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Abstract: Segmentation of organs-at-risk (OAR) in MR images has several clinical applications; including radiation 
therapy (RT) planning. This paper presents a deep-learning-based method to segment 15 structures in the head 
region. The proposed method first applies 2D U-Net models to each of the three planes (axial, coronal, 
sagittal) to roughly segment the structure. Then, the results of the 2D models are combined into a fused 
prediction to localize the 3D bounding box of the structure. Finally, a 3D U-Net is applied to the volume of 
the bounding box to determine the precise contour of the structure. The model was trained on a public dataset 
and evaluated on both public and private datasets that contain T2-weighted MR scans of the head-and-neck 
region. For all cases the contour of each structure was defined by operators trained by expert clinical 
delineators. The evaluation demonstrated that various structures can be accurately and efficiently localized 
and segmented using the presented framework. The contours generated by the proposed method were also 
qualitatively evaluated. The majority (92%) of the segmented OARs was rated as clinically useful for radiation 
therapy. 

1 INTRODUCTION 

Head-and-neck cancers are one of the most common 
cancers worldwide causing more than 200 000 deaths 
per year (Tong et al., 2018). Radiation therapy (RT) 
is an important treatment option for head-and-neck 
cancer. In a state-of-the-art radiation therapy 
treatment plan, radiation dose is shaped precisely to 
the tumor. In that way, high energy photon/particle 
beams can eradicate cancer cells while sparing as 
much healthy tissues as possible. In the treatment 
preparatory phase accurate definition of the target 
volumes and organs-at-risk is essential. In the current 
clinical practice, the planning phase of radiation 

therapy is highly dependent on computer tomography 
(CT) scans, hence it provides the electron density data 
for the dose calculation algorithms. Therefore, it is 
common practice that the structure contouring takes 
place on the CT scans using information of further, 
more sensitive imaging modalities either separately 
or in fusion to the planning CT scans. Magnetic 
resonance (MR) is becoming more and more 
widespread as an additional imaging modality, due to 
its high contrast for soft tissues, high spatial 
resolution, non-ionizing radiation and non-invasive 
nature. These properties render MR imaging superior 
to the CT for cancer diagnosis and treatment 
planning, as precise detection and localization of the 
tumorous growth and surrounding organs-at-risk 
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(OARs) is crucial. For this reason, MR-only RT 
planning solutions are under heavy research, where 
the required electron density data is derived from a 
pseudo-CT created from the MR scan (Wiesinger et 
al., 2018). This workflow would be more convenient 
for the patient, as one single MR examination would 
deem enough for RT planning, as opposed to current 
practice where the patient is scanned on different 
imaging devices, often several times. Moreover, the 
additional radiation dose from the CT scan could also 
be avoided. 

Currently, the standard clinical practice often 
consists of manual contouring of OARs, which is 
performed for various structures slice-by-slice by 
experienced clinicians. This process is time 
consuming (takes usually several hours per patient), 
expensive and introduces inconsistencies due to both 
intra- and inter-observer variabilities (Chlebus et al., 
2019). The unmet need for precise and automated 
segmentation tools is unquestionable. Deep-learning-
based methods for image segmentation can bridge the 
limitations of traditional atlas and machine learning 
algorithms which are less suited to generalize for 
unseen patient anatomies. Convolutional neural 
networks (CNNs) are frequently used in medical 
image analysis. In 2018, a model-based segmentation 
method was proposed (Orasanu et al., 2018) applying 
a CNN-based boundary detector to get better results 
compared to the boundary detector using classic 
gradient-based features. In the past few years U-Net 
architectures (Ronneberger et al., 2015) became the 
new state-of-the-art for image segmentation. For 
example, a method proposed in (Mlynarski et al., 
2019) uses a 2D U-Net for multi-class segmentation 
of 11 head organs and applies a graph-based 
algorithm that forces the connectivity between 
neighbouring organs. Both, Lei et al. (2020) and Chen 
et al. (2019) developed a framework that first 
localizes and then segments 8 and 6 head-and-neck 
OARs, respectively. The method proposed in (Lei et 
al., 2020) utilizes 3D Faster R-CNN to detect the 
locations of OARs and uses attention U-Net to 
segment them, while the algorithm in (Chen et al., 
2019) uses standard 3D U-Nets (Çiçek et al., 2016) in 
a cascade manner in a way that it uses prior 
segmentations (e.g. brainstem and eyes) to determine 
the bounding box of the next target OAR (e.g. optic 
nerves). Our proposed method utilizes a similar 
approach, where the target OAR is first roughly 
localized and then fine-segmented. 

The presented method describes a U-Net deep 
neural network architecture to segment various OARs 
in the head region, crucial for radiotherapy planning. 
As an initial step for head-and-neck OAR 

segmentation, we aim to segment a total of 15 
relevant structures in this region, including structures 
of the optic system (eyeballs, lenses, lacrimal glands, 
optical nerves, chiasm), as well as the brain, 
brainstem, pituitary gland, cochleas, and patient body 
contour. Examples of these structures are shown in 
Figure 1.  

 

Figure 1: Manual annotations of organs-at-risk in head 
region. Upper row: T2-weighted MR images in axial, 
coronal and sagittal directions, respectively. Lower row: 
manual annotations of the 15 organs-at-risk. 

The difficulties in segmenting organs within the 
head region, originates from suboptimal image 
resolution and low contrast between neighbouring 
tissues. For better segmentation, we developed a two-
stage framework for separately locating the target 
OAR with 3 slice-based 2D models and segmenting it 
with a 3D model. Additionally, for larger structures 
(body, brain), which might not be completely covered 
on the scan, only one 2D model is utilized for 
segmentation. 

The proposed method differs from the algorithm 
in (Chen et al., 2019) as it is not a cascaded approach, 
so the segmentation of OARs does not depend on the 
segmentation of other OARs, similarly to the method 
in (Lei et al., 2020). Additionally, different models 
are trained independently for each organ unlike in 
(Mlynarski et al., 2019). Another main difference 
from the previously mentioned state-of-the-art 
methods is that the proposed method is applied to 
segment more OARs in the head region. Furthermore, 
the models’ accuracy is also evaluated on an unseen 
dataset with different MR image acquisition settings 
from a separate source than the source of the training 
dataset.  

2 METHODS 

The proposed method is based on deep learning 
image segmentation. The algorithm starts with a 
localization step that involves training 2D U-Net 
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models on axial, coronal and sagittal planes, fusing 
their prediction maps, and using it to determine the 
location of each organ by a surrounding 3D bounding 
box. After this step, the proper image part with a 
safety margin is cropped from the 3D image and a 3D 
U-Net model is used to segment this smaller area. 
This approach results in significantly less false 
positive voxels in the segmentation and allows 
considerably faster model training and inferencing. 

This section describes the image datasets used in 
this study, the model architecture, the details of the 
model training, and the applied pre- and post-
processing methods. 

2.1 Image Dataset 

The image dataset incorporated in this work is a 
combination of a publicly available dataset and a 
private database. The public dataset is from the RT-
MAC (Radiation Therapy – MRI Auto-Contouring) 
challenge hosted by the American Association of 
Physicists in Medicine (AAPM), referred to as 
AAPM dataset (Cardenas et al., 2019). The AAPM 
dataset (available at The Cancer Imaging Archive 
(TCIA) website (Clark et al., 2013)) includes 55 T2-
weighted images of the head-and-neck region with 2 
mm slice thickness and 0.5 mm pixel spacing, 
acquired with Siemens Magnetom Aera 1.5T scanner. 
All scans have a matrix size of 512x512x120 points 
and a squared 256 mm field of view. In most of the 
scans, the top of the head is missing. 

The private database (acquired by our clinical 
partners) consists of 24 T2-weighted MR images 
depicting the head-and-neck area, scanned using 
different T2-weighted MR sequences (2D 
PROPELLER, 2D FRFSE, 3D CUBE), with slice 
thickness between 0.5 and 3 mm. These scans were 
acquired on volunteers, using GE scanners 
(MR750w, SIGNA (PET/MR, Artist, Architect)). 
These scans, unlike the ones in the AAPM dataset, are 
not uniform, and differ in MR image parameter 
settings (e.g. resolution, pixel spacing). The models 
in this study were trained solely on the publicly 
available dataset and evaluated on both the public and 
private databases. 

Manual labelling for the AAPM dataset was done 
by medical students under the supervision of a 
medical doctor experienced in clinical delineation, 
according to the RTOG and DAHANCA guidelines 
(Brouwer et al., 2015). The list of structures was 
defined together with radiation oncology specialists, 
prioritizing those structures that are important for RT 
planning of head-and-neck tumors. Irradiating these 
structures above dose constraints would cause severe 

side effects. For example if the anterior visual 
pathways – optic nerves and chiasm – are exposed to 
excessive radiation, it may lead to radiation-induced 
optic neuropathy, which is defined as a sudden, 
painless, irreversible visual loss in one or both eyes 
occurring up to years after radiation treatment 
(Akagunduz et al., 2017). Excessive radiation 
exposure can be avoided by optimizing irradiation 
parameters, like dose, beam shape and direction. 

As not all scans included every organ (e.g. in 
some scans only half of the eyeballs were present), 
the number of manual segmentations varies for each 
structure. The number of contours per structure can 
be found in Table 1, where positive slices refer to the 
(axial) slices in every MR image in the AAPM dataset 
that contain the structure and negative slices are the 
ones that does not contain the structure. 

Table 1: Number of contours drawn in the AAPM datasets 
and the count of positive and negative (axial) slices per 
organ (left side/right side). (g.:gland). 

Structure No. of 
contours

Pos. 
slices 

Neg. slices 

eye (L/R) 22/22 290/287 2350/2353
lens (L/R) 22/22 113/115 2527/2525
lacrimal g.(L/R) 22/22 179/175 2461/2465
optic nerve (L/R) 36/36 158/162 4162/4158
chiasm 35 97 4103
brain 31 1244 2476
brainstem 30 975 2625
pituitary g. 28 108 3252
cochlea (L/R) 31/31 79/73 3641/3647
body 29 3480 0 

 
The contoured cases were separated into 3 subsets 

(training, validation, and testing) using 60:20:20 
ratio. The number of the training and validation 
samples varied organ by organ, however, the test set 
included the same 5 cases for all organs. The train- 
validation- and test samples were used to optimize the 
model, to select the best model, and to evaluate the 
best model, respectively. For each organ the same 
train/validation/test separation was used for both 2D 
and 3D segmentation models. 

From the private dataset (that was only used 
during evaluation) 5 out of 24 scans were selected for 
quantitative evaluation. The annotations for all 15 
structures on these scans were defined by radiation 
oncologists. In all of the private cases the 
segmentation result was qualitatively evaluated. The 
manual contour is referred to as gold standard in the 
rest of the paper. 
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2.2 Preprocessing 

The following preprocessing was applied to the image 
dataset before model training and inferencing. First, 
the voxel size was normalized to be nearly equal to 
1x1x1 mm (using integer factor for up or down-
sampling). Then, the images were cropped or padded 
with zero voxels to have 256x256x256 resolution. 
Finally, min-max normalization was applied to 
intensity values, such that the intensity belonging to 
99.9 histogram percentile was used instead of the 
global intensity maximum. 

Additional preprocessing was applied to the 
image in case of body segmentation, which attempts 
to eliminate background noise using multilevel 
thresholding of Otsu’s method and morphological 
operations (including closing, dilation, and removal 
of air objects connected to the edge of the image). 

2.2.1 Harmonization 

The scans in the private database have different 
intensity range compared to the AAPM dataset. 
Therefore, an image harmonization step was 
introduced prior to the data preprocessing, which 
changes the intensity of the image to be statistically 
similar to the reference image chosen from the 
training samples. 

For image harmonization, each MR volume 𝐼 was 
decomposed into images belonging to different 
energy band images: ሼ𝐿, 𝑖 ൌ 1, … , Bሽ using: 

𝐿ሺ𝑥ሻ  ൌ  𝐼ሺ𝑥ሻ,  𝐿ሺ𝑥ሻ  ൌ   𝐿ିଵሺ𝑥ሻ ∗ 𝐺ሺ𝑥; 𝜎ሻ (1)

where 𝐺  is a Gaussian kernel and 𝜎  is randomly 
selected increasing number. Furthermore, let 

𝐼ሺ𝑥ሻ  ൌ  𝐿ିଵሺ𝑥ሻ  െ  𝐿ሺ𝑥ሻ, 𝑓𝑜𝑟 i ൌ 1, … , B െ 1 (2)

𝐼ሺ𝑥ሻ  ൌ  𝐿ିଵሺ𝑥ሻ (3)

The above energy bands are computed for a reference 
image (of the AAPM dataset). The aim is to make the 
statistics (i.e. mean and standard deviation) of the 
energy bands belonging to an input (𝑖𝑛) image similar 
to that of the reference (𝑟𝑒𝑓) image: 

𝐼
 ൌ ቀ𝐼

 െ 𝑚𝑒𝑎𝑛൫𝐼
൯ቁ ∙

𝑠𝑡𝑑൫𝐼
൯

𝑠𝑡𝑑൫𝐼
൯

 𝑚𝑒𝑎𝑛൫𝐼
൯ (4)

The harmonized image is computed by adding the 
modified energy band images ൛𝐼

, 𝑖 ൌ 1, … , Bൟ. 
An example of the input, output and reference 

image and their histograms is shown in Figure 2. The 
motivation for this preprocessing step is to reduce 
unwanted variability introduced by MR parameter 
settings and to adjust the images of the private dataset 

used for evaluation such as to be similar to the 
training examples from the AAPM dataset. The 
harmonization was only applied to the private dataset 
before the evaluation. 

 

 

Figure 2: Image harmonization. In the upper row, the input, 
the harmonized and the reference image is shown, 
respectively. The lower row shows their histograms in the 
same order. 

2.3 2D Model 

 

Figure 3: Architecture of the 2D segmentation model used 
for localization. The axial model is depicted on the figure, 
but the same architecture is used for coronal and sagittal 
models, as well. 

The 2D model’s architecture (shown in Figure 3) is a 
state-of-the-art U-Net, which is used to segment 
structures on axial, coronal, or sagittal slices 
independently (i.e. not using 3D information). The 
size of the input is a 256x256 single-channel matrix 
representing one slice of the MR image which 
resolution is halved to 128x128 with a voxel size of 
2x2x2 mm. The output is a 128x128 matrix with 
prediction values, where 1 is the highest probability 
indicating the presence of the organ, and 0 is the 
lowest. The size of the output is increased to 256x256 
using upsampling as the last layer.  
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The model has 4 levels, at each level there are 2 
consecutive convolution filters (with 3x3 kernel) with 
batch normalization before the ReLU activation 
layers. The number of filters is equal to 16 at the input 
resolution and doubles after each pooling layer. The 
model has 4 pooling layers (with 2x2 pool size), so 
the resolution decreases to 8x8 (with 256 filters) at 
the “bottom” of the network. Subsequently, the image 
is gradually upsampled to the original resolution 
using skip connections at each resolution level. 

Each 2D model was trained for 75 epochs, except 
the brain and body model, where the number of 
epochs was set to 30. In each epoch 100% of positive 
(including the organ) and the same number of 
negative (not including the organ) slices were used. 
Due to randomization, most of the negative slices are 
used for training. For example, chiasm is detected in 
97 positive slices (vide in Table 1), thus only 97 out 
of 4103 negative slices are selected randomly in each 
epoch. Note that less samples were used during 
training than reported in Table 1, since that includes 
all (train/validation/test) cases. This approach 
accelerates and stabilizes the learning process and 
increases the accuracy of the final model. Adam 
optimizer was used with 8 batch size. The initial 
learning rate was 0.001, and it was halved after every 
25 epochs over the training process. During training, 
accuracy and loss were calculated based on Dice. At 
the end of each epoch the actual model was evaluated, 
and the final model was selected based on the 
validation loss. 

Separate model was trained for each (axial, 
coronal, sagittal) orientation. In case of paired organs, 
both left and right structures were included in the 
positive samples to increase the sagittal model’s 
accuracy. For the two largest structures (brain and 
body), which were partially covered in the input 
images, only the 2D axial model was trained. In these 
cases, the input resolution was equal to the original 
512x512, the model architecture included 2 more (6 
in total) pooling layers, and the model was trained for 
30 epochs. 

Although the accuracy of neither 2D model is 
outstanding (except for the body and brain 
segmentation), the combination of the 3 model 
outputs is a good basis for the localization of the 
organ. After applying each model (slice-by-slice) to a 
3D volume, the 3 predictions are combined in the 
following way. First, the predictions were binarized. 
Then, those voxels were taken, where at least 2 of the 
3 models predicted the organ. Finally, the largest 
connected component was taken. This combination of 
2D models is referred to as fused 2D model in the rest 
of the paper. 

2.4 3D Model with the Fused 2D 
Localization 

 

Figure 4: Architecture of the 3D segmentation model. The 
input resolution varies by organ. The size of brainstem's 
bounding box was used as an example. 

The main advantage of the bounding box localization 
for the 3D models is to speed up the training process 
and increase the segmentation accuracy. The size of 
the bounding box (encompasses the to-be-segmented 
organ) was pre-defined and calculated based on the 
whole training dataset. The centre of the bounding 
box was computed from the gold standard during the 
training, and it was computed from the fused 2D 
model during the inferencing. 

During the training of the 3D model, the bounding 
box of the organ is cut from the preprocessed image 
and fed into the CNN, thus the input of the network is 
considerably smaller than the original resolution 
(256x256x256). To account for possible inaccuracies 
of the fused 2D model, the centre of the bounding box 
was shifted with a random 3D vector before cutting 
(using enough safety margin to include all voxels of 
the organ) as an augmentation. In contrast to the 2D 
model training, the histogram-based intensity 
normalization as well as the additional mean/std 
normalization was applied only to the bounding box 
instead of the whole scan. 

The architecture of the 3D model (shown in Figure 
4) is created by changing the 2D model’s architecture 
to accommodate the 3D input. The 2D layers are 
replaced with 3D layers (convolution, pooling, 
upsampling). The number of pooling layers is 
decreased to 3 (using 2x2x2 pool size). The 
convolutional layers use 3x3x3 kernel size. The 
number of filters was increased to 24 at the input 
resolution (and doubled after each pooling layer). 

The 3D model was trained for 100 epochs. In each 
epoch all training samples were used. The batch size 
was reduced to 4 due to the increased memory needs 
of the network. The same (Adam) optimizer and flat 
(0.001) learning rate was used with best model 
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selection based on validation loss. Training and 
validation loss were defined with the Dice metric.  

Separate 3D models were trained for each OAR. 
During model inferencing the centre of bounding box 
was calculated automatically (note that the size is an 
organ specific constant) by taking the centre of the 
bounding box of nonzero pixels in the result of the 
fused 2D model. 

2.5 Postprocessing 

The prediction of the models was binarized using 0.5 
threshold and resized to the original resolution. 
Additional postprocessing was applied to body and 
brain segmentations that involved filling the holes 
and taking the largest connected component. 

2.6 Evaluation 

For each organ, all models (2D axial, 2D coronal, 2D 
sagittal, fused 2D, 3D) were quantitatively evaluated 
using the AAPM test set. Furthermore, the 3D models 
were (qualitatively and quantitatively) evaluated on 
the private cases. The following subsections describe 
the evaluation methods. 

2.6.1 Quantitative Evaluation 

The segmentation results were compared with the 
gold standard using Dice, and Surface Dice metrics. 

The Dice similarity coefficient is the most 
commonly used metric in validating medical image 
segmentations by direct comparison between 
automatic and manual segmentations. the formula for 
calculating Dice is the following: 

𝐷𝑖𝑐𝑒 ൌ 2 ൈ
|𝑋 ∩ 𝑌|

|𝑋|  |𝑌|
, (5)

where |𝑋| and |𝑌| are the number of voxels in the 
automatic and manual segmentations, respectively 
and |𝑋 ∩  𝑌|  is the number of overlapping voxels 
between the two segmentations. 

The limitation of this metric is that it weights all 
inappropriately segmented voxels equally and 
independently of their distance from the surface. 
Thus, when comparing two segmentations, assessing 
how well the surfaces of the contours are aligned can 
provide useful information about the segmentation 
accuracy. Surface Dice measures deviations in border 
placement by computing the closest distances 
between all surface points on one segmentation 
relative to the surface points on the other (Wang et  
al., 2019). The Surface Dice value represents the 

percentage of surface points that lies within a defined 
tolerance (as tolerance we used 1 and 2 mm). 

To be able to compare the quantitative results to 
the state-of-the-art, mean distance (MD) between 
manual and automatic segmentation ( 𝑋  and 𝑌 , 
respectively) is defined as follow: 

𝑀𝐷ሺ𝑋, 𝑌ሻ ൌ  
1

|𝑋|  |𝑌|
ቌ Inf

௬∈
𝑑ሺ𝑥, 𝑦ሻ   Inf

௫∈
𝑑ሺ𝑦, 𝑥ሻ

௬∈௫∈

ቍ (6)

Where 𝑑 is Euclidean distance. 

2.6.2 Qualitative Evaluation 

The segmentations were qualitatively evaluated on 
the private dataset by a radiation oncologist to assess 
the usability of the segmented contours for 
radiotherapy treatment planning (RTP). Each 
segmentation result was classified into one of the 
following 4 categories: 

1. The contour is missing, or it can be used for 
RTP after major corrections that would take 
similar time as re-contouring. 

2. The contour can be used for RTP after some 
corrections that would take less time than re-
contouring. 

3. The contour can be used for RTP after minor 
corrections that would take significantly less 
time than re-contouring. 

4. The contour can be used for RTP without any 
corrections.  

2.7 Implementation Details 

The deep learning training and inferencing 
frameworks were implemented using Keras 2.3 with 
Tensorflow 2.1 backend in Python 3.6 platform. The 
2D and 3D models were trained and tested on an HP 
Z440 workstation with 32 GB RAM, 12 core, 3.6 
GHz CPU and GTX 1080, 8 GB RAM, 2560 CUDA 
cores GPU. 

3 RESULTS 

3.1 Evaluation on AAPM Dataset 

Figure 5 demonstrates the best and the worst 3D 
results for all anatomy structures from the 5 test cases 
of AAPM dataset. In the images the gold standard is 
represented with red overlay, while the model 
prediction is shown with green outline. All results are 
displayed in the axial views.  
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Figure 5: The best ((A), (C) and (E)) and worst ((B), (D) and (F)) segmentation results in the axial direction for the 15 OARs 
((A) and (B) shows body, brain, brainstem, right and left cochlea, (c) and (D) shows the pituitary gland, right and left eyeball, 
right and left lens, (E) and (F) shows right and left lacrimal gland, right and left optic nerve and chiasm). The predicted result 
is depicted in green, and the gold standard is shown as a red overlay. 

Table 2 demonstrates the Dice metric reflecting the 
overall accuracy of the models and the Surface Dice 
metric, which provides the surface accuracy within a 
tolerated distance. The paired organs were trained and 
tested separately (left and right part) except for the 2D 
sagittal model, where both left and right parts were 
used since location information is not included in 
sagittal images (note that different accuracy of the left 
and right sagittal models is due to randomization 
during model training). According to the 2D results 
the accuracy of the models is similar, and none of 
them is significantly better than the other. It is 
remarkable that the fused 2D model outperforms most 
of the 2D models. The 3D model has an overall 
outstanding performance compared to the other 
models, except for the chiasm and the cochlea (R) 

structures where the 3D model was only the second 
best based on Dice accuracy.  

3.2 Evaluation on Private Dataset 

3.2.1 Qualitative Evaluation on the Private 
Database 

The proposed method was qualitatively evaluated on 
the set of 24 T2-weighted MR images of the private 
database for the 15 OAR structures. The results are 
summarized in Table 3. Our models were able to 
provide useful contour (i.e. rating ≥ 2) for 92% of the 
segmentation tasks, and only 8% of the contours was 
useless (including a few failed segmentations 
indicated as bold numbers in the table).  
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Table 2: 2D (axial (ax.), coronal (cor.), sagittal (sag.)), Fused 2D (F. 2D) and 3D model accuracy for 5 test cases of the public 
dataset. (BS: brainstem, co.: cochlea, lac.:lacrimal gland, ON: optic nerve, pituit.:pituitary gland). 

 Dice (%) Surface Dice (%) (1 mm) Surface Dice (%) (2 mm) 

  
2D 
ax. 

2D 
cor. 

2D 
sag. 

F. 2D 3D 
2D 
ax. 

2D 
cor. 

2D 
sag. 

F. 
2D 

3D 
2D 
ax. 

2D 
cor. 

2D 
sag. 

F. 
2D 

3D 

body  99.4 - - - - 98.1 - - - - 99.4 - - - - 

brain 97.8 - - - - 94.5 - - - - 97.5 - - - - 

BS 89.9 89.8 88.8 90.9 92.1 90.8 88.5 88.4 91.7 97.0 96.5 95.3 95.0 97.0 97.8 

chiasm 63.5 56.9 54.3 62.6 59.2 86.0 81.8 84.9 87.5 91.9 89.3 87.6 89.8 91.9 93.5 

co. (L) 62.8 65.7 67.5 72.9 82.3 90.7 85.8 86.1 94.9 97.3 95.0 88.8 89.0 97.3 100.0 

co. (R)  61.9 60.7 63.1 76.2 72.1 95.1 74.1 80.4 98.0 99.9 98.9 76.3 82.7 99.9 99.8 

eye (L) 92.6 89.1 93.7 93.7 93.9 98.9 92.0 98.0 98.7 99.7 99.7 97.0 99.3 99.7 100.0 

eye (R) 92.3 93.7 93.5 94.2 94.6 96.8 98.3 98.0 99.2 99.9 98.5 99.8 99.0 99.9 100.0 

lac. (L) 56.4 50.8 43.1 53.8 59.9 77.1 68.1 60.0 70.8 83.8 89.4 83.4 73.6 83.8 91.7 

lac. (R) 44.8 49.5 49.1 50.3 57.5 70.5 66.7 64.7 71.0 83.9 84.2 79.9 75.5 83.9 88.7 

lens (L) 74.2 75.5 74.5 77.7 79.7 93.6 96.3 98.0 98.3 99.4 97.3 98.1 99.7 99.4 99.9 

lens (R) 75.6 73.6 75.0 76.9 81.5 96.1 95.0 97.5 97.3 99.5 99.0 97.6 99.3 99.5 99.7 

ON (L) 68.1 61.3 66.0 71.6 73.7 88.4 82.0 87.9 89.8 93.9 93.4 88.1 93.0 93.9 95.8 

ON (R) 65.7 63.9 65.5 69.3 71.5 88.7 84.7 87.2 89.1 92.5 93.7 90.0 91.7 92.5 95.7 

pituit. 59.4 63.0 67.8 69.2 73.2 75.4 85.0 87.2 87.8 93.7 87.8 91.3 93.0 93.7 94.9 

 
3.2.2 Quantitative Evaluation on the Private 

Database 

The models were also evaluated quantitatively on 5 
annotated MR scans from the private database. The 
summarized results of the 3D models are found in 
Table 4 and Table 5. Compared to the results on the 
AAPM test examples, the accuracy metrics are 
somewhat lower. The models were able to provide 
contour for all organs on each scan, except for Exam 
14, where the proposed method for left lens failed and 
segmented the right lens (more details in discussion).  

3.3 Training and Segmentation 
Efficiency 

In this study, the training of a 2D model took 10-20 
minutes (per image orientation) except for body and 
brain, where it took several hours. The training of the 

3D model took ~10 minutes per organ. Note that 
during training no online augmentation was applied 
to the images in addition to the random shift of the 
bounding box. The average segmentation time (using 
GPU) including the preprocessing, inferencing of 
three 2D models, the computation of the bounding 
box, and the inferencing of the 3D model, and the 
post-processing took 30 seconds per organ per case. 

4 DISCUSSION 

Based on the quantitative evaluation metrics in Table 
2 and Table 4, the average Dice score of the 3D and 
2D axial models (for body and brain segmentation) 
indicates that the proposed method was able to 
segment the large anatomical structures with higher 
than 90% Dice score on the AAPM dataset. However, 
Dice metric was generally considerably lower for 
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Table 3: Qualitative evaluation of the private database by a radiation oncologist (MFS: Magnetic Field Strength, BS: 
brainstem, pituit.: pituitary gland, cochl.: cochlea, ON: optic nerve, lacr.:lacrimal gland, PROP: Axial Propeller sequence) – 
Bold numbers indicate the cases where the proposed method failed to segment the given organ. The exams that were used for 
quantitative evaluation are highlighted in bold. 

 Sequence  
(MFS) 

body brain BS pituit. 
cochl. 

left 
cochl. 
right

chiasm
ON 
left

ON 
right

eye 
left

eye 
right

lacr. 
left 

lacr. 
right 

lens 
left 

lens 
right 

Mean

Exam 1 PROP (1.5T) 4 3 3 3 3 3 2 3 2 4 4 4 4 4 4 3.3 

Exam 2 PROP (1.5T) 4 3 3 2 3 3 2 2 2 4 4 4 3 4 4 3.1 

Exam 3 PROP (1.5T) 2 2 3 3 3 4 3 1 1 3 3 3 1 4 4 2.7 

Exam 4 PROP (1.5T) 2 3 3 3 3 3 2 1 1 3 3 4 4 1 1 2.5 

Exam 5 PROP (1.5T) 4 2 3 2 4 4 1 1 1 4 4 4 4 3 4 3.0 

Exam 6 PROP (1.5T) 2 2 3 2 3 3 2 3 2 4 4 3 3 1 4 2.7 

Exam 7 CUBE (3T) 2 1 2 1 3 3 2 2 2 3 3 3 3 4 3 2.5 

Exam 8 CUBE (1.5T) 3 2 3 3 3 3 2 1 1 4 3 4 4 3 3 2.8 

Exam 9 
CUBE (3T) 4 2 3 2 3 3 2 2 2 3 3 3 4 3 2 2.7 

FRFSE (3T) 3 3 3 2 2 2 3 2 2 3 3 3 3 3 3 2.7 

Exam 10 
PROP (3T) 4 2 3 2 4 4 2 3 3 3 3 3 1 4 4 3.0 

FRFSE (3T) 3 2 4 2 3 3 2 3 3 3 3 3 4 4 3 3.0 

Exam 11 
CUBE (1.5T) 3 3 2 3 3 3 1 1 1 4 4 3 3 3 3 2.7 

PROP (1.5T) 4 2 4 2 3 3 2 2 2 3 3 3 3 3 3 2.8 

Exam 12 
CUBE (1.5T) 3 2 3 3 2 3 2 2 2 3 4 4 4 3 3 2.9 

PROP (1.5T) 4 2 3 3 4 4 2 3 4 3 4 3 4 3 4 3.3 

Exam 13 

CUBE (3T) 3 2 3 2 3 3 2 2 2 3 4 4 4 3 4 2.9 

PROP (3T) 4 2 3 3 2 4 3 2 2 3 3 3 3 3 3 2.9 

FRFSE (3T) 3 3 3 3 3 4 2 3 2 3 3 3 4 3 4 3.1 

Exam 14 
CUBE (1.5T) 2 2 3 2 3 3 2 1 2 3 3 3 3 1 3 2.4 

PROP (1.5T) 4 3 4 1 3 3 3 2 3 4 3 3 3 1 4 2.9 

Exam 15 CUBE (1.5T) 3 2 3 2 3 3 2 1 1 3 3 1 1 3 3 2.3 

Exam 16 
PROP (3T) 4 2 3 2 3 3 2 2 2 3 3 3 4 4 4 2.9 

FRFSE (3T) 3 1 3 3 3 3 2 2 2 3 3 4 4 3 2 2.7 

 Mean 3.2 2.2 3.0 2.3 3.0 3.2 2.1 2.0 2.0 3.3 3.3 3.3 3.3 3.0 3.3 

 
small structures (50-90%), where a slight mismatch 
(that might be clinically irrelevant in terms of their 
effect on radiotherapy treatment) can decrease the 
accuracy significantly. The average Surface Dice in 
Table 2 shows that at least 90% of segmented 
structures’ surface was properly outlined within a 
defined tolerance of 2 mm, meaning that only a small 
fraction (maximum of 10%) of the surface needed to 
be corrected compared to the gold standard surface. 
These results indicate that the proposed method can 
accurately segment various structures in the head 
region.  

Based on the qualitative evaluation on the private 
dataset in Table 3, the proposed method failed only on 
small organs, such as pituitary gland (1), optic nerves 
(3), lacrimal glands (3) and lenses (4). The reason 
behind this might be that their 2D models (trained on 
low number of positive slices) could not generalize 
well. Therefore, there was no overlap between any 
two of the 2D results when taking the majority vote. 
This resulted in an empty fused 2D result, and as a 
consequence, the bounding box for the 3D 
inferencing couldn’t be generated. This can be 
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Table 4: Dice accuracy for 5 annotated case of private database. (BS: brainstem, pituit.: pituitary gland, cochl.: cochlea, ON: 
optic nerve, lacr.:lacrimal gland). 

 Protocol body brain BS pituit. 
cochl. 

left 
cochl. 
right

chiasm
ON 
left 

ON 
right

eye 
left 

eye 
right

lacr. 
left 

lacr. 
right 

lens 
left 

lens 
right 

Mean

Exam 1 PROP 99.1 90.7 90.5 42.0 77.8 77.3 24.4 71.8 54.4 91.1 90.7 37.6 61.1 79.6 82.6 71.4 

Exam 2 PROP 97.5 92.2 89.7 57.4 49.0 57.3 69.1 41.2 42.3 93.1 90.7 37.0 56.9 51.8 49.4 65.0 

Exam 13 PROP 98.5 90.4 90.2 61.3 55.3 75.8 59.1 5.3 35.0 86.3 88.8 67.2 68.3 63.0 55.6 66.7 

Exam 14 PROP 99.2 89.4 87.2 1.3 54.0 59.2 34.7 15.1 47.4 91.7 90.7 38.4 28.7 0.0 53.4 52.7 

Exam 16 PROP 98.2 90.3 90.3 60.8 64.3 79.7 71.7 7.4 47.2 90.1 87.5 47.0 59.4 75.5 48.3 67.8 

 Mean 98.5 90.6 89.6 44.6 60.1 69.8 51.8 28.2 45.2 90.5 89.7 45.4 54.9 54.0 57.9 

Table 5: Surface Dice (2 mm) accuracy for 5 annotated case of private database. (BS: brainstem, pituit.: pituitary gland, 
cochl.: cochlea, ON: optic nerve, lacr.:lacrimal gland). 

 Protocol body brain BS pituit. 
cochl. 

left 
cochl. 
right

chiasm
ON 
left 

ON 
right

eye 
left 

eye 
right

lacr. 
left 

lacr. 
right 

lens 
left 

lens 
right 

Mean

Exam 1 PROP 99.4 81.4 91.4 96.0 95.1 99.6 92.2 95.2 84.9 100.0 99.1 79.5 95.5 98.9 99.2 93.8 

Exam 2 PROP 98.6 81.4 96.4 96.5 79.6 86.5 96.1 75.0 91.9 99.9 99.2 76.0 88.5 90.0 87.7 89.6 

Exam 13 PROP 98.6 77.5 96.0 92.5 97.4 91.0 81.6 22.6 72.0 99.1 99.5 90.9 88.1 92.1 86.2 85.7 

Exam 14 PROP 99.0 75.2 87.9 20.5 97.0 99.1 84.5 49.4 88.7 99.4 98.5 84.0 80.4 0.0 86.9 76.7 

Exam 16 PROP 96.7 89.3 96.6 92.0 93.9 98.1 96.3 27.0 82.0 99.3 99.2 73.6 94.1 98.7 94.2 88.7 

 Mean 98.5 81.0 93.7 79.5 92.6 94.9 90.2 53.8 83.9 99.5 99.1 80.8 89.3 76.0 90.8  

later fixed by detecting these small structures in 
connection with a larger organ located nearby.  

In some cases, the failed results were due to image 
properties that differed greatly from the training 
dataset. In case of the optic nerve segmentation, in 
two exams the low image quality resulted in poor 
visibility of optic nerves that would also have 
hampered the manual segmentation. An example is 
shown in Figure 6.(A). In exam 14, the left lens 
segmentation has failed since the structure was hardly 
visible in the preprocessed image (shown in Figure 
6.(B) lower image). The left lens was barely 
observable in the original MR image (shown in 
Figure 6.(B) upper image), which might have caused 
its disappearance after preprocessing. Figure 7. shows 
a case, where the right lens was segmented instead of 
the left one. In this case the coronal model predicted 
only false positive voxels within the right lens and the 
sagittal model correctly segmented the right lens (as 
it learns on both, left and right structure), so the 2D 
model fusion involved the poorly segmented right 
lens voxels, thus the bounding box was cut on the 
wrong side. The lacrimal glands are usually 
distinguishable from the eye, but in two cases the 
lacrimal gland has disappeared into the surrounding 

tissue, which led to the unsuccessful segmentation 
(shown in Figure 6.(C)).  

 
Figure 6: Examples for failed segmentation. (A) shows the 
optic nerve which the model failed to segment. (B) depicts 
the (upper) original and (lower) preprocessed MR image, 
where the left lens disappears after preprocessing. (C) 
represents the lacrimal gland which is barely 
distinguishable from the neighbouring tissues. 

The qualitative evaluation shows that 92% of the 
models’ results achieved 2 or above qualitative score, 
which means most of these segmentations were 
clinically useful and only 8% of the segmentations 
were classified into the first category which implies 
that they can’t be utilized for radiotherapy planning. 
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Figure 7: Faulty left lens segmentation. (A) Blue outline is 
the gold standard; green outline marks the fused 2D result. 
The red rectangle is the bounding box that is cut from the 
image. (B) The bounding box of the left lens encompasses 
the right lens due to the poor fused 2D result. 

It is important to mention that the brain model was 
trained on images where the top of the head was 
missing (unlike most of the private cases), thus it was 
not capable of properly segmenting the brain above 
the ventricles. The qualitative evaluation did not, 
while the quantitative evaluation did take this area 
into account. Therefore, the average Dice score of the 
brain model decreased compared to the result on the 
AAPM test set significantly (from 97.8 to 90.6). The 
2D brain model got an average of 2.2 qualitative 
score, which means that most of the time it is still 
useful for the radiotherapy planning, since the 
correction of the results would require less time than 
recontouring the whole organ. In the majority of the 
results, that were rated as 2, the brain model failed to 
differentiate between brainstem and brain tissues 
resulting in over-segmentation. This might be caused 
by the lack of spatial information due to only using a 
2D model or due to the similar intensity of the upper 
slices of brainstem and the white matter (shown in 
Figure 8.(A)). Additionally, it was observed that in 
certain cases the caudal part of the brain was under-
segmented. An example is presented in Figure 8.(B). 

Although the 2D body model achieved relatively 
high mean qualitative (3.3 out of 4) and quantitative 
(Dice: 98.5) score on the private dataset, the radiation 
oncologist noticed some typical faults in the 
segmentation results during evaluation. Firstly, due to 
some artefacts, the mouth area appeared as blurred in 
the original MR image, and thus this part of the body 
was under-segmented (represented in Figure 9.(A)). 
The second observation was that, occasionally, the 
caudal and in few cases, the cranial parts of the 
contour were incomplete. An example of the under-
segmentation of the caudal part is depicted in Figure 
9.(B).These two might be the results of the additional 
preprocessing step for the body segmentation. 
However, if we omit this step from the segmentation 
process, large over-segmentation could occur around 
the body due to background noise.  

 
Figure 8: Segmentation faults of the brain model. Red 
contour shows the brain segmentation. (A) depicts that the 
brainstem (inside the green bounding box) is hardly 
distinguishable from the white matter. (B) represents the 
under-segmentation that occurred on the caudal part of the 
brain. 

 

Figure 9: Segmentation faults of body model. Red contour 
shows the body segmentation. The images depict the under-
segmentation of (A) mouth and (B) caudal part. The image 
intensity was changed to highlight the under-segmented 
parts that fade into the background.  

Out of the results of the 3D models, the pituitary 
gland, optic nerves and chiasm got the lowest scores 
during both the qualitative and quantitative 
evaluation. These organs are the most difficult to 
segment as they are small structures, only appearing 
in 2-5 slices and their visibility is dependent on MR 
image parameter settings. In case of chiasm, if the 
image has been acquired with an appropriate angle, it 
is visible in 1-3 slices as an X-shaped structure, 
slightly darker than its neighbouring tissues. 
However, if the angle is different, the chiasm 
becomes too fragmented, and hard to distinguish from 
the surrounding brain matter. An example of an over-
segmented chiasm is shown in Figure 10.(A). With 
regard to the optic nerves, in some cases they were 
not clearly defined, and hard to distinguish from the 
surrounding tissue. Such small structures are hard to 
segment on scans with relatively large slice 
thicknesses (3 mm or above), like the ones in the 
private dataset. Consequently, this structure is 
typically under-segmented (Figure 10.(B)). 
Additionally, optic nerves can be hard to segment, 
since they might consist of separate disconnected 
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components on the image slices, as a result of the 
slight curvature of the organ. The pituitary gland is 
usually easy to contour, since it is a little orb situated 
under the chiasmatic cross. However, the pituitary 
gland is often inhomogeneous, thus the results can be 
under-segmented. A poorly detected pituitary gland is 
depicted in Figure 10.(C). 

 

Figure 10: Examples of segmentation faults of the proposed 
method that achieved the lowest Dice scores. Gold standard 
is shown as red overlay, the prediction of the 3D model is 
marked with green outline (A) depicts an over-segmented 
chiasm. (B) shows an example of an under-segmented optic 
nerve. (C) The 3D model was unable to localize the 
pituitary gland inside the bounding box. 

Table 6: Comparison of state-of-the-art Dice (%) and mean 
distance (MD) (mm) results. (BS: brainstem, ONC: optic 
nerves and chiasm, pitu.: pituitary gland). Under proposed 
method, the metrics calculated for the AAPM test set are 
shown. 

Orasanu 
et al. 

(2018) 

Mlynarski et al. 
(2019) 

Chen 
et al. 

(2019) 

Proposed 
method 

  MD Dice MD Dice Dice MD 

brain 
 

96.8 0.08 
 

97.8 0.78 

BS 0.56 88.6 0.26 90.6 92.1 0.62 

ONC 0.80 67.4 0.48 75.7 65.9 0.61 

eye 0.53 89.6 0.11 94.2 94.3 0.28 

lens 0.67 0.63 58.8 80.6 0.22 

pitu. 58.0 0.69 73.2 0.43 

 
To the best of our knowledge, there are only three 

prior publications on deep-learning-based OAR 
segmentation of the head from MR images ( (Orasanu 
et al., 2018), (Mlynarski et al., 2019) and (Chen et al., 
2019)) that reported Dice and/or mean distance (MD) 
results (Mlynarski et al., 2019). To be able to compare 
the results, the paired organs’ and optic nerves’ and 
chiasm’s quantitative results were averaged and an 
additional metric, the mean distance results were 
calculated. Based on Table 6, the proposed method 
outperforms the state-of-the art Dice scores for most 
structures, while our mean distance results are 
comparable to the state-of-the-art. However, the 

comparison is difficult due to different datasets. 
Orasanu et al. validated their results on 16 T2-
weighted MR images using 5-fold cross-validation, 
Mlynarski et al. reported cross-validated results on a 
dataset including 44 contrast-enhanced T1-weighted 
MR images, Chen et al. used a dataset of 80 T1-
weighted MR images from which 20 was used during 
testing, while in this work, a maximum of 26 T2-
weighted image were available for training. 

The advantages of the proposed approach over the 
standard 2D or 3D UNET solutions are the robust 
localization that is based on more 2D models, and the 
precise 3D segmentation that is efficient to train and 
infer due to the reduced 3D domain. The 
disadvantages are the need for maintaining more 
models and the limited capability of segmenting 
organs which are partially covered in the image. 

5 CONCLUSION 

In this paper, the segmentation of 15 head structures 
was presented using the well-known deep-learning 
architectures. Separate 2D models were trained to 
segment various structures on axial, coronal, and 
sagittal slices of MR images. For the body and brain, 
a 2D axial model alone could provide accurate 3D 
segmentation. For the other (smaller) organs, the 
combination of the 2D models was used for accurate 
localization of the organ’s bounding box that was 
accurately segmented with a 3D model. 

The proposed models were trained on a public 
dataset and evaluated on both public and private 
image database. Based on the quantitative results, the 
presented approach was able to provide precise 
segmentation of various structures in the head region 
despite the limited size of the training database 
(maximum of 26 data from the AAPM dataset) and 
different challenges introduced by the private 
database (in particular, different MR parameter 
settings such as larger slice thickness, no head 
fixation as in the AAPM dataset thus more artifact is 
present). The qualitative evaluation given by a 
radiation oncologist on the set of 24 MR images of 
the private dataset demonstrated that the majority 
(92%) of the segmentations were found clinically 
useful for radiation therapy treatment planning. It also 
showed that the proposed method was not sensitive to 
different T2 sequences, which indicates its ability to 
generalize. The presented approach demonstrates 
competitive performance compared to the prior state-
of-the art in terms of Dice scores and mean distance. 

In the future, we aim to improve organ models to 
segment structures more accurately by increasing the 

BIOIMAGING 2021 - 8th International Conference on Bioimaging

42



training dataset and utilizing more augmentations 
during training. Furthermore, to decrease the 
inferencing time, we intend to develop a multiclass 
segmentation method based on the proposed 
approach, which can also improve the robustness of 
the localization. Finally, the presented approach can 
be extended to other organs in the neck region. 
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