driving because it can 
deal with more scenarios. Some state-of-the-art works 
divide the autonomous driving problem into several 
small tasks and fuse the results of each task to a final 
control decision. The rest of the state-of-the-art works 
provide an End-to-End solution that allows the 
autonomous system to learn the mapping from the 
raw image data to the steering control. Although all 
the recent state-of-the-art systems have achieved 

great successes, we still believe that those approaches 
lack the temporal information because of ignoring the 
relationship between sequential image frames. 
Therefore, we need a tool to capture and process 
temporal information. With the development of deep 
neural networks (DNN), Long Short-Term Memory 
(LSTM) has been designed to process sequential data 
in a time series.  In recent years, it has gained more 
and more attention and has been popular in many 
fields such as human action recognition and natural 
language processing. It is a reasonable choice to apply 
the LSTM to deal with the temporal information in an 
autonomous driving problem. 

 One the other hand, the temporal information is 
not the only concern in autonomous driving. In our 
opinion, the interaction with the surrounding 
environment is also vital to autonomous driving 
because the autonomous vehicle is not isolated, 
especially in the urban scene. Considering the human 
manual driving, people would constantly check the 
movement of the vehicles that surround us. Based on 
the human driving habit, the autonomous vehicle 
should also consider the interaction with other 
surrounding vehicle movements. The interaction with 
two vehicles can be defined as Vehicle-to-Vehicle 
(V2V) communication. In our opinion, V2V 

Zhang, Z. and Ohya, J.
Movement Control with Vehicle-to-Vehicle Communication by using End-to-End Deep Learning for Autonomous Driving.
DOI: 10.5220/0010235703770385
In Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021), pages 377-385
ISBN: 978-989-758-486-2
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

377



 

 

communication can increase the level of certainty 
regarding a vehicle’s surroundings and serves as an 
ability for autonomous driving. 

In this paper, we propose an autonomous driving 
movement control system through V2V 
communication by applying End-to-End deep 
learning. Compared with the existing system, the 
method we propose has the following two main 
contributions, as follows. 
1) We propose a novel method to predict the 

autonomous driving movement control through 
V2V communication. With the V2V 
communication, the autonomous vehicle can 
achieve a set of data including the motion state 
and the driver’s first view images from the 
surrounding vehicle. The additional information 
through V2V communication can improve 
system performance. 

2) We propose a novel network architecture for the 
autonomous driving movement control by 
combining CNN with LSTM. Using the current 
view and motion state from the past, the system 
can perform better, because it can capture more 
temporal information through the relationship 
between the sequence frames. 

The rest of this paper is organized as follows. 
Section 2 gives an overview of the state-of-the-art 
related work. The solution we propose is explained in 
Section 3. In Section 4, the experimental details for 
our system are given. Section 5 details the evaluation 
of the experiments and the corresponding analysis. 
The conclusion of our work is given in Section 6. 

2 RELATED WORK 

In the past few decades, great successes have been 
achieved in autonomous driving. With the 
development of basic knowledge in deep learning, 
research groups and companies have started to 
attempt a deep learning-based method to solve the 
autonomous driving problem. We analyze the great 
related work in the past few years and simply 
categorize them into two groups: rule-based methods 
and perception-based methods. 

2.1 Rule-based Methods 

Rule-based methods divide the autonomous driving 
problem into several small tasks, such as interaction 
with cars, lane following, pedestrian detection, and 
traffic light recognition. Rule-based methods tend to 
solve all the small tasks independently and fuse all the 
results obtained by each task to achieve the final 

movement control. The key point of the rule-based 
system is car detection and scene understanding. 
Some traditional classic methods use bounding boxes 
to detect cars. However, the size of the bounding box 
could influence the final results, and the margin of the 
bounding box seems a waste of spatial information. 
To solve these problems, semantic segmentation has 
become more and more popular. Semantic 
segmentation estimates the probability of every pixel 
and finally makes the whole scene understandable. 
Meanwhile, the lane detection also plays an important 
role in rule-based systems. It is a simple way to keep 
the vehicle in the lane and waiting for the next 
movement control. 

Even though rule-based methods have achieved 
great success, the powerful sensor may intensively 
increase the budget. A sensor with the vision of the 
360-degree field is five times as expensive as the one 
with the vision of the 120-degree field. It is very hard 
to build an autonomous vehicle in the budget unless 
the price of the sensor lowers.  Besides, each result 
gained from the sensors could influence the final 
controls significantly. It may cause a significant 
problem even if one of the sensors is unfunctional. 
Although the rule-based system sounds reasonable, it 
is still a driver assistant system other than an 
autonomous driving system. 

2.2 Perception-based Methods 

Instead of dividing the large task into several small 
ones, the perception-based method simply learns the 
mapping from the images to the steering controls. 
ALVINN et al. proposed an idea first: they used a 
neural network to make the first attempt. Although 
the network is very simple and shallow, it can still be 
used in several certain situations. Based on that idea, 
LeCun et al. replaced the shallow network by six 
convolutional layers and called it an end-to-end 
system. The end-to-end system can map the raw 
pixels to the steering controls, and achieve great 
robustness to the various environment. With the 
development of convolutional neural networks in 
recent years, some traditional hardware companies 
have also joined this field. Recently, Nvidia collected 
the training datasets with three cameras from the left, 
right, and center, and trained a deep convolutional 
neural network to map the pixels to the steering 
controls. After the training procedure, one single 
image from the central camera can simply decide the 
steering control. However, all the methods mentioned 
above aim at processing data properly to achieve 
better performance. 
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In recent years, some companies and research 
groups such as DOCOMO and NISAN started to 
realize the importance of collecting data from other 
devices. However, none of them focus to use the data 
from other vehicles to improve the movement control 
of the autonomous vehicle. Olson et al. proposed a 
system that can collect the distance data from the 
other vehicles by scanning the QR code attached to 
the vehicle through the camera. Based on this idea, 
Eckelmann et al. improved the system by replacing 
the camera with a LiDAR sensor so that they can 
achieve the vehicle’s position in the surrounding 
environment. Moreover, Khabbaz et al. proposed a 
system with an overlooking view. The system can 
collect from the camera attached to a drone in the sky. 
However, all the systems mentioned above aim at 
transportation planning macroscopically. 

Our proposed work is based on the perception 
method. However, instead of directly using the 
images captured by the camera and simply mapping 
to the steering control, we take the V2V 
communication into account, which can provide more 
additional information to help the autonomous 
vehicle to make the movement decision. Besides, we 
consider the historical motion state as an important 
factor for making movement control decisions. 
Therefore, we design a network architecture using a 
combination of CNN and LSTM networks to fully use 
both spatial and the temporal information through the 
V2V communication.  

3 METHODOLOGY 

Our proposed work is based on the perception 
method. However, instead of directly using the 
images captured by the camera and simply mapping 
to the steering control, we take the V2V 
communication into account, which can provide more 
additional information. Besides, we consider the 
historical motion state as an important factor for 
making movement control decisions. Therefore, we 
design a network architecture using a combination of 
CNN and LSTM networks to fully use both spatial 
and temporal information through V2V 
communication. 

3.1 System Overview 

In this paper, we propose a novel method to learn the 
mapping from the images to the movement controls 
by taking advantage of both spatial and temporal 
information through V2V communication. We define 
the cooperative vehicle as to the one that can interact 

with the autonomous vehicle through V2V 
communication. The cooperative vehicle is a vehicle 
under human manual driving in front of the 
autonomous vehicle. We consider that a camera is 
attached to the center of the cooperative vehicle that 
can collect image data with the driver’s view. A 
cooperative vehicle can collect data and help the 
autonomous vehicle make the movement control by 
sending the data back to the autonomous vehicle. Due 
to the low latency and high reliability of the 5G 
system, the data from the cooperative vehicle can not 
only enhance the safety of transportation but also 
manage the traffic intelligently. Through the V2V 
communication, additional data captured by 
cooperative vehicle could constantly send back to the 
autonomous vehicle. On the other hand, the temporal 
information is provided by the time-series images 
from both autonomous vehicles and cooperative 
vehicle. The system combines two sets of data to 
decide the driving motion control for the autonomous 
vehicle. 

We believe that the perception-based method 
should imitate human manual driving. The only three 
concerns that arise when people drive manually are 
the steering angle and the speed of the current car, 
which can be interpreted as acceleration or brake, as 
well as the surrounding environment. In case of V2V 
communications, the surrounding environment is the 
state of the cooperative vehicle. Therefore, the 
vehicle movement control can be described as 
follows: 

 

ܥܯ       ൌ	 ሼsteering	angle, speedሽ              (1) 
 

where the MC denotes movement control. V 
represents vehicle. Based on the description (2), we 
can formulate our model as follow: 
 

௨௧ܥܯ			
௧ାᇞ௧ ൌ ሼܥܯ௨௧

௧ ௧ܥܯ, ሽ                   (2) 
 

where the auto stands for the autonomous vehicle, and 
Coor stands for the cooperative vehicle. The 
movement control of the autonomous vehicle at time 
ݐ ᇞ  is determined by two sets of data that are both ݐ
the movement control of the autonomous vehicle at 
time t, and the movement control of the autonomous 
vehicle at time t. Each set of the movement control 
can be described by two parameters that are the 
steering angle and the speed of the current vehicle. 

Figure 1 shows an overview of our proposed 
method. Our approach tries to minimize the 
difference between the human manual driving and 
autonomous driving, and make the system more 
stable and accurate. Our approach takes the two 
sequential image frames and historical motion state as 
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the input and predicts the future motion state which is 
the steering angle and the speed for the autonomous 
vehicle. 

 

Figure 1: Overview of the V2V communication 
Autonomous movement planning system. The red one is the 
autonomous host vehicle with a front central camera. The 
sequential images in the blue rectangle is collected through 
V2V communication. The data processing part combines 
two sets of data to control the autonomous vehicle 
movement that are the steering angle and the speed. 

3.2 Vehicle-to-Vehicle Communication 

In recent years, the Vehicle-to-Vehicle (V2V) 
communication has gained more and more attention. 
With the development of the Fifth Generation (5G) 
mobile communication system, we believe that the 
V2V communication is a key technology to achieve 
high-level autonomous driving. In order to make the 
autonomous driving system work under 5G in the 
near future, we try to establish an autonomous driving 
system through V2V communication. Most of the 
existing autonomous driving systems rely on the 
sensor equipment to monitor the surrounding 
environment. However, the powerful sensor 
equipment would cost too much, and exceed the 
budget eventually. More importantly, the 
autonomous vehicle would never be isolated in the 
environment especially in the urban scene. The 
interaction with other vehicles should be also taken 
into consideration. 

In Figure 2, the host car is an autonomous vehicle 
with a camera in the center. The central camera 
captures the sequential images while driving. 

Meantime, the cooperative vehicle is ahead of the 
host autonomous vehicle, and also keeps capturing 
the images through its own center camera. Under the 
V2V communication, we assume that the cooperative 
vehicle communicates with the host autonomous 
vehicle by sending the driving state, which is speed, 
steering angle, and the sequential images from the 
central camera. The autonomous vehicle receives the 
data from the cooperative vehicle and combine the 
received data with the autonomous vehicle’s data, and 
start to process the two sets of the data through a deep 

neural network (DNN). In this paper, we assume the 
autonomous vehicle and cooperative vehicle are away 
from each other. The movement control using the 
model indicated in (3) through V2V communication. 

 

Figure 2: Overview of the V2V communication. The red 
one is the autonomous host vehicle with a front central 
camera. The blue one is the cooperative vehicle that also 
collects the sequence images from the central camera. The 
V2V communication allows the cooperative vehicle to send 
the data back to the autonomous vehicle to help the 
autonomous driving system make the movement control. 

3.3 CNN-LSTM Architecture 

The goal of the system is to learn the mapping from 
two sets of image data to the autonomous vehicle 
movement control. Both spatial and temporal 
information would be used through the End-to-End 
structure. The spatial information is the features 
extracted by CNN from the input frames that are 
obtained by the autonomous vehicle and the 
cooperative vehicle. The temporal information comes 
from the relationship between the sequential image 
frames. In this paper, we propose a novel network 
architecture that combines the CNN and LSTM 
networks, as shown in Figure 3 We use the CNN 
network to capture the feature from the input frames, 
and use the LSTM network to fuse these features. The 
recursive structure of LSTM can keep past 
information for regression. The whole network can 
take advantage of both spatial and temporal 
information. We detail the CNN and LSTM networks 
as follows. 

 

Figure 3: The data processing flow of the system proposed 
in this paper. 
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CNN: CNN has been approved as the most efficient 
and suitable way to solve traditional problems in the 
computer vision field such as segmentation and scene 
understanding.  The key to train a network is the input 
data, annotation, and network architecture. Our goal 
is to find the best network architecture for feature 
extraction. We want to keep as much as spatial 
information through the convolution processing. To 
the best of our knowledge, ResNet has been 
demonstrated in many fields. In this work, we apply 
the transfer learning. The whole CNN network is pre-
trained on the ImageNet dataset. 
LSTM: To the best of our knowledge, the exiting 
work only focuses on one input frame, which may 
result in lack of temporal information of the whole 
system. We believe that human manual driving 
should also contain the drive motion history. 
Therefore, we think the motion history state is also 
important to train the network and make it stable. 
Based on this idea, we apply the LSTM network to 
capture the temporal information. LSTM is a well-
improved recurrent neural network by introducing 
memory gates. LSTM avoids gradient vanishing and 
is capable of learning long-term dependencies. In 
recent years, LSTM has been demonstrated as a good 
way in the prediction field. LSTM is widely used also 
in the classification field.  

As shown in Fig. 3, we place the LSTM network 
after CNN. This placement allows the LSTM network 
to fuse all the spatial features and the motion history 
state into the current state. The final movement 
control for autonomous vehicle is decided by its own 
motion history state and the cooperative vehicle’s. 
Table 1 shows the network architecture proposed in 
this paper, where Conv represents the convolutional 
layer.  

Table 1: Proposed Network Architecture. 

Layer Type Size Stride Activation 
1 Conv1 5*5*24 5,4 ReLu 
2 Conv2 5*5*32 3,2 ReLu 
3 Conv3 5*5*48 5,4 ReLu 
4 Conv4 5*5*64 1,1 ReLu 
5 Conv5 5*5*128 1,2 ReLu 
6 LSTM 64 - Tanh 
7 LSTM 64 - Tanh 
8 LSTM 64 - Tanh 
9 FC 100 - ReLu 

10 FC 50 - ReLu 
11 FC 10 - ReLu 
12 FC 2 - Linear 

 

4 EXPERIMENTS 

In this section, we explain the data setup and details 
of our experiments. 

4.1 Data Setup 

In this paper, we apply the Udacity dataset for 
experiments. The Udacity dataset has 223GB of 
image frames and logs data from 70 minutes during 
driving with the annotation of latitude, longitude, 
gear, brake, throttle, steering angles, and speed. The 
data were collected on two separate days, where one 
day was sunny, and the other was overcast. The FPS 
of each video data is 20Hz with a resolution of 
640*480 pixels. 

In this paper, the maximul speed of the 
autonomous vehicle and the cooperative vehicle is 
100km/h. The steering angle of the autonomous 
vehicle and the cooperative vehicle ranges [-π/2, π/2]. 
The range in [-π/2, 0] is defined as to go left, and [0, 
π/2] is defined as go right. We set a fault tolerance of 
autonomous driving. The fault tolerance for the 
steering angle is 4 degrees, and the fault tolerance for 
acceleration is 4km/h. 

4.2 Network Setup 

After the data setup, we obtain the images data with 
the corresponding annotation. For training the 
autonomous driving model, we use a subset of the 
data acquired from the Udacity dataset. Based on the 
80/20 split policy, we split the data into 80-20 
training-testing for our experiments. In the training 
procedure, we set the learning rate as 0.0001 with 
stochastic gradient descent (SGD). The momentum is 
set to 0.99, with a batch size 16. We also apply the 
dropout layer and batch normalization layer to let the 
network avoid the overfitting problem. The input to 
the CNN is images with the annotation. The output 
from the CNN and the motion history state are the 
input to the LSTM. In order to avoid the gradient 
explosion of the LSTM, we set the gradient clip to 10. 
The hidden unit number of the LSTM is set to 64. The 
whole network outputs the next autonomous driving 
movement control, which is the steering angle and 
speed in continuous values. 

5 RESULTS AND DISCUSSION 

In this paper, we conducted the following five 
experiments to evaluate our work. 
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(1) We conduct experiments for evaluating the 
validity of the V2V communication by 
comparing the two cases: with and without a 
cooperative car. 

(2) We conduct experiments for finding the best 
combination of the CNN-LSTM architecture by 
applying three CNN architectures which is 
Nvidia, Inveption-v3, and the ResNet-152. 

(3) We conduct experiments for evaluating the 
proposed CNN-LSTM system by comparing the 
network with and without LSTM. 

(4) We change the values for the parameter x, which 
is for controlling the number of input frames so 
that the x value that achieves the best 
performance is found. 

(5) We change the distance between the autonomous 
and cooperative vehicles so that we can evaluate 
how the distance influences the movement 
control of the autonomous vehicle.  

All the experiments use the mean absolute error 
for the steering angle and speed (Eq. (3)) for 
evaluation: 
 

ܧܵܯ																	 ൌ 	
ଵ


∑ | െ	݃|

ୀଵ .                  (3) 

 

where  stands for the prediction, and the ݃ stands 
for the ground truth. The angle is in degree, and the 
speed is in km/h. In the experiments, we try to 
minimize the difference between the output and the 
ground truth. However, we do not need the output to 
be exactly the same as the ground truth. In other 
words, the system can still perform well if there is 
only a small error between the prediction and the 
ground truth. Therefore, we set this small error as a 
threshold ݏݐ  to evaluate driving motion ܯܦ . 
Predictions whose MSE are below the ݏݐ should be 
considered as correct driving motions; otherwise, 
wrong driving motions. We set parameter ܯܦܥ  to 
represent the correct driving motion, and ܹܯܦ  to 
represent the wrong driving motion. Then parameter 
ܯܦܥ  and ܹܯܦ  can be calculated in Eq.(4) as 
follows: 
 

൜
| െ	 ݃| 	 ,ݏݐ ܯܦ ൌ ܦܯܥ
|	 െ	݃| ൏ ,ݏݐ ܯܦ ൌ ܦܯܹ

.            (4) 

 

Then, we define a system performance score as 
 :in Eq.(5) to evaluate the system ܥܵܧܲ
 

ܥܵܧܲ	          ൌ ܯܦܥሺ/ܯܦܥ ܹܯܦሻ.           (5) 
 

As mentioned earlier, we set the threshold of the 
steering angle as 4 degrees, and the 4km/h for the 
speed. If the driving motion control is decided every 
half second, the physical error in the vehicle moving 

direction is 0.399m and the vertical direction is 
0.055m. It would cause no physical damage in the real 
world. 

5.1 Evaluation of V2V Communication 

Here, we evaluate the influence of V2V 
communication. In our opinion, the autonomous 
vehicle is never isolated in the environment, and the 
interaction with other vehicles would constantly 
happen. We believe that the autonomous driving 
system could perform better if it can get the data from 
the cooperative vehicle. In order to confirm the 
validity of our proposed system, we test the system 
with and without the V2V communication and keep 
the rest of the setting the same in the comparison 
experiment. The results are shown in Table 2, which 
lists the MSE and system performance score ܲܥܵܧ 
for the steering angle and speed. The MSE of angle is 
in degree, and the speed is in km/h. 

The results indicate that the system performs 
better with V2V communication. The MSE and 
system performance score ܲܥܵܧ are both improved 
by taking advantage of the data from the cooperative 
car. This result implies that the V2V communication 
can make the system more stable and accurate, which 
is similar to humans’ manual driving: i.e., humans 
keep attention to the frontal car. 

Table 2: Performance of with and without V2V 
communications. 

Method Item MSE PESC 
Without 

V2V 
Angle 10.73 60.8% 
Speed 11.35 56.3% 

With  
V2V 

Angle 3.69 84.2% 
Speed 3.16 78.9% 

Table 3: Performance of different CNN-LSTM 
architectures. 

CNN Item MSE PESC 
Nvidia Angle 7.28 67.3% 

Speed 10.89 61.1% 
Inveption-v3 Angle 7.11 71.7% 

Speed 4.68 73.5% 
ResNet-152 Angle 3.69 84.2% 

Speed 3.16 78.9% 

5.2 Evaluation with Different CNN 
Architectures 

In our proposed CNN-LSTM architecture, 
experiments compare different CNN’s. This 
experiment implements three different CNN-LSTM 
combination architectures: NVIDIA, Inception-v3, 
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and ResNet-152 CNN architecture. Table 3 shows the 
results, where MSE and system performance score 
 for the angle and speed for the three CNN’s are ܥܵܧܲ
listed. 

Obviously, ResNet-LSTM architecture performs 
the best among all the three architectures. 

5.3 Evaluation of LSTM Architecture 

This experiment evaluates how the LSTM 
architecture, which processes the motion history state, 
influences the autonomous driving. The experiments 
compare the following two networks: ResNet-LSTM, 
and the ResNet only (without LSTM). The results are 
shown in Table 4, in which MSE and system 
performance score ܲܥܵܧ for the angle and speed for 
ResNet only and ResNet-LSTM are listed. 

Obviously, the CNN-LSTM architecture 
improves both MSE and system performance score 
ܲ݁ܵܿ , which demonstrates that the motion history 
state information does influence the future motion 
state. Although the MSE for speed is not significantly 
improved, the CNN-LSTM structure does improve 
the system performance score ܲܥܵܧ , which means 
that the future motion state prediction with the 
historical information makes the whole system more 
accurate and stable. 

Table 4: Performance of architecture with or without 
LSTM. 

Architecture Item MSE PESC 
ResNet only Angle 15.63 63.8% 

Speed 9.89 74.1.% 
ResNet-
LSTM 

Angle 3.69 84.2% 
Speed 9.27 78.9% 

5.4 Evaluation of Sequential Image 
Frame Inputs 

In this experiment, we formulate the V2V 
communication as follows. The autonomous vehicle 
and cooperative vehicle are away from each other. At 
time t, we assume the cooperative vehicle starts to 
acquire sequential image and send them to the 
autonomous vehicle. During this procedure, the 
autonomous vehicle can collect x frames in total. 
Combining the data from the autonomous vehicle, it 
can obtain 2x frames as the input to the DNN.  

The primary task is finding the optimal x for 
autonomous driving through V2V communication. In 
this experiment, we change the value of x, keeping 
the other parameters constant. Since the FPS of the 
Udacity dataset is 20, it means that the movement 
control decision is made in every x/20 second. 

Therefore,we set the x as 
{2,4,6,8,10,12,14,16,18,20}, and find the x that 
achieves the best performance among the above-
mentioned x values. The results are shown in Table 5, 
in which MSE for the angle and speed for the different 
x values are listed.  

 

Figure 4: Performance with different parameter x. 

Clearly, the number of input frames influence the 
system performance significantly. In Fig. 3, we plot 
the results shown in Table 5. According to Table 5 
and Fig. 4, it turns out that x=8 gives the best 
performance for both angle and speed which means 
that the movement decision made in every 8/20 = 0.4s 
can achieve the best performanve overall. 

Table 5: The Performance with different parameter x. 

X 4 6 8 10 
Angle 4.68 3.87 3.69 4.05 
Speed 3.76 3.32 3.16 3.40 

X 12 14 16 18 
Angle 4.68 6.57 9.45 11.52 
Speed 3.56 3.80 4.32 4.52 

5.5 Evaluation of Distance  

As can be seen in the model described in Fig. 1 in 
Section 3.2, there is a distance between the 
autonomous vehicle and the cooperative vehicle in 
the vehicle moving direction. Although V2V 
communication could improve the performance of the 
autonomous driving system, not all cooperative 
vehicles could influence the autonomous vehicle 
movement control. Same as human manual driving, 
the interaction with the nearby vehicle has a larger 
influence on the movement control. To verify the 
distance influence, we set a distance gap parameter 
∆݀. In this experiment, we find out how the distance 
between the autonomous vehicle and the cooperative 
vehicle could influence the autonomous vehicle 
movement control. 
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Similar to Section 5.4, we change the parameter 
∆d, keeping the other parameters constant. In this 
experiment, as described in Section 5.4, we set x as 8, 
and try to find out how the ∆t would influence the 
results. This experiment sets ∆d value every 10 
between 0 and 90. We use the MSE of the angle and 
speed to evaluate the influence of ∆d. Table 6 shows 
the results and Fig. 5 plots all the results. 

Table 6: Performance of different ∆d values. 

∆d 10 20 30 40 
Angle 3.64 3.53 3.69 4.22 
Speed 3.94 3.83 3.76 3.90 
∆d 50 60 70 80 

Angle 5.11 6.97 8.35 10.19 
Speed 4.12 5.86 6.39 8.13 
 
In Fig. 5 we can see that the best performance is 

achieved at ∆d =20. Moreover, Fig. 4 also shows that 
MSE significantly increases when ∆d exceeds 40. 
Therefore, we assume that ∆d between 10 and 40 has 
the strongest influence on the autonomous vehicle. 
Considering the current speed is nearly 20m/s, the 
V2V communication works best when the distance 
from the autonomous host vehicle to the cooperative 
vehicle is between 10m to 40m. 

 

Figure 5: Performance with different distance values. 

6 CONCLUSIONS 

In this paper, we have proposed a novel V2V 
communication based autonomous vehicle driving 
system that takes advantage of both spatial and 
temporal information. The proposed system consists 
of a novel combination of the CNN-LSTM networks 
for controlling steering and speed based on the spatial 
and temporal information obtained by the cameras 
attached to the autonomous host vehicle and 
cooperative vehicle. 

To confirm the validity of the proposed system, 
we conducted experiments for evaluating the MSE 
and accuracy of the steering angle and car speed using 
the Udacity dataset.  Experimental results are 
summarized as follows. 
(1) By comparing the two cases: with and without a 

cooperative vehicle, “with a cooperative vehicle” 
outperforms “without”, which clarifies the 
validity of the V2V communication.  

(2) By comparing the networks with and without the 
LSTM in the proposed system, it turns out that 
“with” works better than “without”, which means 
that historical motion information, which is 
processed by the LSTM, is useful. 

(3) To find the best CNN architecture in the 
proposed system, three different CNN’s are 
compared.  Res-Net turns out to be the best 
among the three. 

(4) As a result of exploring the number of input 
sequential frames, eight frames turn out to 
achieve the best performance. 

(5) As a result of exploring the distance between the 
host and cooperative cars, ten to forty meters turn 
out to achieve a robust result on the autonomous 
driving movement control. 

In the future, we may expand the V2V 
communication working scenarios to combine it with 
signals like traffic. Meanwhile, we would like to 
improve the network learning ability and accuracy 
and try to make the system work for more application 
scenarios. 
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