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Abstract: Error correlates are thought to be promising for BCIs as a way to perform error correction or prevention, or 
to label data in order to perform online adaptation of BCIs’ control models. Current state-of-the-art BCIs are 
motor-imagery-based invasive BCIs and thus have no access to neural data apart from sensory-motor cortices. 
We investigated at the single trial level the presence and detectability of error correlates in the primary motor 
cortex during observation or motor imagery (MI) control of a BCI with two discrete classes by a tetraplegic 
user. We show that error correlates can be detected using a broad range of classifiers, namely Support Vector 
Machine (SVM), logistic regression, N-way Partial Least Squares (NPLS), Multilayer Perceptron (MLP) and 
Convolutional Neural Network (CNN) with respective mean AUC of the ROC curve of 0.645, 0.662, 0.642, 
0.680 and 0.630 in the observation condition, and 0.623, 0.605, 0.603, 0.626 and 0.580 in the MI-control 
condition. We also suggest that these error correlates are stable in time. These findings suggest that error 
correlates could be used in clinical trials using invasive motor-imagery-based BCIs for error correction or 
prevention.

1 INTRODUCTION 

Brain computer interfaces (BCI) are promising tools 
that use neural signal recordings to directly control 
effectors. However, BCIs are currently mostly used in 
research laboratories due to several limitations, 
including their often too low performances and their 
requirement to be calibrated in specific conditions 
with the assistance of a researcher. Both of these 
issues can be alleviated using a biomimetic strategy 
of learning for the training of the decoder of the BCI. 
In humans, brain signals that generate correct actions 
can be reinforced, while action recognized as 
erroneous can be corrected and may have also 
reduced probability of being performed in the future. 
This learning requires feedback in order to know if a 
given action was correct or erroneous. In the case of 
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an action performed by a human controlled BCI, the 
human receives feedback (e.g. visual) regarding the 
success of the action, whereas the machine does not. 
Having the user consciously (e.g. orally or physically) 
transferring this feedback to the BCI may be tiring, 
impractical or even impossible depending on the 
condition of the user. However, the feedback received 
by the user may produce specific brain activity. A 
BCI able to detect such brain activity would thus have 
access to learning-enabling feedback. Brain activity 
correlated to errors was recorded as early as 1991 in 
the experiments of Falkenstein et al. (1991). 
Detection of error correlates during BCI operation 
can provide a way to either correct mistakes after they 
have been performed or train or update the models 
used to control the BCI (Chavarriaga, Sobolewski, & 
Millan, 2014). The ability to reliably detect error 

26
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correlates in brain signals is thus valuable for the 
development of BCIs. 

Although error correlates can be used directly as 
control signals to operate a BCI (Chavarriaga, 
Iturrate, & Millan, 2016), we are interested here in 
their use as a secondary signal acquired to improve 
the performance of BCIs. Notably, error correlates 
have been used in simulations and online experiments 
to automatically correct errors during BCI operation 
(Even-Chen et al., 2018; Parra, Spence, Gerson, & 
Sajda, 2003) or to update control models without the 
use of new externally labeled data (Blumberg et al., 
2007; Spüler, Rosenstiel, & Bogdan, 2012). 

The error correlate discovered by Falkenstein et 
al. (1991) is the error-related signal mostly used in 
BCI applications. This waveform called the error-
related potential (ErrP) is composed of a negative 
potential deflection over the fronto-central scalp area 
roughly 50 to 100ms after the event that induced it, 
followed by a centro-parietal positive deflection 
(Chavarriaga, Sobolewski, & Millan, 2014). 
Conveniently for BCI, ErrPs are relatively stable 
across time and tasks (Chavarriaga & Millan, 2010; 
Ferrez & del R. Millan, 2008), are elicited when an 
error is performed by a BCI controlled or observed by 
a user (Ferrez & del R. Millan, 2008; Schalk, 
Wolpaw, McFarland, & Pfurtscheller, 2000) and are 
detectable at the single-trial level (Parra, Spence, 
Gerson, & Sajda, 2003). However, the localization of 
these ErrPs is a drawback for current state-of-the-art 
BCIs. The BCIs best in terms of performance are 
invasive and thus often have access to limited 
recording areas over or in the brain (Benabid et al., 
2019; Wodlinger et al., 2014). The primary sensory-
motor cortex is the best candidate for the recording 
area of an invasive BCI due to its ability to generate 
motor imagery signals. In such circumstances, ErrPs 
cannot be recorded when using these BCIs. We focus 
hereafter on the specific case of BCIs that acquire 
brain signals from the sensory-motor cortex only. 

ErrPs are not the only error correlates that can be 
recorded from brain signals. Error correlates have 
been reported in the primary motor and 
somatosensory cortex. In a MEG study, Koelewijn et 
al. (2008) reported a stronger beta rebound after an 
outcome error than after a correct task outcome, both 
when observing or performing a motor task. Previous 
work by van Schie et al. (2004) demonstrated the 
existence of error correlates in the motor cortex by 
showcasing the variability of the lateralized readiness 
potential between correct and erroneous response in 
an Eriksen flanker task. Although their experiment 
was performed on non-human primates and using 
intracortical electrodes, Inoue et al. (2016) 

successfully showed that end-point errors during 
reaching tasks are encoded in the primary motor 
cortex. Maybe more importantly, they provided 
evidence that these error signals are necessary for 
adaptation in reaching movements. In an EEG-ECoG 
combined study, Völker et al. (2018) showed that 
error processing in the human brain involved 
modulation of brain activity in the high gamma 
frequency band (60-90Hz), including modulations in 
the precentral gyrus and post central gyrus. These 
findings are consistent with the more recent study by 
Wilson et al. (2019), in which they also found an 
increase in the high gamma frequency band (70-
100Hz) after erroneous BCI task outcomes with 
respect to correct ones. Finally, Milekovic et al. 
(2012, 2013) reported detection of errors at the single 
trial-level using ECoG in the motor region 
(accuracy76%) during motor execution by able-
bodied subjects. Apart from Milekovic et al., no 
single-trial detection of error correlates in the motor 
cortex have been reported. However, Milekovic et 
al.’s studies have the drawbacks of being performed 
with overt movement tasks instead of BCI operation 
by tetraplegic user with motor imagery. Additionally, 
these studies were performed with subjects implanted 
with large ECoG grids due to intractable epilepsy. 
Although they report detectability using electrodes 
located over the motor cortex, this does not insure the 
detectability using electrodes positioned with motor 
imagery for BCI in mind.  

In this study, we perform an experiment where a 
tetraplegic user receives erroneous feedback from a 
BCI while observing or controlling its actions. Neural 
data are acquired using chronic ECoG implants 
located over the left and right primary sensory-motor 
cortex. The BCI is controlled using motor imagery 
and errors should be detected on a single trial basis 
using the brain data recorded from the motor cortex. 
Several decoding models are trained for the purpose 
of detecting error correlates. 

2 METHODS 

2.1 Data Recording 

The subject in this experiment was a 28-year-old male 
who had tetraplegia following a C4-C5 spinal cord 
injury (ASIA scale levels of the subject are presented 
in Benabid et al. (2019)). The subject was implanted 
with two WIMAGINE (Mestais et al., 2015) ECoG 
implants 24 months prior to the experiments in this 
study, as a participant in the clinical trial “BCI and 
Tetraplegia”. The “BCI and Tetraplegia” clinical trial 
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Figure 1: A. Position of the electrodes of each WIMAGINE implant over the right and left sensory-motor areas on a 
reconstruction of the subject’s brain from MRI. B. Schematic view of a WIMAGINE implant. 

 

(ClinicalTrials.gov identifier: NCT02550522) was 
approved by French authorities: Agence nationale de 
sécurité du médicament et des produits de santé 
(ANSM) with the registration Number: 2015-
A00650-49 and the ethical committee (Comité de 
Protection des Personnes - CPP) with the Registration 
number: 15-CHUG-19.  The implants were 
positioned over the left and right sensory-motor 
cortex (Figure 1). Experimental data was recorded at 
a sampling rate of 586Hz from 32 out of the 64 
electrodes of each implant because of limited data 
rates. 

2.2 Experimental Setup 

The subject was sited in front of a computer screen 
where a human avatar was represented from a third 
person perspective. An instruction panel that either 
displayed a GO or STOP label was also displayed 
(Figure 2). The avatar could either stand still or walk 
forward at a fixed speed. Two conditions of control 
were designed. In the first condition (condition 1), the 
subject had no control over the avatar, which was 
controlled by the computer. In the second condition 
(condition 2), the avatar was controlled by the subject 
using leg motor imagery. The subject was already 
trained to control a similar avatar using leg motor 
imagery prior to this experiment (Benabid et al., 
2019).  

In condition 1, the subject was instructed to focus 
on the avatar and to expect the avatar to follow the 
instructions displayed on the instruction panel as if he 
was controlling the avatar’s actions through motor 
imagery. In this condition, the instruction panel 
switched its instruction every 5 to 15 seconds. The 
  

 

Figure 2: The environment is similar to the one in Benabid 
et al. (2019). The subject either watched the avatar move 
automatically (condition 1), or controlled it using leg motor 
imagery (condition 2). When the instruction panel showed 
“STOP” the avatar was supposed to stay idle, whereas when 
it showed “GO” the avatar was supposed to walk. 

avatar followed the change in instruction with a 
random reaction speed between 200ms and 500ms. 
Additionally, error periods were automatically 
introduced in this condition. During error periods, the 
avatar switched its state to the opposite of the one 
required from the instruction panel. Error and correct 
periods always lasted at least two seconds, and error 
periods never lasted more than three seconds. Error 
periods were introduced at random following the 
previous restrictions with an error rate of 
approximately two to three errors per minute. 
Nineteen sessions of eleven minutes of recording 
were acquired over 268 days in condition 1. 

In condition 2, the subject controlled the avatar 
using leg motor imagery. Walking was triggered by 
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performing both legs motor imagery, while standing 
still was performed by not performing motor imagery. 
In this condition, the duration of error and correct 
periods as well as the error rate were entirely 
determined by the control of the subject over the BCI. 
Since the subject was already trained for such a task 
and had achieved high control of the BCI, a new 
control model was built specifically for the 
experiment using a purposely-reduced dataset as 
training set. This was performed in order to ensure 
that errors would still occur in this simple control 
paradigm. Thirteen sessions of on average eleven 
minutes of recording were acquired over 141 days in 
condition 2. 

Condition 1 was designed to ensure that error 
correlates could be recorded in the motor cortex with 
the present electrode setup, without any interference 
from motor imagery signals. It also ensured that error 
correlates detected in condition 2 were not due to 
motor imagery confounds. Condition 2 was designed 
to assess if error correlates could be detected while 
the BCI was used. 

2.3 Data Labelling 

In both conditions, the goal of the experiment was to 
distinguish correct from erroneous events. Events 
were defined as moments when the avatar changes its 
state. Specifically, correct events were defined as the 
avatar changing its state to the one required by the 
instruction panel, and error events were defined as the 
avatar changing its state to the opposite of the one 
required by the instruction panel. We expected error 
correlates to appear after such erroneous events, as 
was the case in Milekovic et al. (2013). 
Epochs of one second and spaced by 100ms (90% 
overlap) were considered for the classification of 
correct or erroneous events. The first six full epochs 
after an event were labeled according to the event 
type. The first such epoch contained temporal data 
from the event onset to one second after the event. 
The last epoch contained temporal data from 0.5s 
after the event to 1.5s after the event (Figure 3). 
Additionally, epochs that were too close to another 
event were discarded. The inclusion of several epochs 
for each event was performed with two goals in mind. 
The first one is to counterbalance the issue of 
synchronization. Indeed the timing of the brain 
response to the erroneous or correct events may vary 
depending on several conditions, such as the attention 
level, the tiredness of the subject, or the workload as 
is the case in classical ErrPs paradigms (Iturrate, 
Chavarriaga, Montesano, Minguez, & Millán, 2012). 
Additionally, there was some jitter in the reaction  

  

 

Figure 3: Example of an error event where the avatar starts 
walking when it is supposed to stay idle. Red dots indicate 
epochs belonging to the error class. The first epoch included 
contains neural data from the onset of the error to one 
second after.  

time of the avatar itself to a change of command (e.g. 
the avatar must finish a step before stopping), which 
was estimated to be up to 300ms. Adding several 
epochs for each event increased the probability of 
having the desired brain signal in one of them at the 
cost of some label uncertainty. 

2.4 Feature Extraction 

Time-frequency decomposition of brain signals is 
classically performed in the literature for the 
detection of error correlates in the motor cortex 
(Milekovic, Ball, Schulze-Bonhage, Aertsen, & 
Mehring, 2012; Wilson et al., 2019). Therefore, time-
frequency information was extracted for each 1s 
epoch and for the 64 electrodes. Continuous complex 
wavelet transform was applied using a family of 
fifteen Morlet wavelets of central frequencies from 
10Hz to 150Hz. For each 1s epoch, the absolute value 
of this time-frequency data was averaged over the 
temporal dimension into ten non-overlapping 
windows of 100ms. The resulting feature tensor for 
each epoch was thus of shape 10 ൈ 15 ൈ 64, 
respectively along the temporal, frequential and 
spatial dimensions. 

2.5 Data Balance 

Due to the design of the experiment, there was an 
imbalance in the class repartition of the data in both 
condition 1 and 2 (Table 1). Additionally, error 
epochs and correct epochs could each be of two 
separate types. Error epochs could be due to the 
avatar starting to walk when expected to stand idle, or 
due to the avatar stopping when expected to walk. 
Similarly, correct epochs could be due to the avatar 
starting to walk when expected to walk or due to the 
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avatar stopping when expected to stop. The existence 
of these sub-classes could potentially create strong 
confounds for the error correlate detection if they 
were not balanced (e.g. a motor imagery confound in 
condition 2). The training dataset was balanced by 
oversampling the three sub-classes with the least 
number of epochs to the same number of epochs as 
the most populated sub-class. Oversampling was 
performed by repetition of the epochs present in the 
sub-classes. 

Table 1: Number of epoch in each class for each condition. 

2.6 Decoders 

Several decoder types were trained and compared on 
both condition 1 and 2. We trained classical decoders 
used in BCI studies, namely support vector machine 
(SVM), logistic regression, multilayer perceptron 
(MLP), convolutional neural networks (CNN) and N-
way partial least squares (NPLS). These decoders 
share a characteristic of simplicity as the dataset in 
this problem is of high dimensionality (9600 input 
features), and with a relatively low amount of samples 
(~9000 and ~8000 in condition 1 and 2 respectively). 
For various example of use of these decoders for BCI, 
the interested reader may refer to Lotte et al. (2018). 

2.6.1 SVM & Logistic Regression 

SVM and logistic regression are considered as state-
of-the-art methods for binary classification. These 
methods are most often used in combination with 
kernels, which can act as nonlinear projections of the 
input data into high dimensional spaces without 
having to specify the transformed input data. Regular 
kernels (Gaussian and polynomial) were not used as 
in preliminary studies they tended to strongly overfit 
the training datasets, even with strong regularization 
parameters and low Gaussian kernel scale (<10-5) or 
low polynomial kernel order (order of 2 or 3). 

Since we have more features in our input dataset 
than sample points, regularization was used for both 
SVM and logistic regression. For both methods, ridge 
regularization was applied. After preliminary results, 
lambda was set to one.  

2.6.2 NPLS 

NPLS is a less known method in the field of BCIs. It 
is a linear method that is particularly suitable for 

tensor-based high dimensional datasets. It also has the 
advantage of being updatable using low 
computational power and without requiring to save 
the full original training dataset (Eliseyev et al., 
2017). 

2.6.3 MLP 

MLP is a fully connected feedforward artificial neural 
network. It may be interpreted as a logistic regression 
model preceded by a nonlinear transformation which 
increases predictive power of the model. Proposed 
MLP model consisted of one hidden layer with 100 
neurons (with learnable weights) followed by a ReLU 
activation. As all neurons are connected to each input 
component and produce linear combination of input 
features, it results in a huge number of parameters to 
train. Considering the size of the dataset and number 
of parameters we decided to regularize the model by 
applying batch normalization, dropout with 
probability of a neuron being zeroed 0.5, L2 
regularization on model’s weights with lambda equal 
0.1 and early stopping on validation set.   

2.6.4 CNN 

CNNs take advantage of data structure. They are 
capable of capturing invariant patterns that may occur 
in different parts of the signal. They have less 
trainable parameters than similar MLP because of 
filters weight sharing which means that the same set 
of small filters is applied all over the data. We decided 
to use CNN as there is a possible shift in error 
correlates synchronization inside epochs. By sliding 
convolutional filter over the signal in the time domain 
we expected network to recognize error correlates 
(which we expect to be time invariant) occurring in 
different epoch’s moment with the same filter. It 
results in lower number of parameters and possible 
higher performance in detecting time invariant 
patterns. Proposed CNN used 128 filters of shape 
5 ൈ 15 ൈ 64 respectively in time, frequency and 
channels dimension. Each filter was slid only over 
time dimension with stride equal 1. We applied the 
same regularization methods as for the MLP. 

2.7 Decoder Application and 
Performance Evaluation 

We report the performance of each model regarding 
the desired task, which is the detection of error or 
correct events. Up to 6 epochs were used for each 
event but the signal corresponding to an error may not 
be found in all of these epochs. Events were classified 

 Epoch type Condition 1 Condition 2
Number of 

epochs 
Correct 7539 4412
Error 2307 3580
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as errors as soon as one of their associated epochs was 
classified as an error. The number of correct and error 
events in each fold are summarized in Table 2 and 3. 

The performance of the event decoder was 
assessed over a five-fold cross-validation performed 
across sessions, which means that an equal number of 
sessions was presented in each of the five data splits. 
Each split was used as a testing fold once, with the 
corresponding other four splits used as training fold. 
The performance of each decoder was evaluated 
using the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve for each test 
fold of the cross-validation, for the task of event 
classification. 

Table 2: Repartition of error and correct events in each fold 
for condition 1 (observation). 

 Event 
type 

Fold 
1 

Fold 
2 

Fold 
3 

Fold 
4 

Fold 
5

Train 
Correct 1006 992 985 981 1072
Error 283 308 316 317 332

Test 
Correct 253 267 274 278 187
Error 106 81 73 72 57

Table 3: Repartition of error and correct events in each fold 
for condition 2 (control with motor imagery). 

 Event 
type 

Fold 
1 

Fold 
2 

Fold 
3 

Fold 
4 

Fold 
5

Train 
Correct 633 554 558 590 609
Error 519 457 464 469 483

Test 
Correct 103 182 178 146 127
Error 79 141 134 129 115

3 RESULTS 

In the first condition the avatar was not controlled by 
the subject and the subject monitored only the actions 
taken by the BCI. In the second condition the state of 
the avatar was controlled by the user through leg 
motor imagery. The results for each decoder and 
condition are summarized in Table 4 and Figure 4. A 
Friedman test was performed to compare model 
performances within each condition group. No 
significant differences was found between models in 
condition 1 (p-value = 0.13) or between models in 
condition 2 (p-value = 0.08). 
The results we report show that MLP achieved the 
best performance in both the observation and MI-
control conditions. CNN and MLP were the two 
models that allowed for the most complex 
representations, such as nonlinear relationships. 
Taking into account that regularization would limit 
the drawbacks associated to their high number of 
parameters, we expected these models to perform the 

 

Table 4: Mean and standard deviation over five test folds of 
the area under the curve of the receiver operating 
characteristic curve for the classification of error vs correct 
events. 

Condition 1 NPLS Logistic SVM MLP CNN
AUC mean 0.642 0.662 0.645 0.680 0.630

AUC std 0.096 0.106 0.119 0.131 0.124
  

Condition 2 NPLS Logistic SVM MLP CNN
AUC mean 0.603 0.605 0.623 0.626 0.580

AUC std 0.037 0.040 0.027 0.014 0.022
 

 

Figure 4: Mean area under the curve of the receiver 
operating characteristic curve for each model and each 
condition. Error bars on the left and right of the mean each 
represent one time the standard deviation. 

best. CNN had less parameters than MLP and was 
also more adapted to the task of re-synchronizing the 
error correlates. However, the performances of CNN 
models were the worst across all decoders. A possible 
explanation for this is that both neural network 
architectures (and neural networks in general) had a 
high number of hyperparameters and we did not 
perform an exhaustive search of these 
hyperparameter spaces (e.g. learning rate, number of 
filters, regularization weight). 

In each condition, the three other decoders 
performed similarly, with small variabilities 
demonstrating better performances for logistic 
regression in the first condition and for SVM in the 
second condition. NPLS always performed slightly 
worse than SVM and logistic regression. 

Performance across different folds was 
represented by the standard deviation of the AUC. 
Since cross-validation was performed session-wise, 
this standard deviation can be used to predict the 
generalization capabilities of each model over 
different datasets. In the observation condition, the 
standard deviations of the AUC for each decoder 
were close to one another, with NPLS having the 
lowest. In the MI-control condition MLP had the 
lowest standard deviation, close to twice lower than 
the standard deviation of other decoders. 
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On average, the AUC of the decoders in condition 
1 decreased by 6.8% for condition 2. This was 
expected since the motor imagery signals used to 
control the BCI in the MI-control condition can be 
regarded as noise for the classification of error and 
correct events. However, the standard deviation of the 
AUC was up to ten times larger in the observation 
condition than in the MI-control condition. We 
suggest that the higher variability in the observation 
condition was due to a higher variability in the 
attention level of the subject than in the MI-control 
condition. Indeed, in the MI-control condition the 
subject was more engaged in the task since he had 
active control over the avatar’s actions. In the 
observation condition, the subject was more 
vulnerable to distractions due to the lack of 
interaction required by the condition. We hypothesize 
that the attention level modulated the strength of the 
error correlates in the motor cortex, similarly to how 
it modulates classical ErrPs (Yeung, Holroyd, & 
Cohen, 2005). 

4 DISCUSSION 

4.1 Impact of Event Latency 

We hypothesize that the error correlate reported here 
could be modulated by the length of correct or error 
periods prior to an event. Although the duration of 
these periods, or latency before each event, was partly 
controlled in condition 1 there was no inclusion or 
exclusion criterion based on it in condition 2. We 
suggest that this latency may influence the brain 
response to events. For example, correct events after 
a long erroneous period may elicit a stronger brain 
response than after a short erroneous period. Due to 
the relatively small dataset acquired in this 
experiment, separating the events based on latency 
was not possible, but larger studies should take it into 
account when possible. 

4.2 Inter-session Stability of Error 
Correlates 

It should be noted that the different sessions of this 
experiment were recorded over the course of several 
months. The cross-validation was performed session-
wise, which means that the models were partly trained 
on data recorded far away temporally from the data 
they were tested on. This leads us to suggest that the 
error correlates we report in the motor cortex may 
exhibit a certain temporal stability, similarly to ErrPs. 

4.3 Single Trial Detection of Error 
Correlates 

Although the AUCs reported in this study are not 
considerably high, these are still above chance levels 
for each algorithm tested here. We therefore suggest 
that there effectively is an error correlate detectable at 
the single trial level in the motor cortex when either 
observing or controlling a BCI that performed an 
erroneous action. Additionally, although the AUC 
decreased between the observation and MI-control 
condition, the ability to detect error correlates in the 
motor cortex during operation of the BCI using motor 
imagery is valuable not only from a neuroscience 
perspective where it could provide some additional 
insight on the motor learning mechanisms, but also 
for potential applications in state-of-the-art BCIs for 
which it is a requirement.  

4.4 Decoders for Online BCIs 

Although SVM, logistic regression and neural 
networks are recognized as powerful methods, it is 
not easy to update these classifier online without 
retraining them on the full training dataset. This 
property can be a drawback for some BCI 
applications, including online training which is 
considered as better than classical training with 
feedback that is not generated by the control of the 
BCI. More investigation would be required if these 
decoders were to be trained or updated in online BCI 
paradigms. In such cases, one should preferably use 
NPLS over these decoders, as NPLS demonstrated 
only slightly lower performances (up to 3.7% lower) 
than the other decoders while being easily trainable 
and updatable online. 

5 CONCLUSION 

Like previous independent studies reported, we found 
error correlates in the time-frequency decomposition 
of brain signals recorded in the sensory-motor cortex 
using ECoG. However, to our knowledge this study 
is the first to report the possibility to detect at the 
single-trial-level error correlates in the sensory-motor 
cortex during operation of a BCI. This study is also 
the first one to report error correlates in the sensory-
motor cortex of a tetraplegic subject. Additionally, in 
this study the operation of the BCI is performed using 
motor imagery, further highlighting the value of these 
results since a BCI with access to neural data from the 
motor cortex only (such as invasive state-of-the-art 
motor-imagery-based BCIs) could still be able to 
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detect error correlates and potentially use them for 
error correction or model adaptation. The fact that the 
detection accuracy of the NPLS was close to other 
model is also a strong point for potential online model 
adaptations, as it is computationally fast to update in 
real time compared to the other models presented. 

The main limitation of this study is that it was 
restricted to the first subject of the clinical trial. 
However, this clinical trial is expected to have a total 
of 5 subjects, who could later be added to this study. 
Other perspective future studies include 
implementing automatic error correction for this 
binary BCI, as well as error correlate detection during 
control of more complex BCI effectors using multiple 
degrees of freedom. 
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