
I still See You! Inferring Fitness Data from Encrypted Traffic of
Wearables

Andrei Kazlouski1,2, Thomas Marchioro1,2, Harry Manifavas1,2 and Evangelos Markatos1,2

1Computer Science Department, University of Crete, Greece
2Institute of Computer Science, Foundation for Research and Technology, Greece

Keywords: Wearables, Security, Privacy.

Abstract: In this paper we describe a cyberattack against 2 well-known wearable devices. The attacker presented in this
paper is an “honest but curious” Internet Service Provider (ISP) sitting somewhere in the path between the
device and the cloud. The ISP launches the attack when the smartbands try to synchronize their data with the
permanent cloud storage. By launching its attack, this “honest but curious” ISP is able to learn much personal
information about the users of the smartbands, including the frequency of measuring the users’ heart rate and
weight; the number and duration of workouts; as well as whether (i) sleep or (ii) steps were recorded on a
given day. We show that privacy leaks might occur even when the transferred data are fully encrypted, and the
representative mobile application utilizes state-of-the-art security mechanisms: certificate pinning, and source
code obfuscation.

1 INTRODUCTION

Over the past few years there have been an impres-
sive increase in the uptake and everyday use of wear-
able devices, such as wristbands and smartwatches.
Worn by the end users 24 hours per day - seven days
per week, these devices measure, collect, and com-
municate a wealth of health- and fitness-related infor-
mation. As a result, consumers can find out how in-
tensely they exercise and what is their progress over
time. Although this information is collected on the
end device (wristband), it is usually sent to the user’s
smartphone and eventually transferred to the perma-
nent storage space in the cloud associated with the
manufacturer of the wearable device. However, the
information collected by those wearable devices is
personal and may sometimes be deeply confidential.
Indeed, a user’s heart rate, sleep patterns, stress and
oxygen saturation levels can be used to draw impor-
tant conclusions about physical and mental health.

In this paper we explore whether private health
data can be retrieved by undesirable third parties. Al-

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No
813162. The content of this paper reflects the views only
of their author (s). The European Commission/ Research
Executive Agency are not responsible for any use that may
be made of the information it contains.

though there are several places where this informa-
tion can be leaked, including (i) the wristband which
is used by the end user, (ii) the smartphone where the
app runs, or (iii) even the cloud where the data are
stored, in this paper we focus on the communication
link between the smartphone and the cloud.

Threat Model. The threat model that we consider in
this paper is as follows: we assume that the user has a
wearable device. The device is connected to a smart-
phone via Bluetooth and the smartphone is connected
to the cloud via the open Public Internet. We assume
that one of the ISPs who links the user’s smartphone
to the cloud would like to find information about her.
Such information may include whether the user owns
a wristband, how often the user trains, what is the du-
ration of the training sessions, etc. This ISP could
be the first one that connects the user to the Internet,
or even another ISP down the line in the path from
the user’s smartphone to the cloud. The ISP is as-
sumed to be “honest but curious”, i.e it will not try
to actively attack the user by installing a “man-in-the-
middle” (MITM) proxy or exploiting other vulnera-
bilities. The ISP will honestly just do its job, that is
to deliver the user’s IP packets to their destination.
At the same time, however, the ISP may try to find
as much information as possible from the received IP
packets. Figure 1 displays a diagram of the threat
model we consider. To our knowledge, our work is

Kazlouski, A., Marchioro, T., Manifavas, H. and Markatos, E.
I still See You! Inferring Fitness Data from Encrypted Traffic of Wearables.
DOI: 10.5220/0010233103690376
In Proceedings of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2021) - Volume 5: HEALTHINF, pages 369-376
ISBN: 978-989-758-490-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

369



Figure 1: We assume that the smartband is connected to the smartphone which uploads the data on the cloud over the Internet
- over one or more Internet Service Providers (ISPs). We assume that at least one of the ISPs is honest but curious; it accepts
IP packets to be delivered to the cloud. It does not try to actively attack the user, but rather to infer information from traffic.

the first to do a successful passive attack in the do-
main of fitness trackers. We discuss prior attack mod-
els in section 2.
Motivation for the Attack. A valid question to ask
would be: Is it plausible that a major ISP would tar-
nish their reputation, and engage in mass profiling?

We argue, however, that it might not be major ISPs
who would be willing to perform the attack. Cor-
porate health and wellness is growing increasingly
popular lately. Lesser companies utilize wearables to
boost the health of their employees 1. In case when an
organisation does not force workers to reveal their fit-
ness data, they can still launch constant health surveil-
lance of the employees, acting as a curious ISP. Be-
sides, it is nearly impossible to detect a passive at-
tacker who does not attempt to modify the data.
Contributions. The contributions of this paper can
be summarized as follows:
• We present the architecture of a system that stud-

ies the information sent from the smartbands to
the cloud.

• We demonstrate that it is possible for “honest but
curious” ISPs to find information about the users’
patterns and activities even when the communi-
cation between the smartphone and the cloud is
encrypted.

• We show that encryption alone might not enough
to protect user’s privacy. We propose approaches
that when combined with encryption can be used
to preserve privacy in a much more effective way.

2 RELATED WORK

Security of fitness trackers has been widely an ob-
ject of study. Several works have shown that even
the most popular devices do not always apply state-
of-the-art security mechanisms, enabling the attacker
1https://www.washingtonpost.com/business/economy/with-
fitness-trackers-in-the-workplace-bosses-can-monitor-
your-every-step–and-possibly-more/2019/02/15/
75ee0848-2a45-11e9-b011-d8500644dc98 story.html

to exploit the lack of protection. Prior works have
performed attacks on smartbands with an active ad-
versary, and evaluated security of wearables.

Traffic Analysis of HTTPS. The idea of encrypted
traffic leaking information has been around since the
introduction of HTTPS. Traffic Analyses of the HTTP
Protocol over TLS were conducted in (Cheng and
Avnur, 1998; Danezis, 2009; Bissias et al., 2005). In
(Chen et al., 2010; Zhang et al., 2010; Sun et al.,
2002) authors presented side-channel leaks in web
services. Hitz was able to fingerprint websites based
on encrypted traffic (Hintz, 2002). Liberatore and
Levine in turn were able to profile users of websites
based on encrypted traffic (Liberatore and Levine,
2006). All these papers prove that encryption alone
is often not enough to prevent possible privacy leaks.

Attacks on Smarbands. A number of previous
works demonstrated successful active attacks on var-
ious wristwatches exploiting different vulnerabilities
(Zhang and Liang, 2017; Rahman et al., 2013). These
papers imply full access for the adversary to the band,
phone, and in some cases active (Fereidooni et al.,
2017a; Fereidooni et al., 2017b) require a MITM
setup for the attack. Thus, their most probable attack
model is a malicious user, not an ISP. In these studies
authors were able to bypass TLS encryption and in-
ject fake data to the remote server. Arias et al. (Arias
et al., 2015) managed to access the internal flash of
Nike+ Fuelband, inject a modified firmware, and take
full control on the band.

Security Analysis of Commercial Wristwatches.
Previous works conducted security studies on the par-
ticular consumer samrtbands (Clausing and Schiefer,
2016; Cyr et al., 2014; Goyal et al., 2016; Andrew
et al., 2016; Clausing et al., 2015b; Clausing et al.,
2015a). These works examined security of consumer
wearables, including Fitbit, Jawbone, Xiaomi, Ap-
ple, Microsoft, Mobile Action, etc. These reports
reviewed whether devices use encryption; the source
code of the applications is obfuscated; certificate pin-
ning is utilized; and secure Bluetooth Low Energy
(BLE) connection is in place.

HEALTHINF 2021 - 14th International Conference on Health Informatics

370



3 ATTACK AND SETTINGS

In this section we describe the attack in details. We
also provide the setting of our experimental infras-
tructure and our employed tools.

3.1 Attack Description

Following our threat model (section 1) the attacker
aims to passively profile users of smartbands based on
the IP traffic he receives. On a high level our attack
consists of three main steps:
1. discovering the ground truth

2. inferring the data leaks from encrypted traffic

3. mass profiling end users of smartbands.
First two steps the curious ISP performs on a local

setup as a preparation for the attack. The third step the
attacker launches globally, analyzing all the IP traffic
that it receives and forwards.
Discovering the Ground Truth. By “ground truth”
we imply the actual data that are sent before encryp-
tion. Being able to synchronize a single activity at a
time, the adversary is able to observe the exact en-
crypted traffic that corresponds to a specific activity.
The attacker aims to find patterns in encrypted traffic
that reveal what data are being transffered. To learn
so, the ISP employs a MITM proxy between a smart-
phone which runs a representative app, and the cloud.
Such proxy allows the adversary to observe all the
data in plain text. In short, MITM (i) decrypts the traf-
fic, (ii) examines the packet contents, (iii) re-encrypts
the traffic, and finally (iv) sends the traffic to its des-
tination. Step (ii) above enables the attacker to look
into the packets and find out what exactly is commu-
nicated between the smartphone and the cloud. Steps
(iii) and (iv) are necessary so as to make sure that
communication between the app and the cloud hap-
pens in an un-interrupted way. To clarify, the adver-
sary installs the MITM proxy only on a local testing
setup to study the representative application, it does
not attempt to tamper with users’ phones.
Discovering Data Leaks. After the adversary sees
what data are sent to the cloud after synchronization,
it can compare them with the encrypted IP traffic. At
this step the attacker utilizes specifics of the TLS en-
cryption: unlike hashing, the size of the output is not
fixed. That is, encryption approximately preserves
size of the input text:

heart rate : 80
encryption−−−−−→ ABCDEFGHIJKLM

heart rate : 100
encryption−−−−−→ ABCDEFGHIJKLMN

In this case if the adversary learns that this partic-
ular encrypted text contains heartbeat data, it will be
able to differentiate between 2 and 3-digit beats per

minute (BPM). To learn the ground truth for all pos-
sible activities, the ISP repeats the above process for
every action. That is, it synchronizes 1 activity at a
time, and sends all possible variation of the given ac-
tivity to the cloud. Based on the data obtained from
MITM and the size of the correspondent ciphertext,
it tries to retrieve information about this action. If the
activity produces more than a single encrypted packet,
the adversary has to consider not only the size of the
packets, but also their order.
Mass Profiling of End Users. Once the curious ISP
is able to identify activities that are represented by
specific sequences of encrypted packets, it is ready
to apply this attack on a bigger scale. At this step,
however, the adversary cannot utilize MITM; it can
only rely on the plain IP packets that are arriving to be
transferred further. Here the attacker is able to exploit
the fact that vendors of smartbands do not have many
unique IP addresses assigned to their servers that store
data of users. By patiently talking with manufacturer
servers on its test setup, the adversary is able to grad-
ually learn all the unique IPs of the storage cloud.
While TLS allows parts of the accessed URL to be
encrypted, and, thus, inaccessible for the ISP, there is
no way to conceal IP addresses. To successfully es-
tablish mass profiling, the ISP needs to:

• filter the traffic according to the list of IP ad-
dresses of vendors servers

• apply the metadata rules learned from previous
steps.

3.2 Settings

Studied Fitness Trackers. In this paper we do
not use the real company and product names. We
adopt pseudonyms instead. We studied 2 of the most
popular smartbands readily available: SmartBandA
and SmartBandB . We notified the affected companies
about the vulnerabilities.
Learning Ground Truth. For our MITM setup, we
utilized the MITM proxy Burp Suite2. To disable cer-
tificate pinning we employed an open-source Frida
toolkit3. To observe the encrypted traffic, we used the
network protocol analyzer Wireshark4. We run the
latest android apps on a Google Nexus 6 phone.
Mass Surveillance. For traffic filtering we utilized
the intrusion detection system Snort5 and Wireshark.

2https://portswigger.net/burp
3https://frida.re/
4https://www.wireshark.org/
5https://www.snort.org/

I still See You! Inferring Fitness Data from Encrypted Traffic of Wearables

371



Table 1: Information about the activities of users for 2 studied smartbands that the adversary is able to learn. Occurrence
implies that the attacker can detect whether the activity was done by the user; hence, its frequency as well.

Activity SmartBandA SmartBandB
Heartbeat occurrence occurrence & whether heart rate is ≥ 100 BPM

Weight occurrence occurrence & whether weight is ≥ 100 kg
Workout occurrence & duration of the workout occurrence

Steps - occurrence
Sleep occurrence occurrence

3.3 Automatic Activity Aetection

Following the formal attack description, we designed
a pipeline for the automatic activity detection.
Gathering All Relevant IPs. The attacker collects
a list of IP addresses the smartband talks to. This is
achieved by continuously initiating connection with
the band and collecting correspondent IP addresses.
Traffic Filtering. The adversary filters traffic by the
collected IP list, using a Network Intrusion Detection
& Prevention System Snort.
Applying Metadata Rules. The ISP applies the pre-
viously learned rules for detecting activities using
TShark: a Python implementation of the network pro-
tocol analyzer Wireshark. TShark enables more func-
tionality for the TLS processing.

Table 1 illustrates what information the ISP is able
to find out about 2 studied smartwatches. We explain
our findings, and data leaks in the next 2 sections.

4 CompanyA SMARTBAND

Following the section 3.1, the adversary aims to re-
trieve information from the encrypted traffic. The of-
ficial mobile application for CompanyA SmartBandA
is called AppA . It is one of the most used apps for
wearable devices. Overall, the application employs
many state-of-the-art security mechanisms including
source code obfuscation, SSL pinning, TLS protocol
to ensure integrity and confidentiality of the personal
data.

4.1 Detected Activities

We have noticed that the different activities produce
different patterns in the traffic generated in the net-
work (as expected). For many activities AppA en-
codes data in the URL-format before sending. We
learned that the same actions are represented by a de-
termined sequence of packets of almost the same size.
Occasionally the same activities can produce packets
of a slightly different size. That occurs due to the
metadata that is sent together with the health infor-
mation. For instance, the URL representation of the

18 : 40 and 6 : 40 clock times would differ by 1 char-
acter. Similarly, the encrypted payload sizes would
differ by 1 byte. For applicable activities, we will in-
troduce the range of ±X bytes that accounts for such
possibilities. In the next sections we describe individ-
ual traffic sequences in more details. Table 2 depicts
the size of the encrypted traffic for transferred data.

To summarize, the attacker is able to detect heart-
beat measuring frequency; exercising frequency, and
workouts length; whether the user slept, and recorded
weight.

Table 2: Size of encrypted activity packets for Smart-
BandA . File(s) illustrates what plain text json files are sub-
mitted to the cloud. Size is measured in bytes.

Activity File(s) Size of File(s)

Heartbeat H1 981+142∗K±1
H2 16450±50

Workout W1 ≥ 1293
W2 S = 1725±25

Sleep S1 8140±40
Weight We1 1182±3

4.1.1 Heartbeat Detection

Heartbeat can be easily measured by pressing a
correspondent button on the smartband. When the
application synchronizes with the cloud, it sends two
json files: (i) H1 and (ii) H2. The H1 file contains (i)
the metadata and (ii) user’s profile settings. The H2
file contains information exclusively about the heart-
beat rate measured by the wristwatch and sent in the
URL-encoding format. It contains all the heartbeat
measurements that were taken by the user before the
previous synchronization with the application (could
be more than one measurement). A single heartbeat
measurement always produces a H2 json file that
is 1123 bytes. We have observed that if the user
takes two heartbeat measurements (i.e. pushes the
button twice), the wristband will send a 1123+ 142
bytes file. Similarly, if the user takes three heartbeat
measurements, the wristband will send a file that
is 1123 + 2× 142 bytes. It appears that for each
extra measurement, the appended value is always
142 bytes. For instance, an additional heartbeat
of 69 BPM would add the following string to the

HEALTHINF 2021 - 14th International Conference on Health Informatics

372



json file: ,{"time":1591966729,"rate":"RQ==",
"type":2,"device id":"16-digit-ID","source
":25}. Since the BPM is represented by 4 characters
(RQ==), the size of an extra measurement always
stays constant. We verified that the URL-encoding of
this sequence produces a string of bytes that is 142
bytes long exactly.

We took as many as 50 measurements before syn-
chronizing, and found that the every single experi-
ment fit the following formula: S= 981+142×K±1.

4.1.2 Workout Duration Detection

The CompanyA wristwatch offers a great variety of
exercising types: running, walking, cycling, swim-
ming, etc. Users can start a new workout by sim-
ply pressing the correspondent button on their smart-
watches. We established that a workout activity pro-
duces two json files: (i) W1 and (ii) W2. W2 con-
tains statistical information about the workout such
as a maximal reached speed, average stride length,
minimal and maximal heart rate, number of burned
calories. The structure of this file appears to stay rela-
tively predictable regardless of the workout type, du-
ration, and intensity. Indeed, the size of this file is
always S = 1725± 25 bytes. The W1 file contains
the “trace” of the user’s heartbeat during the work-
out. This trace shows every change of the heart-
beat. For example 79;3,−1,2. This “toy” trace ac-
counts for user’s heart rate starting at 79, following
by 79 + 3 = 82, dropping to 82− 1 = 81, and fi-
nally settling at 81+ 2 = 83. Since file W1 contains
the entire trace of a user’s heartbeat, it appears that
the length of W1 is correlated with the duration of
the workout. To verify this assumption we manu-
ally collected a dataset consisting of seventeen work-
outs, and tried to fit the linear curve through the dat-
apoints. Figure 2 suggests that the empirical data fit
the payload = 1134+2.9∗ time formula. To roughly
estimate the duration of a workout, the following for-
mula can be applied T = (S− 1134)/2.9, where S is
the size of the packet carrying workout data.

Unlike the heartbeat activity, workouts do not pile
in a single json file, but are sent as independent pairs
of W1 and W2. To detect the workout activity, adja-
cent packets that satisfy above size requirements need
to be detected. Similarly to heartbeat, the workout
activity is represented by multiple consecutive pack-
ets, which drastically reduces probability of false pos-
itives. As a result a curious ISP is able to detect the
number of workouts performed by the user since the
last synchronisation. Moreover, it is also possible to
approximately detect the length of the workouts.

0 500 1000 1500 2000 2500 3000 3500 4000
time, seconds

2000

4000

6000

8000

10000

12000

pa
yl

oa
d,

 b
yt

es

curve for payload/duration ratio

Figure 2: Size of “workout traffic” depending on dura-
tion. SmartBandA band does not record workouts under
1 minute. Also once the workout exceeds around 100 min-
utes, it is split into multiple packets, which makes it signifi-
cantly harder to detect. Such split occurs because the maxi-
mal payload size of a TLS packets is 16 KB, and, generally,
after 100 minutes a heartbeat trace exceeds this amount.

4.1.3 Sleep Tracking

Tracking sleep is another feature supported by the
band, which appeals to many users. The band makes
use of the heart rate sensor to detect sleep automati-
cally. For this wristband, the sleeping activity is com-
municated via the S1 file. This file also includes (i)
device info: firmware version, hardware version, bat-
tery level, and (ii) events description: exercise count,
number of alarms received. File S1 appears to be
transferred only after a user has slept. The packets
sent with this file seem to be (after reconstruction)
8180± 2 bytes long. Sleep synchronization differs
from other activities, since it does not produce any
separate files dedicated to sleep exclusively.

4.1.4 Weight Tracking

Users can input and later adjust their weight in the
AppA application. People who change their weight
frequently are likely caring about their weight, and
consider that information sensitive. Recording weight
always produces the We1. json (denoted as We1)
packet that is always 1182± 2 bytes long. Similarly
to sleep detection, changing weight produces only a
single packet per activity, which makes probability of
false positives higher.

5 CompanyB SMARTBAND

This section describes the results obtained for Com-
panyB SmartBandB . The official mobile application
for CompanyB SmartBandB is called AppB . It is a
very popular application for wearables that trends in

I still See You! Inferring Fitness Data from Encrypted Traffic of Wearables

373



Play Market. The app encrypts data, using TLS. Un-
like SmartBandA , SmartBandB is more of a “smart-
watch” than a “fitness tracker” in a traditional sense.
It has the same sensors (heart rate monitor, etc.), but
allows users to input more of their fitness and health
data. The band also uses regular Bluetooth instead
of BLE. Similarly to section 4, we focus on detect-
ing heartbeat, sleep, number of steps, workouts and
weight changes.

5.1 Synchronization of Packets

Unlike AppA , AppB synchronizes all the data at
once. In total 113 unique files that represent activi-
ties in the JSON format are sent to the server during
synchronization. However, some of these files can be
mapped to a single bigger activity. For instance, a to-
tal of 9 separate files (total protein, etc.) are related
to the food (e.g. a burger) that users input into the
application. On the other hand, there is only a single
heart rate file for the heartbeat activity.

We discovered that for each of the files the app
checks whether the value has changed (user did a cor-
respondent action); if it is the case, it will send two
files: (i) /set, and (ii) /changes. If the value has not
changed, the app will only send a (i) /changes file.
Hence, it is the /set files that contain the actual data
which the adversary would like to obtain. If a user
does every single activity possible before synchroniz-
ing, the app would send 2 ∗ 113 = 226 files at ones.
If a user does nothing before synchronization, the
app would send 113 files, all with the /changes af-
fix. Therefore, if an ISP observes a 119-files synchro-
nization, it can conclude that user’s actions led to the
change of 6 files (113 /changes and 6 /set). Each file is
carried by a single TLS data packet. All 113 /changes
packets can be easily detected. Their POST requests
contain default fields (URL, User-Agent, Content-
Type, etc.) without any content. This translates into
their encrypted payload being between 580 and 620
bytes long (depending on the URL length). Hence,
packets that exceed this size are /set packets that ac-
tually carry the personal data of users. Following sec-
tion 4, the ISP aims to find patterns in encrypted /set
packets to detect various activities.

Order of Synchronized Files. By studying the
source code and observing MITM data, we were able
to split 113 /changes files in two “buckets”. The first
bucket consists of 10 files that are always sent be-
fore others. The remaining 103 json files represent
the second bucket; they are sorted alphabetically be-
fore being sent. Files in the first bucket, however,
are not sorted. Unfortunately for the attacker, the app

does not always retain the same order when sending
the files. It occasionally slightly (by 1-5 positions)
changes the arrangement of records. Since the at-
tacker does not have access to the plain text data, he
cannot deterministically infer that the file #42 repre-
sents heartbeat. Instead the adversary has to consider
the interval between #41-#46; any file in this range
could potentially correspond to heart rate.

5.2 Detected Activities

For the attacker to successfully detect an activity two
conditions need to be satisfied:
• the packet’s TLS payload needs to be of a length

correspondent to a particular activity (e.g. for
heartbeat it is 1077 bytes).

• the packet needs to be within a sending order in-
terval for this activity (e.g. for heartbeat it is be-
tween #41 and #46 out of 113 json files).
Table 3 depicts studied activities and correspon-

dent encrypted patterns. To summarize, the attacker
is able to detect heart rate measuring frequency, and
heartbeats that are above 100 BPM; workout fre-
quency; whether the user slept, took steps or recorded
weight.

Table 3: Size of encrypted activity packets for Smart-
BandB . The field Files shows what plain text json files
are submitted to the cloud. Interval describes possible or-
der of the packets during synchronization. Size is mea-
sured in bytes. For the BPM (heartbeat) activity the pre-
cise formula for the possible size of the H file is size =
751+(326+ 1

2 ) ·K±
K
2 .

Activity Files Interval Size of File(s)
BPM H 42-47 751+(326+ 1

2 ) ·K

Workout W 1-10 ≥ 1720
C 72-73 > 700

Sleep S 111-113 998 or 1002

Steps

St 1-10 ≥ 1216
St2 1-10 > 700
T 1-10 > 700
C 72-73 > 700
A 61-65 > 700

Weight We 60-61 901 or 902

5.2.1 Heartbeat Detection

Heart rate can be measured by navigating to a repre-
sentative section and pressing a button on the band.
Heartbeat is sent to the server via the heart rate/set
(denoted as H) file. Alphabetically the H file appears
in positions 42-47. We noticed that a single heartbeat
measurement always results in a H file that is 1077-
1078 bytes. The 1 byte difference occurs because

HEALTHINF 2021 - 14th International Conference on Health Informatics

374



user’s heart rate can be either a 2- or a 3-digit number.
Similarly to SmartBandA , multiple measurements of
heartbeat are sent in a single file. If a user takes 2 heart
rate measurements before synchronizing the app; the
size of H increases by 326-327 up to 1404±1 bytes.
A similar length increase is observed for three, and
more heartbeat measurements. We verified that for an
arbitrary K heartbeat measurements, the size of the H
file lies within the [751+326×K,751+326×K+K]
bytes interval. Again, the interval is present due to up
to K measurements possibly being 3-digit heart rates.
Hence, the adversary is able not only detect the num-
ber of measurements, but also to tell the exact number
of heartbeat measurements that are > 100 BPM.

5.2.2 Workout Detection

SmartBandB allows users to choose between 17 dif-
ferent workout types: running, walking. cycling, hik-
ing, etc. Workouts are sent to the server as part of an
exercise/set (W) json file. W is a part of the first non-
alphabetic bucket, and can take positions 1-10. Work-
ing out also affects the calories burned json file (C):
positions 72-73. W contains workout description to-
gether with “workout live data”: the trace of heartbeat
during the exercise. The detection technique from
section 4.1.2 could not be applied because multiple
workouts are sent together in W. The increase of the
file can be attributed to either a long workout or mul-
tiple exercises. Given only an encrypted file, it is im-
possible to distinguish between them. Nevertheless,
the attacker can still estimate the minimal size of this
file. The json will be the shortest in case of a single
workout that lasted 1 second. The shortest value that
we managed to obtain is 1720 bytes. There is no up-
per limit on the size of W (except 16 KB TLS limit).

5.2.3 Sleep Detection

Sleep is automatically recorded by SmartBandB .
Users also have an option of manually edit-
ing/inputting it, and providing a quality mark. Sleep
is transmitted via sleep/set (S) file that occupies po-
sitions 111-113. A sleep file is equal to either 998 or
1002 bytes, depending on how the user rated her sleep
on the scale from 1 to 5. Detecting sleep appears to be
relatively easy for the adversary since the encrypted
payload can only be of 2 possible sizes. Hence, an
honest but curious ISP is able to tell if a user slept
since the preceding synchronization.

5.2.4 Retrieving Number of Steps

The SmartBandB band automatically tracks number
of steps taken by users. This information is recorded

in the step count/set (denoted as St) file that takes po-
sitions 1-10. Taking steps also causes four other files
to be transmitted to the server: step daily trend (#1-
10), tracker.pedometer day summary (#1-10), calo-
ries burned (#72-73), activity.day summary (#61-
65). St describes all the steps that were taken since
the previous synchronization. It displays them as in-
tervals depending on speed. For example if a user
took 100 steps at a normal pace, and then run another
100 steps, the data will be recorded as two separate
intervals. This means that similarly to section 5.2.2,
there is no upper limit on the size of the St file (ex-
cept 16 KB). We tried to establish the minimal size of
the file by taking a single step before synchronizing.
In this case St is 1216 bytes long. Considering that
taking steps invokes changes of 4 different files, the
attacker is able to detect the activity with a very high
probability.

5.2.5 Weight Detection

Users can record their weight in the AppB app.
Weight is send to the cloud via weight/set (denoted
as We): positions 60-61. This file can be either 901 or
902 bytes long depending on whether the input weight
is a 2- or a 3-digit number (in kg). Interestingly this
allows the attacker to profile users whose weight ex-
ceeds 100 kilograms.

6 DISCUSSION

TLS and Wearables. Side-channel leaks of the TLS
encryption have been discovered in many web-related
systems. Most of such attacks, however, were only
able to reduce entropy about the encrypted data. In
our setup the attacker is able to extract relevant con-
clusions about the activities performed by users. Un-
like the TLS leaks for web services, the ISP can send
a single activity at a time, and directly pinpoint en-
crypted packets that correspond to a particular activ-
ity. This enables the adversary to infer data leaks with
greater precision.
Possible Countermeasures:
• Modifying Plain→ Cipher Text Size Ratio. Modi-

fication of encrypted payload size can be achieved
by modifying the plain text json files. Since prun-
ing those file may result in data corruption, the
natural solution would be to selectively increase
some of the transmitted files. This can be achieved
with “dummy” text to extend files to an arbitrarily
sized threshold.

• Concealing Frequency of Packets Transmission.
To complicate the process of matching pairs of

I still See You! Inferring Fitness Data from Encrypted Traffic of Wearables

375



plain text with encrypted traffic, the app might de-
lay sending user data to the server.

• Introducing Randomness for Order of Packets.
The process of mapping an activity to its en-
crypted counterpart could be convoluted by send-
ing activities to a server in a random order.
Randomizing the transmitting sequence makes it
harder for the adversary to establish patterns in
encrypted traffic.

We leave development of a secure traffic transmis-
sion system for future work.

7 CONCLUSION

With a vast number of different commercial smart-
bands readily available, we predict many more wear-
ables leak data while sending them to vendor’s
servers. An “honest but curious” ISP can easily pur-
chase well-known brands of smartbands, and with the
help of the proposed architecture for traffic analysis
identify whether a particular band leaks any user’s
sensitive data. Unlike other attacks on wearables, in
our threat model the adversary only observes the traf-
fic without any intent to modify it. This makes it
extremely laborious to discover the attacker. Even
if detected, it is almost impossible to prove that an
ISP committed an unlawful deed. We show that even
when the connection channel is encrypted, and the
mobile application is reinforced with state-of-the-art
security mechanism, it might still be possible to ob-
tain sensitive information about users. Such data in-
clude frequency of measuring heartbeat and weigh,
the number and duration of workouts, occurrence of
sleep, steps, and food records. Naturally, we do not
discourage usage of modern defense techniques, but
rather challenge vendors to consider bolstering their
security even further. Finally, we propose several
methods for the attack’s mitigation.

REFERENCES

Andrew, H., Christopher, P., and Jeffrey, K. (2016). Ev-
ery step you fake: A comparative analysis of fitness
tracker privacy and security. Open Effect Report.

Arias, O., Wurm, J., Hoang, K., and Jin, Y. (2015). Pri-
vacy and security in internet of things and wearable
devices. IEEE Transactions on Multi-Scale Comput-
ing Systems, 1(2):99–109.

Bissias, G. D., Liberatore, M., Jensen, D., and Levine,
B. N. (2005). Privacy vulnerabilities in encrypted http
streams. In International Workshop on Privacy En-
hancing Technologies, pages 1–11. Springer.

Chen, S., Wang, R., Wang, X., and Zhang, K. (2010). Side-
channel leaks in web applications: A reality today, a
challenge tomorrow. In 2010 IEEE Symposium on Se-
curity and Privacy, pages 191–206. IEEE.

Cheng, H. and Avnur, R. (1998). Traffic analysis of
ssl encrypted web browsing. URL citeseer. ist. psu.
edu/656522. html.

Clausing, D.-I. E., Schiefer, M., Lösche, U., and Morgen-
stern, D.-I. M. (2015a). Security evaluation of nine
fitness trackers. The Independent IT-Security Institute.

Clausing, E. and Schiefer, M. (2016). Internet of things: Se-
curity evaluation of 7 fitness trackers on android and
the apple watch. AV TEST, Germany.

Clausing, E., Schiefer, M., and Morgenstern, M. (2015b).
Internet of things: security evaluation of nine fitness
trackers. AV TEST, The Independent IT-Security in-
stitue, Magdeburg, Germany.

Cyr, B., Horn, W., Miao, D., and Specter, M. (2014). Secu-
rity analysis of wearable fitness devices (fitbit). Mas-
sachusetts Institute of Technology, 1.

Danezis, G. (2009). Traffic analysis of the http protocol
over tls.

Fereidooni, H., Classen, J., Spink, T., Patras, P., Mietti-
nen, M., Sadeghi, A.-R., Hollick, M., and Conti, M.
(2017a). Breaking fitness records without moving:
Reverse engineering and spoofing fitbit. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 48–69. Springer.

Fereidooni, H., Frassetto, T., Miettinen, M., Sadeghi, A.-
R., and Conti, M. (2017b). Fitness trackers: fit for
health but unfit for security and privacy. In 2017
IEEE/ACM International Conference on Connected
Health: Applications, Systems and Engineering Tech-
nologies (CHASE), pages 19–24. IEEE.

Goyal, R., Dragoni, N., and Spognardi, A. (2016). Mind
the tracker you wear: a security analysis of wearable
health trackers. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, pages 131–
136.

Hintz, A. (2002). Fingerprinting websites using traffic anal-
ysis. In International workshop on privacy enhancing
technologies, pages 171–178. Springer.

Liberatore, M. and Levine, B. N. (2006). Inferring the
source of encrypted http connections. In Proceedings
of the 13th ACM conference on Computer and com-
munications security, pages 255–263.

Rahman, M., Carbunar, B., and Banik, M. (2013). Fit and
vulnerable: Attacks and defenses for a health moni-
toring device. arXiv preprint arXiv:1304.5672.

Sun, Q., Simon, D. R., Wang, Y.-M., Russell, W., Padman-
abhan, V. N., and Qiu, L. (2002). Statistical identifi-
cation of encrypted web browsing traffic. In Proceed-
ings 2002 IEEE Symposium on Security and Privacy,
pages 19–30. IEEE.

Zhang, K., Li, Z., Wang, R., Wang, X., and Chen, S. (2010).
Sidebuster: automated detection and quantification of
side-channel leaks in web application development.
In Proceedings of the 17th ACM conference on Com-
puter and communications security, pages 595–606.

Zhang, Q. and Liang, Z. (2017). Security analysis of blue-
tooth low energy based smart wristbands. In 2017
2nd International Conference on Frontiers of Sensors
Technologies (ICFST), pages 421–425. IEEE.

HEALTHINF 2021 - 14th International Conference on Health Informatics

376


