
Process Digitalization using Blockchain: EU Parliament Elections
Case Study

Marek Skotnica1 a, Marta Aparı́cio2 b, Robert Pergl1 c and Sérgio Guerreiro2 d

1Faculty of Information Technology, Czech Technical University, Prague, Czech Republic
2Department of Computer Science, Instituto Superior Técnico, Lisbon, Portugal

Keywords: Blockchain, Smart Contracts, Digitalization, Elections.

Abstract: Blockchain aims to be a disruptive technology in many aspects of our lives. It attempts to disrupt the aspect of
our lives that were hard to digitize, such as democratic elections or were digitized in a centralized way, such as
the financial system or social media. Despite the initial success of blockchain platforms, many hacks, design
errors, and a lack of standards was encountered. This paper aims to provide a methodical approach to the
design of the blockchain-based systems and help to eliminate these issues. The approach is then demonstrated
in an EU parliament elections case study.

1 INTRODUCTION

The Blockchain smart contracts promise a way to dig-
itize processes where value and trust are involved.
This applies to processes in many industries, such as
supply chain management, finance, government pro-
cess automation, voting, and many others. However,
there are many challenges to overcome before es-
sential processes can be deployed to the Blockchain.
For example, after deploying a smart contract to the
Blockchain, the smart contract cannot be updated, and
possible errors cannot be fixed. The errors may result
in significant monetary or security damage. There-
fore, a methodical approach to design, validate, im-
plement, and simulate is needed to address the prob-
lem.

This paper describes a method to digitize pro-
cesses using Blockchain technology based on the
Business Process Management (BPM) method and
the Model-Driven Engineering (MDE) approach. It is
expected that by applying this method, the program-
ming errors will be reduced.

To demonstrate the functionality of the proposed
approach, a EU parliament elections case study was
created. A model of a EU parliament elections vot-
ing process running in Blockchain was modeled, a

a https://orcid.org/0000-0002-8811-3389
b https://orcid.org/0000-0002-1857-0381
c https://orcid.org/0000-0003-2980-4400
d https://orcid.org/0000-0002-8627-3338

Blockchain smart contract was generated, and finally,
a simulation of the functionality was performed.

The paper is organized as follows: In Section 2,
the research method and the research question are for-
mulated. A related research is covered in Section 3.
In Section 4, the underlying scientific foundations are
briefly discussed. An approach to digitize processes
using the Blockchain technology is introduced in Sec-
tion 5. The proposed approach is demonstrated on a
EU parliament elections case study in Section 6. In
Section 7, the current results are summarized, and fur-
ther research is proposed.

2 RESEARCH QUESTION AND
METODOLOGY

The research question is: How to digitize processes
using blockchain smart contracts in a methodi-
cal way and eliminate programming errors while
avoiding a dependency on a particular blockchain
implementation?

The design science research approach is applied
in this paper as described in (Hevner et al., 2004;
Hevner, 2007), which is shown in Figure 1. In the
first cycle, a relevance of the problem is discussed in
Section 1. The environment in which this research is
applied is model driven engineering. The challenge
is the application of the MDE to the blockchain tech-
nology. The environment in which this research is

Skotnica, M., Aparício, M., Pergl, R. and Guerreiro, S.
Process Digitalization using Blockchain: EU Parliament Elections Case Study.
DOI: 10.5220/0010229000650075
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 65-75
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

65

Figure 1: Design Science Research Cycles (Hevner, 2007).

applied is electronic voting.
The second cycle is described in Section 6 and

Section 7. A complex case from the domain is mod-
elled and simulated as a blockchain smart contract.

And, finally, the relevant grounding into the ex-
isting knowledge base is in Section 5, Section 6.
The Section 3 provides an overview of existing ap-
proaches, and the Section 5 shows how to apply the
MDE approach to the blockchain technology.

3 RELATED RESEARCH

There have been attempts at raising the level of ab-
straction from Code-Centric to Model-Centric Smart
Contracts development. The different approaches
tried so far can be divided into three: the Agent-
Based Approach, the State Machine Approach, and
the Process-Based Approach (Aparı́cio. et al., 2020).
For this research and going further into state of the art
already mentioned in (Skotnica and Pergl, 2020), di-
rectly related to this paper, the main focus will be the
Process-Based Approach.

In (Weber et al., 2016) was proposed a tool
to support inter-organizational processes through
Blockchain technology. To ensure that the joint pro-
cess is correctly executed, the control flow and busi-
ness logic of inter-organizational business processes
are compiled from the processes models into Smart
Contracts. Weber et al. developed a technique to
integrate Blockchain into the choreography of pro-
cesses to maintain trust, employing triggers and web
services. By storing the status of process execution
across all involved participants, as well as to coordi-
nate the collaborative business process execution in
the Blockchain. The validation was made against the
ability to distinguish between conforming and non-
conforming traces. (Garcı́a-Bañuelos et al., 2017) pre-
sented an optimization in regards to the already pre-
sented paper (Weber et al., 2016). To compile BPMN
models into a Smart Contract in Solidity Language,
the BPMN model is first translated into a reduced
Petri Net. Only after this first step, the reduced Petri
is compiled into a Solidity Smart Contract. Com-

pared to (Weber et al., 2016), (Garcı́a-Bañuelos et al.,
2017) managed to decrease the amount of paid re-
sources and achieve higher throughput. Caterpillar,
first presented in (Pintado, 2017) and further dis-
cussed in (López-Pintado et al., 2018), is an open-
source Business Process Management System that
runs on top of the Ethereum Blockchain. Like any
BPMS, Caterpillar supports the creation of instances
of a process model (captured in BPMN) and allows
users to track the state of process instances and to ex-
ecute tasks thereof. The specificity of Caterpillar is
that the state of each process instance is maintained on
the Ethereum Blockchain, and the workflow routing is
performed by Smart Contracts generated by a BPMN-
to-Solidity compiler. Given a BPMN model (in stan-
dard XML format), it generates a Smart Contract (in
Solidity), which encapsulates the workflow routing
logic of the process model. Specifically, the Smart
Contract contains variables to encode the state of a
process instance, and scripts to update this state when-
ever a task completes or an event occurs. (Tran et al.,
2018) presented a tool that automatically creates a
well-tested Smart Contract code from specifications
that are encoded in the business process and data reg-
istry models based on the implemented model trans-
formations. The BPMN translator can automatically
generate Smart Contracts in Solidity from BPMN
models while the registry generator creates Solidity
Smart Contract based on the registry models. The
BPMN translator takes an existing BPMN business
process model as input and outputs a Smart Contract.
This output includes the information to call registry
functions and to instantiate and execute the process
model. The registry generator takes data structure in-
formation and registry type as fields, and basic and
advanced operations as methods, from which it gen-
erates the registry Smart Contract. This work builds
upon already seen works, such as (Garcı́a-Bañuelos
et al., 2017; Weber et al., 2016), for the BPMN trans-
lation algorithms.

Going into further detail over the case study do-
main, highly used as a case study in research (Horcas
et al., 2014), voting is a fundamental part of demo-
cratic systems. The current voting system raises con-
cerns for those who depend on it to elect their rep-
resentative, particularly concerning integrity; secu-
rity; transparency; and accessibility, which translates
into low turnout. E-voting by itself doesn’t address
all these concerns due to requiring supervision by a
central authority. However, combining the E-voting
solution with the Blockchain technology could be a
solution, since the latter is decentralized, and dis-
tributed (Curran, 2018).

In (Dagher et al., 2018) was proposed a

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

66

blockchain-based voting system, named BroncoVote,
that preserves voter privacy and increases accessibil-
ity, while keeping the voting system transparent, se-
cure, and cost-effective. BroncoVote used the smart
contracts in Ethereum blockchain to keep a record
of every user in the system as well as all the bal-
lots and the information regarding them. The smart
contracts were also used to achieve access control.
Besides, integrating Paillier homomorphic encryption
into the system to preserve voter privacy. By resorting
to Ethereum’s blockchain and smart contracts, they
enabled voters administration and auditable voting
records. However, it is important to keep in mind that,
in Ethereum any computation requested has to be paid
according to a preset deterministic unit called gas,
which has a variable real-world cost. Thus reducing
the computation performed on the blockchain is im-
perative to reduce the cost of a service running off the
blockchain (Azzopardi et al., 2020). As in (Dagher
et al., 2018), (Khoury et al., 2018) also suggests the
usage of blockchain technology to solve trust issues.
It suggests a new business model for voting service
providers, where the voting service provider enables
the voting event organizers to deploy an event voting
smart contract. The event management server deploys
in the Ethereum network the voting contracts config-
ured according to the voting event customer. (Zhang
et al., 2019) presents an Ethereum based electronic
voting protocol, Ques-Chain, that may surpass the
voting domain to other fields with similar needs. This
protocol responds to problems of three entities, for
the e-voting systems tackles the threat of malicious
manipulation by hackers, for the service providers
helps to prevent and eliminate scams, given the high
costs to perform data cleaning, at last, for the voters
tackles the doubts that may arise about the integrity
of the voting procedure and anonymity failure. The
protocol presented can be divided roughly into four
stages: Setup Stage, where the organizer initialize
the e-voting; Sign Stage, where the voter will get a
signed-blinded-ballot from the organizer; Vote Stage,
where the voters vote; Count Stage, where the voters
will count legal ballots and publish the results. There
are some similarities between the last work mentioned
and (Al-Rawy and Elçi, 2018). However, the latter
divides the voting process into six phases. Both re-
sort to blockchain technology and public-private key
systems. At last, in (Bellini et al., 2018), a process-
centric blockchain-based architecture, called Hyper-
Vote, is discussed. The advantage of HyperVote over
the other papers here presented is that the first fol-
lows the business trend of cloud computing, virtually
turning it into an online service (XaaS). Meaning in a
more practical manner that HyperVote is able to sup-

port dynamic selection, deployment, and execution of
an e-voting process whose requirements are tailored
to the user needs. It is a pay-per-use configurable ap-
proach bringing on costs during the limited timeframe
of an election. This allows to optimize the allocation
of resources as the same infrastructure can serve dif-
ferent customers in different time frames. The Hy-
perVote is an XML based data structure containing
all the information required by the execution environ-
ment to deploy, execute, account, and monitor the ser-
vice. The HyperVote binds a Workflow Model with
the concrete Atomic Services (chaincode) and Hyper-
ledger Network structure and Cloud Infrastructures
that will be invoked and selected by the workflow, re-
spectively, when executed.

4 METHODOLOGIES USED

4.1 BPM

A process is a collection of events, activities, and de-
cisions that collectively lead to an outcome that brings
value to an organization’s customers. Understand-
ing and managing these processes to ensure that they
consistently produce value is critical for the effective-
ness and competitiveness of an organization. Busi-
ness Process Management is a body of principles,
methods, and tools to discover, analyze, redesign, im-
plement, and monitor business processes. Process
models and performance measures are foundational
pillars for managing processes. Since these pillars
help to achieve business goals efficiently and effec-
tively while complying with boundary requirements
for governance, risk, and compliance.

There are many languages for modeling business
processes diagrammatically, perhaps one of the old-
est are flowcharts. Nowadays, there is a widely-used
standard for process modeling, namely the Business
Process Model and Notation (BPMN). BPMN is an
industry-standard for workflow procedures, supported
by the Object Management Group (OMG).

4.2 MDE

One of the promising methods that can facilitate
the development of Smart Contracts is Model-Driven
Engineering. Through Model-Driven Engineering,
executable code can be generated for Smart Con-
tracts from a set of models that specify the pro-
cesses to be supported. For instance, (Horcas et al.,
2014) and (Mavridou and Laszka, 2018) are tool-
supported methods that allow the generation of So-
lidity (Ethereum Foundation, 2020) Smart Contracts

Process Digitalization using Blockchain: EU Parliament Elections Case Study

67

from BPMN diagrams and finite state machines, re-
spectively.

Using Model-Driven Engineering requires a set
of models to be used as input for code generation.
In particular, rather than focusing on algorithms and
the elaboration of code, it focuses on the creation of
models as representations of the software to be built.
These models are then used to be transformed into
other models or code. Key aspects of this transfor-
mational approach are that it speeds up the creation
of software, that it enhances software quality, and
that it facilitates the portability and interoperability
of software. In ”Towards a shared ledger business
collaboration language based on data-aware pro-
cesses” (Hull et al., 2016) called for the development
of a shared ledger business collaboration language,
which should be a language that business people can
understand and use in cross-organizational business
processes supported by blockchain technology.

4.3 Blockchain

(Nakamoto, 2009) described the Blockchain as an ar-
chitecture that enables participants to perform elec-
tronic transactions without relying on trust. This
makes it possible that each block contains some data,
the hash of that block, and the hash of the previous
block. The data stored in a block corresponds to mul-
tiple transactions, and each transaction has an identi-
fication for the sender, receiver, and asset. The block
also has a hash, which identifies its content and is
always unique. If something is changed within the
block, it will cause the hash value to change. This is
why hashes are useful for detecting changes in blocks.
The hash value of the previous block effectively cre-
ates a Blockchain, and it is this technology that makes
the Blockchain so secure. However, the hashing tech-
nology is far from enough, as the high computing
power that exists today, among which the computer
can calculate thousands of hashes per second. To mit-
igate this problem, the Blockchain has a consensus
mechanism called Proof-of-Work. This mechanism
slows down the creation of new blocks since if a block
is tempered, the Proof-of-Work of all the previous
blocks has to be recalculated. Therefore, the security
of Blockchain comes from its creative use of hashing
and a Proof-of-Work mechanism. Of course, its dis-
tributed nature also adds a certain degree of security
because the Blockchain does not use a central entity
to manage the chain, but uses a peer-to-peer network
that anyone can join.

As a new technology, Blockchain raises questions
regarding its viability. As (Garther, 2019) claims,
Blockchain technology is still very immature to sup-

port most of the potential use cases and is still a
tremendous amount of research, implementation, and
adoption to be done. Further, building systems on
Blockchain is non-trivial due to the steep learning
curve of the Blockchain technology. According to
a survey by (Gartner, 2018), “23 percent of [rele-
vant surveyed] CIOs said that blockchain requires the
newest skills to implement any technology area, while
18 percent said that blockchain skills are the most dif-
ficult to find.”.

4.4 Smart Contracts

Blockchain is run by machines that essentially per-
form three things: networking, consensus, and state
management. These machines must run application-
layer software responsible for updating the state. For
Blockchains like Ethereum (Vitalik Buterin, 2013),
a Turing-complete virtual machine is the application
layer. The software programs that developers deploy
to the Blockchain virtual machine are usually called
Smart Contracts. The Ethereum Blockchain was
specifically created and designed to support Smart
Contracts. Solidity is a high-level programming lan-
guage to implement Smart Contracts specially design
for the Ethereum Virtual Machine (EVM). the smart
contracts are deployed onto the blockchain in the form
of a specialized bytecode. This bytecode then runs on
each Ethereum node in EVM. Since creating smart
contracts directly in the bytecode would be too im-
practical, multiple specialized high-level languages
have been created, together with the compilers needed
to convert them into EVM bytecode.

The smart contract itself is written in any sim-
ple language, depending on which Blockchain will be
deployed, and is usually very short. Although they
are relatively short, they are extremely powerful as
they leverage the huge power of cryptography and
blockchains since they operate across organizations
and between individuals. Smart contracts can store
records of who owns what, as well as promises with-
out the need for intermediaries or exposing people to
fraud. These contracts can automatically execute in-
structions given in the past. For pure digital assets,
there is no setback, because the value to be trans-
ferred can be locked in the contract when the con-
tract is created, and automatically released when the
conditions and terms are met. In this case, fraud is
impossible because the program can truly control the
assets involved without the need for a trusted inter-
mediary. Like all algorithms, Smart Contracts may
require input values and only act if certain prede-
fined conditions are met. When a particular value is
reached, the Smart Contract changes its state and ex-

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

68

ecutes the functions, that are programmatically pre-
defined algorithms, automatically triggering an event
on the Blockchain. If false data is entered into the
system, then false results will be outputted.

4.5 Tokens

From what has been written throughout this paper,
the use of Blockchain technology seems the future
to manage digital assets, due to its security and im-
mutability features. In (Voshmgir, 2019) tokens are
described as ways to represent ”programmable assets
or access rights, managed by a smart contract and
an underlying distributed ledger. They are accessible
only by the person who has the private key for that ad-
dress and can only be signed using this private key.”

However, without the use of fungible tokens, this
would be impossible to do since no unique informa-
tion can be written into the token. To represent to-
kens that have to be unique and hold information in-
stead of values, non-fungible tokens are preferred. On
one hand, the fungible tokens can be exchanged to
any other token of the same type. Non-fungible to-
kens, on the other hand, cannot be replaced by other
non-fungible tokens of the same type. For these rea-
sons, the fungible tokens are uniform, meaning they
are identical to one another, where the non-fungible
tokens are unique. Fungible tokens are divisible into
smaller units, while the non-fungible tokens cannot
be divided. In this paper, the non-fungible tokens are
used to represent voter’s ballots.

Due to the need to standardize the general struc-
ture of Ethereum Blockchain tokens, Ethereum Im-
provement Proposals (Ethereum, 2020) was created.
These standards allowed for Smart Contracts running
on Ethereum to interact with tokens defined by other
Smart Contracts. One of these standards is the ERC-
20, providing a typical list of rules on how the fun-
gible tokens should be structured. That makes them
easy to trade, as there is no need to differentiate the to-
kens. To represent unique assets, however, the tokens
must be non-fungible, even if they are of the same
type. In order to facilitate these types of tokens, the
ERC-721 standard was created (Voshmgir, 2019).

4.6 Das Contract

The Das Contract (Skotnica and Pergl, 2020) is a
DSL designed to be an implementation-independent
language for specifying blockchain smart contracts.
The Das Contract specification is based on a sub-
set of BPMN 2.0 (OMG, 2011), UML class dia-
gram (OMG, 2015) and extended with concepts spe-
cific to the blockchain execution environment. The

Legal Text
+

Formal
Models

A Person

A Company

A Legal
Authority

A Smart
Contract

CodeCode
Generation

A Blockchain
A Contract

Human Understanding Technical Implementation Digital Interaction

Figure 2: A proposed concept architecture of DasCon-
tract (Skotnica and Pergl, 2020).

extension allows to specify off-chain forms to interact
with the smart contract, smart contract logic, and abil-
ity to work with payments or tokens. The language is
still under development, and it will be enhanced with
the support of decentralized identity and data oracles.

According to the (Skotnica and Pergl, 2020) and
shown in Figure 2, DasContract’s approch consists of
three parts:

Human Understanding: part defines a contract be-
tween multiple parties that they need to agree on.
Such a contract is a combination of legal text
and formal ontological models. The legal text in
some form specifies the legal validity of the for-
mal model.

Technical Implementation: part specifies how for-
mal models from the contract are transformed into
a software executable code and uploaded into a
blockchain as a smart contract.

Digital Interaction: is a part where people, compa-
nies and legal authorities can interact with the
agreed upon contracts. Since the contract is in
a blockchain, the interaction is fully digital, and
thanks to cryptography can also be legally bind-
ing. Blockchain by design also provides an audit
trail of all actions performed by the parties and
ensures that the agreed upon contract is executed
correctly.

5 OUR APPROACH

Our approach was designed to answer the research
question from section 2. It adopts the BPM method-
ology to provide a methodical way of designing a
blockchain smart contract. A Model-driven engineer-
ing approach is used to generate a smart contract
source code for a particular blockchain. In this pa-
per an Ethereum smart contract platform is used, but
the approach can be generalized. An application of
our approach is shown in section 6 on a process of
EU parliament elections.

Process Digitalization using Blockchain: EU Parliament Elections Case Study

69

The BPM life-cycle in context of digitizing a process
to be used in blockchain technology is following:

1. Design - A process is designed in a DasContract
language with blockchain limitations in mind.
The major limitation compared to a traditional
software system is it’s immutability and a require-
ment that all performed actions are deterministic.

2. Modeling - A simulation of the DasContract may
be performed to ensure the correct behaviour of
the process. This may be critical because the con-
tract can’t be changed after being deployed and
it may be handling significant monetary or legal
value.

3. Execution - A smart contract source code is gener-
ated and uploaded to the blockchain. Because the
metamodel is implementation independent, any
supported blockchain platform can be chosen.

4. Monitoring - Due to the inherent blockchain ca-
pability to record all transaction history, auditing
and analysis of process execution history can be
done.

5. Optimization - The optimization is not relevant in
blockchain because once the smart contract is up-
loaded it is not possible to change it.

6. Re-engineering - Similar to the optimization, the
re-engineering is not available. A new process can
be designed and uploaded to the blockchain but
the old one will be still running.

5.1 Das Contract to Smart Contract
Transformation

The DasContract consists of three interconnected
models: process model, data model, and forms model.
The metamodel of the data and forms models is
shown on Figure 3. The highlighted parts in blue are
the recent additions to support the representation of
fungible and non-fungible tokens and enums. The to-
kens inherit from the entity, and therefore they can
have data properties to represent token metadata.

Process Model: specifies the contract’s process ac-
tivities, their execution order, property mappings, and
user roles. The model is based on an extended subset
of the BPMN 2.0 level 3 notation. The main addition
is support for blockchain tokens (described in Sec-
tion 4.5) that allows to issue and receive both fungi-
ble and non-fungible tokens. During the transforma-
tion, the process sequence is transformed into a smart
contract programming language statements such as if-
else, functions, etc. This process may vary for differ-
ent blockchain implementations.

Data Model: is a domain model of the process is
based on the UML class diagram. It allows speci-
fying entities, properties, and relationships between
them. The properties may contain primitive types
such as int, bool, and string, but arrays and enumer-
ations are supported as well. Address and Address-
Payable types are added to support the storage of a
blockchain actor’s addresses and consequent token or
cryptocurrency transfers. A blockchain token is rep-
resented as a special type of entity and supports defin-
ing both fungible and non-fungible tokens with cus-
tom properties. A transformation of the models to the
smart contract source code is straightforward because
the blockchain programming languages support such
concepts in the form of classes, structures, enums, and
properties. The support of tokens is native on some
platforms. On other platforms such as Ethereum is
added as a third-party library.

Forms Model: specifies an interface for the user
activity input. The forms model is generated into
two parts during the generation – off-chain model
and on-chain code that is similar to a web application
client-side and server-side code. The off-chain model
is interpreted by a blockchain wallet that allows the
user to interact with the smart contract. Most of the
blockchain implementations currently have no sup-
port for off-chain code inside a smart contract. The
on-chain code handles validations, user rights, and
property bindings.

6 CASE STUDY: EU ELECTION

Since 1979, occurred to date, nine Elections of the
European Parliament, once every five years according
to the universal adult suffrage. From 2020, 704 Mem-
bers of the European Parliament will be elected by
more than 400 million eligible voters from 27 mem-
ber states, for this reason it is considered the sec-
ond largest democratic elections in the world (Hare,
2015). Each member state has its own voting sys-
tem, either being by Preferential voting, Closed lists
or Single Transferable Vote, all can be combined
with Multiple Constituents. Further, each member
state has its own voting methods for citizens resi-
dent abroad and if whether or not voting is compul-
sory. Each member state has different rules determin-
ing who can vote for and run as a Member of the Eu-
ropean Parliament. Although this is not a very stan-
dardized process, the European Parliament is the only
institution in the European Union, directly elected by
the citizens. So, it is extremely important that this

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

70

1 0..*

1

0..*

<<Enumeration>>
PropertyDataType

Int
Uint
Bool
String
DateTime
Address
AddressPayable
Data
Byte
Reference

10..*

0..*

0..*

0..*

0..*

C
an
di
da
te
R
ol
es

1

0..*

0..*

0..*

C
an
di
da
te
U
se
rs

As
ig
ne
e

1

1

1 0..*

<<Enumeration>>
FormFieldType

Property
ComboBox
Custom0..*

1

St
ar
tF
or
m

<<Enumeration>>
PropertyType

Single
Collection
Dictionary

1

0..*

Contract

+ Id: string

+ ProcessDiagram: string

Process

ProcessUser

+ Id: string

+ Name: string

+ Description: string

UserTask

ProcessRole

+ Id: string

+ Name: string

+ Description: string

UserForm

+ Id: string

FormField

+ Id: string

+ Order: int

+ Type: FormFieldType

+ DisplayName: string

+ IsReadOnly: boolean

+ PropertyExpression: string

+ CustomConfiguration: string
StartEvent

1

0..*

ReferencedDataType

Token

+ Symbol: string

+ IsFungible: bool

+ IsIssued: bool

DataType

+ Id: string

+ Name: string

Enum

+ Values: string[]

Property

+ Id: string

+ Name: string

+ IsMandatory: boolean

+ PropertyDataType: PropertyDataType

+ Type: PropertyType

+ KeyType: PropertyDataType

Entity

Figure 3: A DasContract Data and Forms Metamodel.

is a transparent, meddle-proof, usable, authenticated,
accurate and verifiable process (Patil et al., 2013).

The development and implementation of constitu-
tional and legal provisions have been one of the en-
gineering concerns. Since for instance, the Elections
of the European Parliament have the estimated cost of
e 700 million. Blockchain has been the most promis-
ing technology when it comes to the electoral domain,
seeing that per each vote, a new transaction, if valid, is
added to the end of the blockchain and remains there
forever (Curran, 2018). For this solution, no central-
ized authority is needed to approve the votes, and ev-
eryone agrees on the final tally as they can count the
votes themselves, as anyone can verify that no votes
were tampered with and no illegitimate votes were in-

serted.
This case study shows how to digitize the EU elec-

tion process by following a method proposed in Sec-
tion 5. A simplified version of the process was de-
signed and tested on the Ethereum blockchain.

6.1 Process Design

The EU election process is very complex. The EU
issues general guidelines on how country elections
should look like, and each country then implements
its legislation to describe how the elections are done
in a particular country. This means that each of the 27
EU countries does this process differently. To avoid
this complexity, it was assumed that there is a unified

Process Digitalization using Blockchain: EU Parliament Elections Case Study

71

E
ur

o
pe

an
 P

a
rli

am
en

t E
le

ct
io

ns

Start Country
Elections

[Political Party]
Register New

Party

[Candidate]
Register

candidate

[Political
Party] Approve

and Order
Candidates

Country
Ellections

Initiate
Ellections

C
ou

nt
ry

 E
le

ct
io

ns

Assign
Privilegues to
the Elected
Candidates

Distribute SeatsCount Votes
Send ballots to
the elegible EU

Citizens

[EU Citizen]
Vote

Figure 4: A DasContract Process Model of the EU Elections.

voting process and each country votes according to
one of the three voting systems – preferential voting,
closed lists, and single transferable vote.

The modeled process is shown on Figure 4. It
starts with an initiation of the elections where all the
countries and their voting systems are initiated in the
contract. After the initiation, political parties are able
to register until a set deadline is expired. Later, candi-
dates are able to register, and in the next step, the po-
litical parties approve the candidates. In some coun-
tries, candidates without countries are allowed. Af-
ter a deadline for the approval is reached, the country
elections for each of the initiated countries are started
in parallel as a subprocess.

PoliticalParty

id: Address
name: string
code: string
website: string
voteCount: int
allocatedSeats: int

Candidate

id: Address
name: string
website: string
voteCount: int
hasSeat: bool

1..*

Elections

startDate: Date
partyRegistrationEnd: Date
candidateRegistrationEnd: Date
candidateApprovalEnd: Date

0..*

1

1..*

1

CountryElections

countryName: string
votingSystem: VotingSystem
electionDates: Date[1..2]
availableSeats: int
electoralTreshold: byte
minimumAge: byte

1

<<Enumeration>>
VotingSystem

OpenList
ClosedList
SingleTransferable

<<Token>>
VotingToken

isFungible: false
symbol: 'VOTE'
isIssuedByContract: true

voterId: address

1
1

Figure 5: A DasContract Data Model of the EU Elections.

The country elections subprocess starts by creat-
ing sending non-fungible tokens to eligible EU vot-
ers. The non-fungible tokens represent voting ballots
to assure that a double vote is prevented. In the next
step, the EU citizens are able to vote by sending their
tokens to the election smart contract during the elec-
tion days. After the voting is over, votes are counted,
and seats are distributed according to the country’s
voting system. In the end, privileges are assigned to
the selected candidates.

The process model also contains a validation and
script task that is currently entered in form of a solid-
ity programming language. In the future, a domain-
specific language is expected to be designed and used.

The data model is shown on Figure 4. It only con-
tains the essential information about the elections be-
cause the storage costs are high on public blockchain
because of a need for replication on all nodes and
keeping all the history. A new concept added in this
paper is a possibility to specify tokens and enumera-
tions in the data model. The voting token representing
a ballot is specified as a non-fungible token and to as-
sure it’s uniqueness, it is associated with an individual
voter identifier. The voter identifier represents a cit-
izen’s identity public key, however, the identification
of the citizen is outside of the scope of this paper and
is a subject of further research.

The forms model rendering for the process step
Vote is shown on Figure 6. The DasContract currently
generates only an on-chain validation code because
the off-chain code is not supported on Ethereum plat-
form.

6.2 Execution

During the execution step, the designed model was
used to generate a Solidity smart contract accord-
ing to the MDE principles. The generation algo-
rithm is available on GitHub under an open-source
license (Skotnica, 2020).

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

72

Vote

 Czech Pirate Party [CPP] pirati.cz

Party:

Country:
Czech Republic

Confirm

Figure 6: A User Interface of the Closed List Vote in a
Blockchain Wallet.

An interesting example of the generated code
shows an implementation of the vote function that
accepts a non-fungible voting token and a voting
choices cast by the citizen:

function vote(address[] memory votingChoices)
public {

require(votingTokensContract
.isEligibleToVote(msg.sender),
"Voter not eligible to vote");

require(isVotingOpen(),
"Voting is currently not allowed");

require(votingChoices.length > 0,
"At least one cadidate must be chosen");

if(votingSystem == VotingSystem.ClosedList){
require(
politicalPartiesMap[votingChoices[0]]
.exists,

"Party address is invalid");
politicalPartiesMap[votingChoices[0]]
.voteCount++;

}
else if(votingSystem ==
VotingSystem.OpenList){
...

}
else if(votingSystem ==
VotingSystem.SingleTransferable){
...

}

votingTokensContract
.transferVoteToken(msg.sender);

}
//The generated code was adjusted to improve
//it’s readability.

The name of the function is taken from the task name
in a process model. The parameters of the vote func-
tions are from the forms model that is associated with
a user task. The address of a voting citizen and his
voting ballot are not the parameters to prevent people
from acting as someone else. The citizen’s id is taken
from the msg object that contains a verified public key
by the original sender. Inside the function, the first
step is to validate the person’s eligibility to vote in the
current election (E.g. he can be a minor and have no

Figure 7: A Screenshot from Remix Simulation.

voting rights.). The second validation assures that the
correct process step is selected. Finally, the votes are
validated so the citizen does not lose his ballot with-
out voting for a valid candidate.

After the validations, a vote is counted according
to the country voting system and the citizen’s vote
is transferred back to the smart contract to prevent
a double vote. Note that the casting vote is counted
but not forgotten due to blockchains’ inherent his-
tory keeping. The blockchain also guarantees that
the function is processed one at a time so the vote-
Count++ is safe to be used even when it is called from
multiple sources in parallel.

In the end, the generated source code was simu-
lated in the Ethereum Remix simulation environment.
A screenshot from the simulation showing the vote
function is show in Figure 7.

6.3 State of the Art

Currently, the election process can be designed, sim-
ulated, and executed in blockchain technology. How-
ever, the public blockchain implementation Ethereum
capacity only allows to process up to fifteen trans-
actions per seconds (Blockchair, 2020) for all of it’s
users and an average transaction price as of Septem-
ber 16th 2020 is 4.301 USD (YChart, 2020). The two
reasons alone would make it impossible to run the real
EU parliament elections on Ethereum blockchain. It
is expected that in the future the transaction prices
will go lower and the transactions per second will in-
crease due to implementation of the proof of stake
consensus algorithm and second layer scaling solu-
tions. These scaling limitations do not apply to private
blockchain solutions such as Hyperledger Fabric (The
Hyperledger White Paper Working Group, 2018) and
therefore it would be possible to execute the EU elec-
tion process there. However, the private blockchains
may not guarantee the same security properties as the
public blockchains because the network is run by a
handful of selected operators.

Process Digitalization using Blockchain: EU Parliament Elections Case Study

73

6.4 Summary

Following the proposed method allowed us to model
the EU elections case in a visual editor using a stan-
dardized BPMN language. The DasContract subset
of the BPMN language only allowed for concepts that
are valid in Blockchain. Furthermore, the data model
was expressed, and a custom non-fungible token was
designed. It was possible to test the process model’s
behavior during the design using standardized BPMN
simulation tools.

During the Execution phase, a Solidity smart con-
tract was generated using an open-source algorithm.
The generated code contains 365 lines, and it was ex-
ecuted in the Remix environment. Due to Ethereum
transaction fees, it would not make economic sense to
run it on millions of users.

Overall, the proposed approach seems to make the
digitalization of processes in the blockchain environ-
ment easier as it is based on a standardized process
modeling notation. The generation of smart contract
code reduces programming errors. However, only
Ethereum smart contracts can be generated, but the
DasContract model seems to be transferable to other
blockchain implementations.

7 CONCLUSIONS AND FURTHER
RESEARCH

This paper introduced a method to digitize processes
using blockchain smart contracts based on the MDE
approach. The method followed the BPM steps and
was demonstrated in the EU parliament elections case
study. It was shown that using the DasContract vi-
sual domain-specific language it is possible to design,
model, execute and monitor the process. By following
the method, a possibility to introduce a programming
error in code was reduced because the code was gen-
erated. Finally, the generated code was simulated on
the Ethereum blockchain.

The limitation of this approach was also men-
tioned, mainly that there is currently no public
blockchain capable of supporting millions of trans-
actions in a cost and time-efficient way. Accord-
ing to the Gartner (Gartner, 2019), production-ready
blockchain technology will be available by 2030. By
then, the transaction fees should be lower, so signifi-
cant cost savings can be realized.

7.1 Further Research

• Extend the example and DasContract language
with a Decentralized Identity (DiD) (W3C, 2020)

and Blockchain oracles such as ChainLink (Steve
Ellis, et a., 2017).

• Compare possibilities of executing the processes
in public vs private blockchains.

• Case studies and usability studies to improve the
proposed method.

• Compare different blockchain implementations
such as Cardano (IOHK, 2017), Tron (Tron Foun-
dation, 2018), EOS (Daniel Larimer, et al., 2017),
and Hyperledger Fabric (The Hyperledger White
Paper Working Group, 2018) and their ability to
execute DasContract models.

• Transformation of the models can be formalized
using the transformation specification languages
like QVT (OMG, 2016) and ATL (OMG, 2002).

ACKNOWLEDGEMENTS

This research has been supported by CTU SGS grant
No. SGS20/209/OHK3/3T/18.

REFERENCES

Al-Rawy, M. and Elçi, A. (2018). A design for blockchain-
based digital voting system.

Aparı́cio., M., Guerreiro., S., and Sousa., P. (2020). To-
wards an automated demo action model implementa-
tion using blockchain smart contracts. In Proceedings
of the 22nd International Conference on Enterprise
Information Systems - Volume 2: ICEIS,, pages 762–
769. INSTICC, SciTePress.

Azzopardi, S., Colombo, C., and Pace, G. J. (2020). A
technique for automata-based verification with resid-
ual reasoning. In MODELSWARD, pages 237–248.

Bellini, E., Ceravolo, P., Bellini, A., and Damiani, E.
(2018). Designing process-centric blockchain-based
architectures: A case study in e-voting as a service. In
Data-Driven Process Discovery and Analysis, pages
1–23. Springer.

Blockchair (2020). Ethereum transactions per second.
Curran, K. (2018). E-voting on the blockchain. The Journal

of the British Blockchain Association, 1(2):4451.
Dagher, G. G., Marella, P. B., Milojkovic, M., and Mohler,

J. (2018). Broncovote: Secure voting system using
ethereum’s blockchain.

Daniel Larimer, et al. (2017). EOS.IO Technical White Pa-
per v2.

Ethereum (2020). Ethereum Improvement Proposals
(EIPs).

Ethereum Foundation (2020). The Solidity Contract-
Oriented Programming Language.

Garcı́a-Bañuelos, L., Ponomarev, A., Dumas, M., and We-
ber, I. (2017). Optimized execution of business pro-
cesses on blockchain.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

74

Garther (2019). The Reality of Blockchain.
Gartner (2018). Gartner survey reveals the

scarcity of current blockchain deployments.
https://www.gartner.com/en/newsroom/press-
releases/2018-05-03-gartner-survey-reveals-the-
scarcity-of-current-blockchain. Accessed: 2020-08-
10.

Gartner (2019). The reality of blockchain.
Hare, P. W. (2015). Making diplomacy work: intelligent

innovation for the modern world. CQ Press.
Hevner, A. (2007). A Three Cycle View of Design Science

Research. Scandinavian Journal of Information Sys-
tems, 19(2).

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design Science in Information Systems Research.
MIS Q., 28(1):75–105.

Horcas, J., Pinto, M., and Fuentes, L. (2014). An aspect-
oriented model transformation to weave security us-
ing cvl. In 2014 2nd International Conference on
Model-Driven Engineering and Software Develop-
ment (MODELSWARD), pages 138–150.

Hull, R., Batra, V. S., Chen, Y.-M., Deutsch, A., Heath III,
F. F. T., and Vianu, V. (2016). Towards a shared ledger
business collaboration language based on data-aware
processes. In International Conference on Service-
Oriented Computing, pages 18–36. Springer.

IOHK (2017). Cardano Blockchain.
Khoury, D., Kfoury, E., Kassem, A., and Harb, H. (2018).

Decentralized Voting Platform Based on Ethereum
Blockchain.

López-Pintado, O., Garcı́a-Bañuelos, L., Dumas, M.,
Weber, I., and Ponomarev, A. (2018). CATER-
PILLAR: A Business Process Execution Engine on
the Ethereum Blockchain. CoRR, abs/1808.03517.
eprint: 1808.03517.

Mavridou, A. and Laszka, A. (2018). Designing secure
ethereum smart contracts: A finite state machine
based approach. In International Conference on Fi-
nancial Cryptography and Data Security, pages 523–
540. Springer.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com.

OMG (2002). ATLAS - Authorization Token Layer Acqui-
sition Service, version 1.0.

OMG (2011). Business Process Model and Notation
(BPMN), Version 2.0.

OMG (2015). Unified Modeling Language, version 2.5.
OMG (2016). QVT - MOF Query/View/Transformation,

version 1.3.
Patil, M., Pimplodkar, V., Zade, A. R., Vibhute, V., and

Ghadge, R. (2013). A survey on voting system
techniques. International Journal of Advanced Re-
search in Computer Science and Software Engineer-
ing, 3(1):114–117.

Pintado, O. (2017). Caterpillar: A Blockchain-Based Busi-
ness Process Management System.

Skotnica, M., e. a. (2020). Dascontract 2.0 github reposi-
tory.

Skotnica, M. and Pergl, R. (2020). Das Contract - A Visual
Domain Specific Language for Modeling Blockchain
Smart Contracts. In Aveiro, D., Guizzardi, G., and
Borbinha, J., editors, Advances in Enterprise Engi-
neering XIII, pages 149–166, Cham. Springer Inter-
national Publishing.

Steve Ellis, et a. (2017). ChainLink - A Decentralized Ora-
cle Network.

The Hyperledger White Paper Working Group (2018). An
Introduction to Hyperledger.

Tran, A. B., Lu, Q., and Weber, I. (2018). Lorikeet: A
model-driven engineering tool for blockchain-based
business process execution and asset management. In
BPM.

Tron Foundation (2018). Tron - Advanced Decentralized
Blockchain Platform.

Vitalik Buterin (2013). Ethereum Whitepaper.
Voshmgir, S. (2019). Token economy how blockchains

and smart contracts revolutionize the economy.
Blockchain HUB, Berlin.

W3C (2020). Decentralized Identifiers (DIDs) v1.0.
Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev,

A., and Mendling, J. (2016). Untrusted business pro-
cess monitoring and execution using blockchain. In
La Rosa, M., Loos, P., and Pastor, O., editors, Busi-
ness Process Management, pages 329–347, Cham.
Springer International Publishing.

YChart (2020). Ethereum average transaction fee.
Zhang, Q., Xu, B., Jing, H., and Zheng, Z. (2019). Ques-

chain: an ethereum based e-voting system. arXiv
preprint arXiv:1905.05041.

Process Digitalization using Blockchain: EU Parliament Elections Case Study

75

