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Abstract: Significant recent advances have been made in Visual Place Recognition (VPR), feature correspondence and
localization due to deep-learning-based methods. However, existing approaches tend to address, partially or
fully, only one of two key challenges: viewpoint change and perceptual aliasing. In this paper, we present
novel research that simultaneously addresses both challenges by combining deep-learnt features with geomet-
ric transformations based on domain knowledge about navigation on a ground-plane, without specialized hard-
ware (e.g. downwards facing cameras, etc.). In particular, our integration of VPR with SLAM by leveraging
the robustness of deep-learnt features and our homography-based extreme viewpoint invariance significantly
boosts the performance of VPR, feature correspondence and pose graph sub-modules of the SLAM pipeline.
We demonstrate a localization system capable of state-of-the-art performance despite perceptual aliasing and
extreme 180-degree-rotated viewpoint change in a range of real-world and simulated experiments. Our system
is able to achieve early loop closures that prevent significant drifts in SLAM trajectories.

1 INTRODUCTION

Visual Place Recognition (VPR) and local feature
matching are an integral part of a visual SLAM sys-
tem for correcting the drift in robot’s trajectory via
loop closures. However, multiple complicating fac-
tors make this process challenging such as variations
in lighting and viewpoint along with the need to deal
with dynamic objects.

Typically, indoor structures (e.g. walls, ceilings)
tend to be feature-deficient. They often exhibit strong
self-similarity, leading to perceptual aliasing. Ergo,
VPR becomes further challenging when a place is re-
visited from a very different viewpoint eg. an op-
posing viewpoint (180◦ viewpoint shift). The latter
is a situation commonly encountered when tackling
VPR for indoor-based scenarios in warehouses, office
buildings and their corridors.

Due to the above mentioned challenges, existing
state-of-the-art place representation methods strug-
gle to perform well. In particular, deep learning-
enabled viewpoint-invariant global image representa-

tions (Arandjelovic et al., 2016; Garg et al., 2018b)
are unable to deal with perceptual aliasing due to
repetitive indoor structures. Whereas, viewpoint-
presumed image representations (Dalal and Triggs,
2005) that retain spatial layout of the image fail due
to 180◦ viewpoint shift, as also demonstrated in (Garg
et al., 2018a). Therefore, a robust place representation
leveraging discriminative regions of an image is much
needed to deal with this problem.

While seemingly aliased, in practice, floor pat-
terns contain discriminative features. Blemishes,
scratches on the floor surface and natural variations
in floor/ground surfaces yield features which can be
detected easily across conditional variations (Zhang
et al., 2019). In turn, these enable reliable localiza-
tion (Kelly et al., 2007; Nourani-Vatani et al., 2009).
However, most of the existing solutions based on floor
patches require specialised hardware (e.g. downward-
facing cameras (Nourani-Vatani et al., 2009; Mount
and Milford, 2017), additional light sources (Kelly
et al., 2007)).
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We propose an indoor VPR approach which ad-
dresses the concerns highlighted previously. With our
proposed pipeline, we make the following contribu-
tions:
• A novel pipeline that combines projective geom-

etry and deep-learnt features to focus specifically
on floor areas and consistently improves the fol-
lowing pipeline modules: VPR (able to deal with
opposing viewpoints), feature correspondences;
leading to improved inputs for subsequent SLAM
pose-graph optimization.

• Extensive comparisons across various deep archi-
tectures showing that VPR and feature correspon-
dence modules suffer significantly when used on
raw images while achieving a significant boost
in performance when used on rotationally-aligned
floor areas. The improvement is consistent over
various real and simulated floor types as shown in
section 5.

• The paper unveils Early Bird SLAM that inte-
grates the above VPR and feature-correspondence
pipeline in a back-end pose graph optimizer,
demonstrating substantial decrease in Absolute
Trajectory Error (ATE) as compared to the state-
of-the-art SLAM frameworks such as (Labbé and
Michaud, 2013).

2 RELATED WORK

2.1 Descriptor based Recognition

Amongst earlier methods, the most popular were
appearance-based place descriptors such as Bag of
Visual Words (BoVW) (Sivic and Zisserman, 2003;
Csurka et al., 2004) and Vector of Locally Aggre-
gated Descriptors (VLAD) (Jégou et al., 2010) where
a visual vocabulary is constructed using local features
like SURF (Bay et al., 2008) and SIFT (Lowe, 1999).
These have been used in FAB-MAP (Cummins and
Newman, 2008) and ORB-SLAM (Mur-Artal et al.,
2015) to good effect.

Whole-image descriptors like Gist (Oliva and Tor-
ralba, 2006) and HoG (Dalal and Triggs, 2005) pre-
sume the scene viewpoint to remain similar across
subsequent visits of the environment, enabling VPR
under extreme appearance variations as demonstrated
in SeqSLAM (Milford and Wyeth, 2012).

2.2 Robustifying VPR

Many solutions have been proposed to robustify VPR
to viewpoint variation.

CNNs with their partial viewpoint invariance
have been shown to robustify VPR ( (Sünderhauf
et al., 2015)). They allow for end-to-end training
where one can in addition to using off-the-shelf net-
works (Arandjelovic et al., 2016), train the later lay-
ers to obtain task/dataset specific results (Radenović
et al., 2018). In (Chen et al., 2017), pyramid pooling
was shown to improve viewpoint robustness.

Opposing Viewpoints. Most of the existing litera-
ture that addresses viewpoint-invariance for VPR as-
sumes a large amount of visual overlap.

LoST (Garg et al., 2018b) used dense semantic in-
formation to represent places and extract keypoints
from within the CNN to enable high-performance
VPR. This was improved upon in (Garg et al.,
2019) using a topo-metric representation of places.
In the vein of utilizing higher-order semantics, X-
view (Gawel et al., 2018) uses dense semantic seg-
mentation and graph-based random walks to perform
VPR.

Saliency of Floor Features. Floor features have
been shown to be salient enough to aid in VPR.
In (Zhang et al., 2019), features are extracted from
floor surfaces to perform global localization. The im-
perfections in the tiles provide enough features that
keypoints can be extracted.In (Mount and Milford,
2017) the authors have explored surface based local-
ization methods for match verification using ground-
based imagery. (Kelly et al., 2007) proposed to use
floor patches to perform local region matching in or-
der to develop an infrastructure-free localization sys-
tem. In (Nourani-Vatani et al., 2009), authors devel-
oped a visual odometry system based on floor patches.

Keypoint Correspondences. Classical approaches
like SIFT (Lowe, 2004) and SURF (Bay et al., 2008)
tackle the problem of calculating the pixel level cor-
respondences between images in a two-way approach
by first detecting the keypoints and then describing a
local region around the keypoint. Recent learning-
based approaches like SuperPoint (DeTone et al.,
2018) and D2Net (Dusmanu et al., 2019) combine de-
tection and description by simultaneously optimizing
for both the tasks. However, none of the approaches
work well when deployed in perceptually-aliased and
low-textured indoor settings, particularly when view-
ing a scene from an opposite direction. We show that
the existing deep-learnt feature correspondence meth-
ods can lead to better matching by using certain re-
gions of the image like floor and exploiting geometric
priors between images in the forward and reverse tra-
jectory.
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Figure 1: Our proposed pipeline for Visual Place Recognition. Images are first converted to a top view by homography.
This transformed view is fed into a deep feature extractor to obtain the output descriptor which forms our place represen-
tation. Then, a cosine-distance based cost matrix is constructed to find matches. A matched pair is then fed into a feature
correspondence extractor to find correspondences. This is subsequently fed into a pose graph optimizer to obtain optimized
trajectory.

3 METHODOLOGY

Our proposed hierarchical pipeline consists of the fol-
lowing three stages: indoor visual place recognition
for opposite viewpoints, feature correspondence ex-
traction and pose graph optimization.

3.1 Indoor Visual Place Recognition for
Opposite Viewpoints

While the method employs deep-learned features, it
requires no training of the underlying feature extrac-
tor.

Our approach to indoor VPR utilises the fact that
floor patches contain useful features in the form of
cracks, designs, dirt/stains. The floor-based features
act as a unique signature for specific places within an
indoor region.

To extract the floor-region of the images taken,
we fit a planar homography H to image points via
a RANSAC + 4 point algorithm (Hartley and Zis-
serman, 2003). We use a fixed homography matrix
across all the datasets. In the original image, we
pick four points along the floor region which are then
transformed into a floor image.

Let H be the homography matrix, x be a homog-
enized coordinate of an input image then the trans-
formed image co-ordinate, x̂ is obtained via eq. (1).

x̂ = H(x) (1)

Figure 2 shows example images from our bench-
mark datasets with both the raw images and their cor-
responding floor patches so obtained.

In our pipeline, we pass the floor patch images ob-
tained into a deep feature extractor and the output de-
scriptor forms our place representation.

dQ
i = f (x̂Q

i ) (2)

where f () corresponds to the process of obtaining fea-
tures from a deep feature extractor and dQ

i is the resul-
tant descriptor obtained for image i. Cosine distance-
based descriptor matching is done to obtain matches
between Q and D. We apply the homography oper-
ation on the reference and then perform a 180◦ ro-
tation of the transformed images to improve match-
ing across differing viewpoints of the same place. Al-
though the rotation/flipping operation is not necessary
for some of the deep feature extractors as they are
inherently viewpoint-invariant, we show that perfor-
mance can be boosted for such descriptors whereas
other viewpoint-presumed deep feature description
techniques become only useful post image rotation.

3.2 Feature Correspondence

By utilizing the previously proposed concept of ap-
plying geometric transformations on image to extract
textured floor regions enables us to generate very pre-
cise pixel level correspondences Figure 4 (1c and 2c).
These precise correspondences are also very essential
to calculate near ground truth transformation and sub-
sequent loop closure in pose graph SLAM Figure 5 on
real dataset and Figure 6 on synthetic dataset.

Let xQ be the query image and xM be the matched
image from the opposite trajectory obtained via the
VPR pipeline. x̂Q is the transformed image ob-
tained by applying homography and x̂M is the trans-
formed image obtained by applying homography and
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D1 - 25m - Stone Tiles D2 - 15m - Marble D3 - 15m - Concrete D4 - 15m - Stone Tiles D5 - 50m - Ceramic Tiles D6 - 50m - Carpet D7 - 25m - Wooden

Figure 2: Example images from our indoor dataset. We demonstrate the usage of our indoor VPR pipeline on various floor
types.(First row) Raw images. (Second row) Homography transformed images of the respective raw images in the first row.
Below we also mention the dataset id along with its trajectory length in meters and floor type in the form of (ID-Length-Floor
Type). We overcome challenges such as self repetition and lack of features by using homography transformed floor images
which contain distinctive features that are helpful in performing VPR.

π-rotation, Figure 3. Local feature extractor g(.), in
our case D2Net is used to obtain correspondences q̂2D

and m̂2D on transformed images. Correspondences on
the original image q2D and m2D are obtained by in-
verse π-rotation and inverse homography.

x̂Q = H(xQ) (3)
x̂M = Rπ(H(xM)) (4)

q̂2D, m̂2D = g(x̂Q, x̂M) (5)

q2D = H−1(q̂2D) (6)

m2D = H−1(R−1
π (m̂2D)) (7)

3.3 Pose Graph Optimization

The proposed VPR pipeline has direct applicability
in loop closure or data association problem in visual
SLAM. Formally, we are interested in finding the op-
timal configuration X∗ of robot poses xi based on
odometry constraints ui and loop closing constraints
cqm. Here, odometry constraints ui are used to build
the motion model whereas loop closure constraints
cqm provide information to correct the error accumu-
lated due to sensors’ noise.

Let S be a set of image pairs proposed by VPR
such that, S = {(q,m)|Iq ∈ Q, Im ∈ R}, then optimal
poses X∗ are given by:

X∗ = argmax
X

P(X |U,C) = argmax
X

∏
i

P(xi+1|xi,ui)︸ ︷︷ ︸
Odometry Constraints

× ∏
(q,m)∈S

P(xm|xq,cqm)︸ ︷︷ ︸
Loop Closure by VPR

(8)

2D correspondences q2D and m2D obtained using
D2Net in the previous subsection, are projected into
3D using the camera matrix K and depth λ, and finally
3D points are registered using ICP. The ICP recovered

transform cqm between the two images form the loop
closure constraint in the pose graph optimizer.

Q3D = λK−1q2D (9)

M3D = λK−1m2D (10)

cqm =< R,T >= ICP(Q3D,M3D) (11)

To ensure that only high-precision loop closure
constraints are used in pose graph optimization, we
shortlist query-reference image pairs based on their
cosine distance. We used only top 20 loop clo-
sure pairs with lowest cosine distance. Cauchy ro-
bust kernel in cost function is used to minimize
the effect of false positive loop closures that might
have crept in pose graph, using pose graph optimizer
g2o (Kümmerle et al., 2011).

4 EXPERIMENTAL SETUP

Datasets. We have collected seven real-world in-
door datasets in our experiments as shown in Fig-
ure 2. Six in a university campus and one inside a
home. The datasets comprise different types of floor
types like marble, wooden, concrete and carpet. The
datasets consist of sequences in range of 15 m to 50
m. Each sequence contains anywhere between 500-
4000 images. Five were collected using a OnePlus
6 and two were collected using GoPro Hero 3+. We
have shown the performance of our VPR pipeline in
a SLAM framework, Figure 5, on one of the dataset
collected on the university campus with P3DX robot
equipped with RealSense D435 and wheel odometer.
Ablation studies of the effect of loop closures on the
ATE of SLAM pose graph are done on three syn-
thetic datasets, Figure 6 (last column), where floor
tiles are chosen from real world images and P3DX
noise model have been incorporated in the simulator
odometry data.
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Figure 3: Pipeline depicting the process of transformation estimation from proposed opposite pairs by VPR.

4.1 Evaluation and Comparisons

We use Recall as an evaluation metric for visual place
recognition, defined as the ratio of true positives and
total number of positives. A match is said to be a true
positive if it lies within a localization radius of 1

15 th of
the total length of the traversal of its ground truth. We
compare various deep feature extractors under differ-
ent input settings.

For the feature correspondence results, perfor-
mance of different types of input transformations is
shown qualitatively and quantitatively in Figure 4
and Table 3 respectively. A correspondence match
is considered to be an inlier if its reprojection error
calculated using ground truth transformation is be-
low a threshold. Comparison among classical ap-
proach SURF (Bay et al., 2008) and learning based
approaches SuperPoint (DeTone et al., 2018) and
D2Net (Dusmanu et al., 2019) has been shown in Ta-
ble 3.

We have compared Early Bird loop closures with
state of the art SLAM method RTABMAP (Labbé and
Michaud, 2013) in terms of Absolute Trajectory Er-
ror(ATE) on both real world and synthetic datasets.

Table 1: Quantitative Analysis: First column shows the pre-
processing applied to the input. Second column shows types
of transformation applied on the reference images. π-Rot
and Flip-LR indicate a 180◦ rotation and horizontal left-to-
right flipping of the reference image respectively. Homo
+ π-Rot gives the best results in most cases. NetVLAD is
used as the deep feature extractor. D1-D7 are the datasets
as mentioned in Figure 2.

Input OP D1 D2 D3 D4 D5 D6 D7

Raw None 24.1 22.1 24.8 19.9 9.7 28.5 22.2
Raw Flip-L-R 28.8 26.8 29.1 26.6 12.5 29.2 20.6
Homo None 60.7 62.7 61.3 70.4 40.1 12.2 15.1
Homo π-Rot 69.3 70.1 71.8 73.3 44.7 16.3 28.8

5 RESULTS

We show results for each of the components of our
pipeline, particularly highlighting the effect of ge-

ometric transformations for both VPR and feature
correspondences which ultimately contribute in im-
proving the trajectory error for the SLAM back end.
First, we show results for VPR with ablations across
many descriptors and geometric transformations fol-
lowed by qualitative and quantitative results for fea-
ture correspondence extraction. Finally, we compare
our Early Bird SLAM pipeline with the state-of-the-
art SLAM system RTABMAP in terms of Absolute
Trajectory Error (ATE) on real and synthetic datasets.

5.1 Visual Place Recognition

Table 1 and 2 show the recall performance for VPR
using seven different datasets. While Table 1 high-
lights the effect of geometric transformations on a
given place descriptors, NetVLAD in this case, Ta-
ble 2 compares different descriptor types for the best
performing geometric transformation, that is, Homo
+ π-Rot. It can be observed in Table 1 that using the
raw images (Raw) as input leads to inferior results for
most of the datasets even when using the state-of-the-
art viewpoint-invariant representation NetVLAD. The
best performance is achieved achieved through 180-
degree rotation of floor patches (Homo + π-Rot) as
compared to when using only the homography trans-
formed input (Homo). We also compute descriptors
using horizontally-flipped images (Flip L-R) as used
in (Garg et al., 2018a; Garg et al., 2018b) for dealing
with opposing viewpoints in outdoor environments. It
can be observed that such a transformation does not
lead to consistent performance gains. We attribute
this to the repetitive and featureless nature of indoor
environments. For D7, a small performance gap is
observed between using Raw and geometrically trans-
formed images (Homo + π-Rot); this is due to the re-
duced aliasing because of availability of unique visual
landmarks when using raw images. In D6, raw im-
ages (Raw) perform better than floor (Homo + π-Rot)
images due to the lack of sufficient visual features on
the carpet floor. This limitation could potentially be
overcome by using a joint VLAD aggregation of the
whole image and the transformed image, and remains
a future work.
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Table 2: Quantitative Analysis: We compare the perfor-
mance of various deep feature extractors where planar ho-
mography and 180◦ rotation (Homo+π-rot) is applied to the
database images. D1-D7 are the datasets as mentioned in
Figure 2.

Models D1 D2 D3 D4 D5 D6 D7
NetVLAD 69.3 70.1 71.8 73.3 44.7 16.3 28.8
Resnet 72.8 66.5 60.6 63.3 38.0 16.9 13.2
VGG-19 71.6 63.0 56.0 61.1 32.5 17.6 5.0
Superpoint 16.5 27.6 15.0 23.0 35.7 1.6 3.2

In Table 2 we compare the performance of dif-
ferent feature extractors under the best input set-
ting (Homo + π-Rot). NetVLAD performs the best
in most cases with ResNet being the second best.
While NetVLAD is a viewpoint-invariant represen-
tation, ResNet-based feature extraction assumes the
viewpoint to be the same after geometric transforma-
tions. A viewpoint-invariant representation has more
advantages which is reflected in Table 2. Neverthe-
less, due to high perceptual aliasing, geometric trans-
formations are still required before descriptor com-
putation in order to achieve the best performance, as
demonstrated in Table 1.

5.2 Feature Correspondence

Estimating precise correspondences are crucial to cal-
culate accurate transformations using ICP like reg-
istration methods, which in turn help us to achieve
near ground truth pose estimates. Figure 4 (1a and
2a) show that using raw images to calculate feature
correspondences cause both SURF and state-of-the-
art learning methods SuperPoint and D2Net to fail.
The number of correct correspondences increase with
the use of geometric transformations focusing on tex-
tured floor regions. However, without image rota-
tion, matching still remains poor as shown in Fig-
ure 4 (1b and 2b). The best results are obtained when
transformed image pair is aligned with each other by
180◦ rotation as shown in Figure 4 (1c and 2c). Ta-
ble 3 quantitatively shows the number of inliers as
well as total correspondences, averaged over all the
datasets, using different feature extractor methods.
It can be observed that after the geometric transfor-
mation, D2Net leads to a large number of initial as
well as final correspondences. Thus, we used D2Net
with homography and π-rotation as the final keypoint
extractor approach for calculating transformations in
subsequent tasks.

5.3 Loop Closures in Early Bird SLAM

In practical scenarios in the context of long term
autonomy, a robot can typically revisit its operat-
ing environment from a variety of different view-

SURF SuperPoint D2Net

Raw
(1a)

Raw
(2a)

Homo 
+  - rot

(1c)

Homo 
+  - rot

(2c)

Homo
(1b)

Homo
(2b)

Figure 4: Comparison of correspondences obtained using
raw image vs homo + π-rot. The best set of correspondences
is obtained using D2Net with homo + π-rot operation.

Table 3: Number of Inliers / Total Correspondences aver-
aged over all datasets.

SURF Superpoint D2Net

Raw 4.5 / 6.5 0 / 6.5 0 / 28.5
Homo 8.5 / 9 4 / 5.5 6.5 / 13

Homo+π-Rot 11.5 / 11.5 10 / 11.5 97.5 / 97.5

Figure 5: Rows represents pose graph and registered
map.The first column corresponds to RTABMAP trajec-
tory with robot revisiting the location from opposite view-
points, blue dashed line represents early loop closures on
pose graph, second and third column corresponds to opti-
mized map based on VPR constraints and ground truth map
respectively.

points. A more common scenario particularly in cor-
ridors and aisles is that of an opposite viewpoint
which is when our proposed system triggers loop
closure. We demonstrate its efficacy by compar-
ing with the state-of-the-art SLAM system RTAB-
Map (Labbé and Michaud, 2013). As shown in the
Table 4 (Dataset D5), we significantly reduce the Av-
erage Trajectory Error (ATE) by detecting “early”
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Figure 6: Each row represents pose graph optimization
done on three gazebo environments corresponding to Table
4. First column corresponds to RTABMAP trajectory with
robot revisiting the location from opposite viewpoints. Sec-
ond and third column corresponds to optimized and ground
truth trajectory.

loop closures which is qualitatively shown in Figure 5
while RTABMAP fails to do so, due to significant per-
ceptual aliasing. As a consequence, the RTABMAP’s
trajectory Figure 5 (top left) shows multiple corridors
when actually there is only one. The (middle) column
Figure 5 shows trajectory and top view map due to
loop detection and closure from opposite views using
our VPR pipeline. These are much closer to ground
truth trajectory and map shown in (last) column of
Figure 5. Ablation study has been done on measur-
ing the usefulness of early loop closures with dif-
ferent robot’s trajectory length and different tile pat-
terns. We have performed our experiment in three
different simulated environment settings as shown in
Figure 6. In all the three cases, we have achieved
near ground truth poses, while state of the art SLAM
method RTABMAP fails to detect any loop closure
while returning to the same place from opposite view-
points. These results are quantitatively represented in
terms of ATE in Table 4, showing that with increase
in the length and complexity of the trajectory the ef-
fect of early loop closures becomes even more pro-
nounced.

Table 4: Average Trajectory Error on a university dataset
and three gazebo datasets for RTABMAP loop closures vs
Early Bird loop closures.

Datasets RTABMAP Early Bird

D5 9.239 5.69
S1 0.94 0.26
S2 2.86 0.38
S3 2.85 0.36

6 CONCLUSION AND FUTURE
WORK

This paper proposes a novel pipeline that integrates
Visual Place Recognition (VPR) with SLAM front
and back ends specifically for loop detection and clo-
sure for opposite views. The paper showcases that
rotationally-aligned deep floor descriptors provide for
significant boost in all the submodules of the pipeline:
VPR (loop detection), descriptor matching and pose
graph optimization.

The paper extensively compares several deep ar-
chitectures for VPR and descriptor matching. Given
the geometric transformations, NetVLAD as a global
descriptor was found most suitable for opposite-view
VPR while descriptor matching through D2Net found
maximal number of matches vis a vis competing de-
scriptor matching frameworks. Also, superior place
recognition and descriptor matching across opposite
views resulted in a similar performance gain in back-
end pose graph optimization. Specifically, we showed
early loop closures that prevented significant drifts in
SLAM trajectories as a consequence of the proposed
pipeline along with the proper choice of deep archi-
tectures that exploit the various sub-modules of the
pipeline to its maximum efficacy.

The future threads include extension to outdoor
and warehouse like topologies, use of visual seman-
tics or monocular depth-based ground plane extrac-
tion and learning an attention mechanism to deal with
the simultaneous effect of viewpoint variations and
perceptual aliasing.
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