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Abstract: Multimodal neural network in sentiment analysis uses video, text and audio. Processing these three modalities
tends to create computationally high models. In the embedded context, all resources and specifically compu-
tational resources are restricted. In this paper, we design models dealing with these two antagonist issues. We
focused our work on reducing the numbers of model input features and the size of the different neural network
architectures. The major contribution in this paper is the design of a specific 3D Residual Network instead
of using a basic 3D convolution. Our experiments are focused on the well-known dataset MOSI (Multimodal
Corpus of Sentiment Intensity). The objective is to perform similar results as the state of the art. Our best
multimodal approach achieves a F1 score of 80% with a number of parameters reduced by 2.2 and the memory
load reduced by a factor 13.8, compared to the state of the art. We designed five models, one for each modality
(i.e video, audio and text) and one for each fusion technique. The two high-level multimodal fusions presented
in this paper are based on the evidence theory and on a neural network approach.

1 INTRODUCTION

Sentiment analysis remains a recent subject of study,
99% of publications on this topic have been published
after 2004. The reader can refer to (Mäntylä et al.,
2018) for a complete review on this modality subject.
Sentiment analysis is used in diverse fields of appli-
cation. Today, companies like Facebook, Amazon or
Twitter infer sentiment analysis thanks to the massive
amount of data uploaded every day on their servers.
These companies mainly adopt this type of data to ex-
tract the opinion expressed in the video stream or text
stream. More specifically they use these technologies
for brand monitoring, customer service, market re-
search, and analysis (Benedetto and Tedeschi, 2016;
Greco and Polli, 2020). Recent studies show the effi-
ciency of text sentiment analysis on tweets or even on
Amazon product reviews (Trupthi et al., 2017; Nandal
et al., 2020).

Plethora of applications can today be enhanced
with deep learning. Smartphones employ IA for the
unlocking system (Baqeel and Saeed, 2019). They
also use IA to sublimate picture quality (Vu et al.,
2019). Recent cars use IA for pedestrian detec-
tions (Shi et al., 2020) or road sign detections (Dubey

et al., 2020). New headphones also implement IA
to reduce environmental noise (Reshma and Kiran,
2017). These new technologies embed dedicated IA
software and hardware. These types of tasks can be
difficult to execute on a server, mainly because of
the necessity to have an Internet connection. Two
particular problems are intensified when an Internet
connection is needed: latency between the server
and the client and data leak. With the current craze
for IA, component manufacturers attend today to de-
sign modern hardware to execute deep learning algo-
rithms. This recent development is inevitable because
of the high computing resources required by IA. It in-
volves the use of expensive hardware. One of the so-
lutions to not increase the final price of the product is
to adapt IA models to cheaper hardware.

In the automotive field, sentiment analysis is a ma-
jor issue. For example, the level of satisfaction of the
driver in the cockpit can be analyzed. It is also possi-
ble to study the interactions between the driver and the
Human Machine Interface (HMI) of the board com-
puter. With the challenge of autonomous vehicles, the
driver will have to regularly take control over a vehi-
cle moving in the traffic. The difficulties for the driver
are to maintain a suitable awareness of the situation to
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take back the task of driving. (Wörle et al., 2020)
investigate the conducting behavior of drivers after
sleeping. The idea is to have a maximum of data on
the driver and passenger states to suggest beneficial
actions and information to assist the driver. In other
contexts, like fleet of autonomous vehicles, without
any driver in the vehicle, the critical problem is the
lack of authority. By analyzing the levels of interac-
tion inside the car we could detect incidents like ag-
gression and then trigger an alarm to inform a remote
controller.

Regardless of the industrial application, embed-
ded resources are always limited. Even with powerful
hardware, the performance of a Deep Neural Network
remains limited by three factors: memory bandwidth,
math bandwidth, and latency. Note Tmemory time spent
in accessing memory and Tmath time spent performing
math operations. On a given processor a given algo-
rithm is math limited if Tmath > Tmemory.

Expressed:

ops
bytes

>
BWmath

BWmemory
(1)

with ops the operations and BW the bandwidth.

In an embedded environment, those three factors
are more constrained than servers or computer ma-
chines. The three previous factors are directly im-
pacted by the three following operations:

• Element-wise operations.

• Reduction operations.

• Dot-Product operations.

When we deal with embedded systems, two hardware
components are directly impacted by the size of the
model:

• CPU and/or GPU loading.

• Memory loading.

Today, in image analysis the tendency is to deeply
modify the architecture to tune model for the smart-
phones or embedded devices. The objective is to
reduce CPU computation while improving perfor-
mances. Recent works in object recognition show
huge improvements in reducing the CPU/GPU re-
sources of the neural network model (Bochkovskiy
et al., 2020; Howard et al., 2019). Embed this deep
learning model remain a technological challenge.

Given these insights, this paper focuses on de-
signing a model with equivalent performances to the
state-of-the-art (or higher), but with computational re-
sources drastically reduced. We differ from the lit-
erature by the embedded approach in the context of
sentiment analysis, which is, to our best knowledge

marginally studied. Our approach also differs by our
concrete ultimate objective which is to embed our
model in a vehicle by minimizing the CPU/GPU re-
sources required. We privilege a public dataset in or-
der to compare our performances with the literature
while improving drastically the model compactness.

The paper is organized as follows. Section 2 intro-
duces a literature review on multimodality sentiment
analysis. In section 3, we expose the methodology
on each modality and our multimodal approach. Sec-
tion 4 provides information on dataset and experimen-
tal results.

2 RELATED WORKS

Most sentiment analysis approaches are only based
on text due to the high availability of text datasets,
like (Maas et al., 2011) or Amazon and Tweeter
datasets. Recent studies, with new approaches such
as multimodality, show the benefit of exploiting infor-
mation from different channels. All multimodal mod-
els on sentiment analysis fields outperform unimodal
architectures (Poria et al., 2017; Cambria et al., 2017;
Huddar et al., 2018; Agarwal et al., 2019). These
methods are based on feature level fusion, which
means that features are extracted from three differ-
ent modalities (i.e the video, audio and text). Then, a
more or less complex late fusion is applied.

OpenSMILE (Eyben et al., 2010) is often used
for the audio modality (Poria et al., 2017; Cambria
et al., 2017; Huddar et al., 2018). It is an open-source
software that extracts high and low-level features like
pitch, voice intensity, MFCC, etc. The more com-
plex task is to determine the best numbers of features
that should be used to get the best score. Approaches
of (Poria et al., 2017) and (Cambria et al., 2017) use
6373 features which is too much for an embedded so-
lution. On the contrary, (Huddar et al., 2018) use only
991 features which is more realistic in our application
context.

On the text analysis two methods are typically im-
plemented. The first one is the use of a 1D convolu-
tion as features extractor and then feed an embedding
layer as used by (Poria et al., 2017) or an SVM (Cam-
bria et al., 2017). The second one is to process the
transcription to calculate a list of the frequency dis-
tribution of each word in the dataset (Carroll, 1938).
The next step is to filter the text in order to only keep
the adverbs, verbs and adjectives which will feed our
classifier (Huddar et al., 2018).

Visual features could be extracted using CNN ap-
proach or e.g. with OpenFace toolkit (Huddar et al.,
2018). Today, 3D convolution is one of the best ways
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to analyze video and to catch spatio-temporal fea-
tures. It is used in a lot of application like actions,
emotions or hand gesture recognition. We can notice
a considerable improvement between the use of 2D
convolution (Cambria et al., 2017) and 3D convolu-
tion (Poria et al., 2017). That 3D convolution based
networks outperform their 2D counterparts (Cambria
et al., 2017) for sentiment analysis. However, the
well-known C3D model, detailed in (Poria et al.,
2017), cannot be used on embedded systems due to
the necessity of high computation resources.

The ultimate ability of our framework is related
to the late fusion which depends on the unimodal re-
sults. The state-of-the-art fusion (Poria et al., 2017)
believes in the context of inter-utterance and uses a lot
of LSTM to catch these features. This solution is not
suitable in our situation due to the considerable size
of the model. The work of (Cambria et al., 2017) uses
SVM to produce the final prediction. The results are
too low to consider this approach. Their multimodal
fusion performs an F1 score of 76.6% which is 3.7%
worse than (Poria et al., 2017). Finally, (Huddar et al.,
2018) have an ensemble approach employing the the-
ory of cosine metric between each utterance. Their
results are close to the state-of-the-art.

Our daily life is multimodal: we use all of our
senses to analyze situations and take decisions. Sig-
nals from different modalities carry complementary
information about objects or events. The concept of
multimodality assumes that combining information
from multiple sources will improve robustness and
accuracy of the decision. The performances of multi-
modality have been proven in different fields of appli-
cation like in images description (Mao et al., 2015),
facial and emotion analysis (Li et al., 2017; Kahou
et al., 2016), speech recognition (Feng et al., 2017),
and so on. To analyze interactions in vehicle context,
it seems obvious that multimodal fusion is the best
strategy to implement.

Public multimodal datasets in context of sentiment
analysis are very scarce. In our case, in order to draw
a parallel with our on-board automobile application,
the presence of video, audio and text modalities are
mandatory.

Hereafter, we preselect six datasets with those
characteristics:

• MOUD (Pérez-Rosas et al., 2013),

• CMU-MOSI1(Zadeh et al., 2016),

• CMU-MOSEI is the next generation of MOSI,

• ICT-MMMO (Wöllmer et al., 2013),

• Youtube (Morency et al., 2011),

1https://www.amir-zadeh.com/datasets

• IEMOCAP (Busso et al., 2008).

Table 1 summarizes these datasets and then
justifies our choice of the MOSI dataset.

Table 1: Comparison of the six datasets. #Utt denotes the
numbers of utterances. #Spk is the number of different
speakers. S and E indicate that the dataset is annotated with
sentiments and emotions. Dur is the duration.

Dataset #Utt #Spk S E Dur
MOUD 400 101 Y N 59mn
MOSI 2199 98 Y N 2h36

MOSEI 23453 1000 Y Y 65h53
ICT-MMMO 340 200 Y N 13h58

YouTube 300 50 Y N 140mn
IEMOCAP 10000 10 N Y 11h28

Among the aforementioned datasets we select the
MOSI one. First of all, the speakers are acting nat-
urally compared to IEMOCAP where subjects were
asked to act or follow a script. The second point is that
the reviews are in English. And it is easier to make a
quantitative analysis with English reviews compared
to the MOUD dataset where speakers are Spanish.
Few subjects in the YouTube dataset are young (14
years old). In our final application subjects will not
have under 18 years old. MOUD and YouTube are
not large enough. The other dataset (MOSEI, ICT-
MMMO, and IEMOCAP) are too large to be used
with our available computer resources. Finally, MOSI
dataset meets our expectations in terms of: (i) the
numbers of utterances, (ii) the numbers of different
speakers, and (iii) the duration. It is also the most
popular dataset in the literature for multimodal senti-
ment analysis purpose.

The 2D and 3D CNN based networks reach the
Bayes error outstanding human performance in com-
puter vision. The literature is starting to work on
the compactness of models to embed them in various
industrial applications (Cerutti et al., 2019; Pradeep
et al., 2018; Zhao et al., 2019). Unfortunately, such
recent investigations are rare and usually limited to
the field of computer vision. Today, the embeddabil-
ity of neural networks remains a scientific challenge.

3 METHODOLOGY

In the process of Opinion-level Sentiment analysis,
information goes through different channels. Recall
that the three aforementioned modalities are consid-
ered: video, audio, and text. They are the most stud-
ied in the literature. We intuitively design three ded-
icated neural networks i.e. one for each modality.
Then, we combine these pre-trained models for mul-
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timodal fusion purpose. We will present these models
in section 3.4.

Figure 1 summarizes our unimodal pipeline ap-
proach. The three grey boxes at the bottom represent
the prepossessing of the data, the three colored boxes
are the deep learning models. In this approach, each
unimodal model predicts two class sentiment: posi-
tive or negative. The following subsections focus on
each modality.

Figure 1: Block diagram of our unimodal strategy.

3.1 Video Modality

Our approach privileges the 3D convolution on a
modified R3D model (Hara et al., 2017), designed
to reduce computation load. As a single frame con-
tains too few video features for sentiment classifica-
tion, we decide to use neural networks with the abil-
ity to catch spatio-temporal features (change among
a given number of consecutive frames). The 3D-
CNN (C3D) (Tran et al., 2015) and Residual 3D-CNN
(R3D) (Hara et al., 2017), have been successfully ap-
plied in the past for action recognition. Due to em-
bedded constraints in computation and its outstand-
ing abilities in action recognition or classification, we
prefer the R3D model. The general idea behind R3D
is to replace all two dimensional (2D) convolution in
the Resnet architecture (He et al., 2015) by 3D con-
volution. These two kind of models are fed with four
dimensional input defined as R f∗c∗h∗w where f is the
number of frames, c is the number of channels (three
i.e. for RGB images), h is the height of the frames
and w is the width of the frames.

Before feeding the network, we extract and crop
the head using key point detectors (Baltrusaitis et al.,
2018) instead of face detectors. With this approach,
we achieve precise alignment of the head between
each consecutive frame. We use the chin, ears, and
left and right eyebrows to determine a square and crop
it at this size. Next, the images are resized to 50px *
50px (see example Figure 2). This size is the best
compromise to obtain the best accuracy with the low-
est cost in computation. Indeed, there is a trade-off

Figure 2: Example of cropped face with 50×50 pixels.

between accuracy and the size of the input image in
CNN.

In the vein of previous sections, to reduce the
computational load, we also modify the last 3D con-
volution layers of the original R3D architecture. Less-
ening the numbers of filters from 512 to 350. This im-
provement reduces the numbers of parameters almost
by 13 million (see Table 2). This table shows that
the C3D model is not an adequate solution for em-
bedded systems. With equivalent performances, the
R3D model drastically reduces the number of param-
eters and the memory size of the model by a factor 2.
Finally, our R3D model reduces by factor 3 the num-
bers of parameters and the memory size by 2, which
represents a considerable improvement for equivalent
results.

Table 2: Comparison of three video-based CNN models.

Model #parameters Memory usage
C3D 63.32 M 300 MB
R3D 33.18 M 265 MB

our R3D 20.78 M 166 MB

Table 3 summarizes our model devoted to video.
The model takes in input 16 images. It is composed of
five 3D convolutional layers with an increasing num-
ber of filters on the low layers. Then the 350 extracted
features go through a dense layer to infer the final pre-
diction.

Table 3: Our video-based CNN model.

3.2 Audio Modality

For the audio analysis, we experiment two techniques.
First, we experiment the classification using Con-
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volutional Neural Network (CNN). The objective is
to transform the signal into a spectral image (time-
frequency representation) and then feed the CNN with
it. This approach is widely used for sound and music
classification (Hershey et al., 2017) or in emotional
and gender classification (Arriaga et al., 2017).

The second model is a classification using Long
Short Term Memory network (LSTM) (Hochreiter
and Schmidhuber, 1997). LSTM are a specific type of
Recurrent Neural Network (RNN). LSTM are today
mostly used to analyze sequential data. Its distinctive-
ness is the ability to memorize information during a
long period of time. To analyze our audio sequences,
we classically extract the audio features with openS-
MILE. We extract features every 100 ms with a slid-
ing window of 60 ms. We use Emobase2010, a con-
figuration file for emotion classification based on IN-
TERSPEECH 2010 para-linguistics (Schuller et al.,
2010). The default settings calculate 1582 features.
For time consuming purpose, we decrease to the first
1054 features calculated by Emobase2010.

Table 4 illustrates our audio architecture. The
model is fed with a matrix of size fixed: the width
is the numbers of features, and the height is the num-
bers of time step. Then the LSTM with two layers of
800 cells units each one, followed by a dense layer to
predict sentiments.

Table 4: Our audio-based LSTM models.

3.3 Text Modality

Concerning the text modality, we manually extract
the feature. We use the machine learning framework
scikit-learn. After creating a list with all words in
the dataset, we filter it to only keep adjectives and
verbs. Then each sentence is prepossessed to have
a fixed length and be encoded into a number. Finally,
this vector goes through the embedding layer and then
feeds the LSTM.

Classically, LSTM text classifiers or generators
have an embedding layer to compress the input fea-
ture space into a smaller one. This embedding
layer (word2vec technique) is usually the Google
model trained on 100 billion words from Google
News (Mikolov et al., 2013). The weight of these lay-
ers cost more than 3.5 Go to load into memory. It

is not a feasible solution due to the constraint of the
hardware. Hence, we decide to train our own embed-
ding layer. Ultimately, the embedding layer uses a
text encoded vector of size 860 and generates a fea-
ture vector of size 100. Then, this vector feeds the
LSTM (see table 5) to finally predict sentiments. The
LSTM is structured with two layers of 32 cells units
each one, followed with a dense layer for the final
prediction.

Table 5: Our text-based LSTM model.

3.4 Multimodal Fusion

Figure 3 illustrates our multimodal late fusion strat-
egy. The three grey squares on the bottom repre-
sent the prepossessing of the data, the three colored
squares are the deep learning models. For the fusion,
the models are modified to be combined in the orange
box. A final model predicts the positive vs. negative
sentiment.

We consider two fusion strategies, one based on
mathematical model with the theory of evidence and
one based on data driven with a dense network layer.
The evidence theory is well adapt to model the relia-
bility of different channels. We choose to implement
it instead of SVM or Bayesian theory because they
only concern a single evidence and they cannot de-
scribe the probability of ignorance. In addition, the
SVM classifier shows the lowest results for such ap-
plication (see (Cambria et al., 2017)). For the data
driven fusion, we choose the trainable technique that
requires the least amount of computing resources (i.e
the fully connected layer that is the most basic neural
network layer).

3.4.1 Fusion with Theory of Evidence (Dempster
Shafer)

Dempster-Shafer Theory (DST) (Shafer, 1976) com-
bines evidence of information from multiple events to
calculate the belief of the occurrence of another event.
Let Θ = {X0,X1, ...,Xn} be a finite set called a frame
of discernment. 2Θ refers to every possible mutually
exclusive subset of the elements of Θ.
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Figure 3: Block diagram of our complete multimodal sys-
tem.

Each subset receives a belief value within [0,1].
In this approach, the uncertainty is estimated based
on the recall metric.

The mass probability, denoted m(X), is used to as-
sign evidence to a given modality X .

Where:

0≤ m(Xi)≤ 1, ∑
X⊆Θ

m(X) = 1, m( /0) = 0 (2)

In our framework, we have three mass probabil-
ities mV (X),mA(X),mT (X), one for each modality.
Each model outputs a number of probabilities equal
to the numbers of labels. We also calculate the recall
performances of each model. The recall measures the
percentage of positive samples correctly classified.

With all these elements we can compute the DST
fusion.

Video/Text joint mass:

kV,T = ∑
Xi∩X j= /0

mV (Xi)×mT (X j) (3)

mV T (Z) =
1

1− kV,T
∑

Xi∩X j=Z
mV (Xi)mT (X j) (4)

Video/Text/Audio joint mass:

kV T,A = ∑
Xi∩X j= /0

mV T (Xi)×mA(X j) (5)

mV T,A(Z) =
1

1− kV T,A
∑

Xi∩X j=Z
mV T (Xi)×mA(X j)

(6)
With Xi = Negative, X j = Positive
mV T,A(Z) is a table of size 3. The first 2 columns
are the probabilities of the negative and positive class.
The last column is the uncertainty. To calculate the fi-
nal F1score, we take the index of the maximum value

of the first 2 columns. The index return the predic-
tion of the label (i.e 0 or 1). Then the final F1score is
calculated using the prediction and the ground-truth.

This fusion strategy does not require any addi-
tional training and it is computationally cheap to em-
bed. However, the drawback is that time consuming
increases with the number of possible of modality to
fuse.

3.4.2 Features Level Fusion using Fully
Connected Layer (FC)

For this fusion approach, we use a late fusion. It al-
lows to use different models on each modality. It
is more flexible than early fusion. To combine our
three unimodal models, we modify the output of each
model to finally have 32 features for audio and video
(respectively yellow and green on the Figure 4) and
16 features for text (in blue on Figure 4). At this
time, we applied a concatenation to obtain a vector of
80 features. These numbers of features were chosen
empirically, we noticed that more the model is con-
strained with a few numbers of parameters better are
the results. Indeed, the network tries to find out which
parameters are the most valuable.

Figure 4: Feature concatenation for FC fusion purpose.

Then, a 1D max pooling layer is applied to get
the 39 most important features of the input. The max
pooling operation consist to downsamples the input
by taking the maximum value over a window of size
fixed. Then the window is shifted across the input.
At this time, a fully connected layer of 78 parameters
is applied to get the final sentiment prediction. With
only 78 parameters the impact on the embedded per-
formances are very low.
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4 IMPLEMENTATION

This section details first the MOSI dataset. Then we
present the improvement made on the pre-processing
phase to reduce embedded performances. Finally,
we present the implementation of the training phase.
During all the experiments, we use the F1 score as
evaluation metric.

The F1 score is defined as follows:

F1score = 2∗ Recall ∗Precision
Recall +Precision

(7)

4.1 Dataset MOSI

The MOSI dataset contains 93 videos recorded thanks
to 89 different speakers. It is divided and annotated
into 2199 sub-sequences (utterances). The topic of
the dataset is English reviews on movies or books (see
Table 6 for full details of the dataset). A key point
when we work on sentiment analysis, is the speaker
dependency. The idea is to evaluate the abilities of the
algorithm to generalize when it sees a new speaker.
In order to compare the performances with the liter-
ature we split the dataset like (Cambria et al., 2017)
and (Poria et al., 2017). The first 62 videos (≈ 70%)
of the dataset are used for train/validation and the re-
maining ones (≈ 30%) are used for the test phase.

Table 6: Details of the MOSI dataset.

Train Test
Nbrs of videos 62 31

Utterances 1447 752
Nbrs of speaker 58 31

Man 33 15
Woman 25 16

Video/Audio (min) ≈ 85 ≈ 50
Sentences 1447 752

Nbrs of word 17296 9161

A key point for us is the relative position between
the scene and the camera. He has to be recorded in
front of their camera. Face frontal view are recorded
(i.e similar to Vlog format) in the vein of MOSI (see
figure 5). Our final context is an in-vehicle situation,
where drivers will be analyzed with a front view cam-
era.

4.2 Computation Considerations

We implement some basic improvement in the pre-
processing phase to reduce computational resources.
On the video file, particularly in the MOSI dataset,
consecutive video frames represent redundant infor-
mation. To overcome this problem, we downscale the

Figure 5: Front view examples of MOSI dataset.

frame rate of the video. In our experiment we reduce
it by a factor 4, 8, 16, 32. The most outstanding per-
formances are for the factor 8. We can see the differ-
ence between a factor 1 and 8 on Figure 6.

Figure 6: Examples of downscaling frame rate. The first
row represents a video with successive frames. The second
row shows the same video downsized with a factor 8.

On the audio analysis we test two models in order
to reduce computation. For the first model, we avoid
the dependency to a specific feature’s extractor. So,
we use a 2D CNN as a features extractor followed by
a dense layer for the classification. The results are
not significant in our case. With the second approach,
we use OpenSMILE as a feature extractor and then
we use an LSTM model followed by a dense layer for
the classification. By reducing the input matrix of the
LSTM we can reduce the computation. After trials
and errors, we reduce the width of the input matrix to
only 1054 features.

The text data is the transcription of spoken sen-
tences. All the sentences represent a total of 26,457
words and 3003 unique words. To improve embedded
performances, we filter all the words. After a few ex-
periments, we only kept adjectives and adverbs. This
configuration provides the most significant rate of ac-
curacy vs. numbers of words. The filtering approach
reduces the numbers of words to 860. At this point,
we calculate the frequency distribution. Finally, the
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length of sentences is wrapped to a window of 30
words. After a few experiments, we determine that
this length leads to the best results.

The reader can refer to the table 7 where the 10
most important and less important words are listed.

Table 7: Frequency of words in the dataset.

10 most present 10 less present

words

really catastrophic
good mid
whole oldest

i rough
little meanwhile
not papa

pretty guys
sad overly

awesome upbeat
funny relatable

4.3 Implementation Details

Unlike (Poria et al., 2017), we do not consider the
inter-utterance level. An utterance is a continuous
unit of speech beginning and ending with an explicit
pause. We consider in our approach that when we
classify one utterance, others utterances do not con-
vey more contextual information. We merely predict
the three modalities of one utterance. This approach
permits to only use 2 LSTM models in the final archi-
tecture.

4.3.1 Transfer Learning

To train the multimodal model, we use transfer learn-
ing (see (Pan and Yang, 2010) for a comprehensive
review). Indeed, instead of starting the learning pro-
cess from scratch, we start from a model that has been
learning how to solve diverse problems. This tech-
nique drastically reduces the training time. Transfer
learning includes two different approaches: develop-
ing models and pre-training. It is a widely used ap-
proach in deep learning (He et al., 2015; Krizhevsky
et al., 2012; Rawat and Wang, 2017). We implement
pre-training. It consists in selecting a source model,
then in reusing it from a starting point, and finally to
tune the model for our task. We use the unimodal
model at their best accuracy point to train the final
multimodal model.

In our case, the use of pre-training techniques is
necessary. Indeed, the fully connected fusion model
would not be able to converge if we start the training
from scratch. The FC layer includes only 78 hyper
parameters (randomly initialized) which constraints

the network. By this layer, we force it to pro-
duce its proper decisions.

4.3.2 Tuning of Hyper Parameters

Every training of each model is performed using the
categorical cross-entropy loss. For the MOSI dataset
the literature predicts two classes. For Binary classi-
fication the formula of cross-entropy loss becomes:

loss =−(y log(p)+(1− y) log(1− p))
With p the prediction of the network and y the associ-
ated ground truth.

We consider two different optimizers: stochastic
descent gradient to train the video model and Adam
optimizer (Kingma and Ba, 2017) for audio and text
model. Indeed, empirically we found that Adam is
more skillful to train networks with sparse input data
which is claimed by (Kingma and Ba, 2017).

Concerning the regularization, we use dropout di-
rectly in the audio and text LSTM model to reduce
the variance. A dropout of 0.4 (resp. 0.6) is applied
on the audio (resp. text).

Learning rate is precisely chosen for each modal-
ity and the fully connected fusion model. To train the
unimodal model, the learning rate is set at 10−3 to
10−5. As we use the unimodal pre-trained model to
train the fully connected multimodal model, we re-
duce the learning rate. By default, the learning rate
starts from 10−4 to 10−6, while the learning rate of
FC is multiplied by ten times the default learning rate.

5 EVALUATION AND
ASSOCIATED ANALYSIS

First, this section presents the evaluations and com-
pare them with the state of the art approach. Second,
we propose a qualitative analysis illustrated by some
results.

5.1 Quantitative Evaluations

As we can see in the table 8, each modality does not
carry the same amount of information. Video is in-
efficient with an F1 score of 57%, close to random
prediction. The audio modality arrives in second po-
sition with an F1 score of 65.5%. Ultimately, text has
the best F1 score with 77.1%. Our fusion results are
78% for DST fusion and 80% for FC fusion, showing
respectively an improvement of 1% and 3% compared
to unimodal approaches. The FC fusion obtains the
most outstanding results and the 78 parameters are in-
significant with regard to the embedded performance
(i.e. increase in memory load and computing).
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Contrarily to (Poria et al., 2017), we improve
the performances of the audio and video classifica-
tions (gains of 1.4% and 5.2% respectively). Our text
model performs 1% worse. This 1% performance re-
duction is due to the fact that we use our own embed-
ding layers trained on MOSI instead of the Google
embedding layers. The performances of the FC fusion
model is 0.3% under (Poria et al., 2017) approach.

Our framework, similarly to the most of existing
approaches evaluated on the MOSI dataset, shows the
same order of modality importance (video is not much
informative, audio and text are a little and very infor-
mative) (see (Poria et al., 2017; Cambria et al., 2017;
Huddar et al., 2018))

Table 8: Comparison of the proposed variants. The table
reports the F1 score.

Modality Source F1 score

Unimodal
Video 0.572
Audio 0.655
Text 0.771

Unimodal
(Poria et al.,
2017)

Video 0.558
Audio 0.603
Text 0.781

DST fusion Video + Audio + Text 0.780
FC fusion Video + Audio + Text 0.800
bc-LSTM
(Poria et al.,
2017)

Video + Audio + Text 0.803

Contrasting the embedded performances with the
ones in the literature is extremely complex because
they do not consider the embedded performances.
They exclusively focus on accuracy. We can certainly
compare our work with (Poria et al., 2017):

• video: we reduce by 3 the numbers of parameters
and by 2 the memory usage.

• audio: we reduce by 6 the number of audio fea-
tures feeding the LSTM model.

• text: we reduce by 3.5Go the memory use of the
model.

• fusion: our fusion approach includes only 78 pa-
rameters instead of a bi-directional LSTM com-
posed of 600 units cells.

• They use three bi-directional LSTM after each
modality to catch contextual information inter-
utterances which add 1800 units cells. Our ap-
proach does not possess it.

Overall, compared to the reference approach on
MOSI, we reduce by 2.2 the numbers of parameters
and the memory usage by 13.8.

Presently, if we compare the performances of ac-
curacy vs. embedded capability performances, we
can notice that text modality is crucial on the MOSI
dataset. The transcription brings 77% of the informa-
tion with only 112k parameters and 1.3MB of mem-
ory (see table 9).

Table 9: Computational resources of all variants.

Model Parameters Memory load
R3D 20.78 M 166 MB

LSTM audio 11.25 M 133.5 MB
LSTM text 112 k 1.3 MB
DST fusion 32.14 M 300.8 MB
FC fusion 32.14 M + 78 300.8 MB

bc-LSTM
(Poria et al.,
2017)

≈ 70 M ≈ 4.15 Go

As expected, our approach leads to state-of-art
performances while reducing drastically computation
and memory size.

5.2 Qualitative Evaluations

We recover all misclassified files for each modality in
order to achieve a more proper understanding of our
approach. The limit with the MOSI dataset is the fact
that the subject can express sentiments in total con-
tradiction of the movie sentiment. It is challenging
for the model to differentiate the speaker’s sentiments
from the movie’s sentiment. For instance, the subject
tells calmly: ”I love the war scene”. And it would
be classified as negative by the audio and text model.
But the ground truth is positive. At this moment, the
sentiment of the speaker is positive with the sentiment
”love” but the sentiment expressed by the context of
the film can be interpreted as negative with the word
”war.” This kind of issue represents 15% of the mis-
classified samples.

As expected, there are many video files misclas-
sified. This is most likely due to the fact that people
are making reviews in front of the camera without hu-
man interactions. Sometimes the length of the audio
or the text file is extremely short. The audio can also
contains very prolonged pause and the text contains
not enough words. Those two factors are responsible
for a lack of context especially for architecture like
LSTM, inducing a misclassification. Some examples
of poor sentences: ”and it would make sense” or ”I
wish I weren’t.”. These types of problems represents
45% of the misclassified samples.

Another limitation is that some audio recordings
are absolutely neutral and the words contained in the
sentences do not provide enough meaning to classify
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correctly. Some examples of sentences without mean-
ing could be: ”I would like to quickly talk about Ma-
chete.” This category of error represents 35% of the
misclassified samples.

Finally, the latter limit identified in this dataset is
the quality of the recording which can impact the clas-
sification. This, represents 5% of misclassified sam-
ples. Several of them have extremely poor video qual-
ity and critical audio quality with some noises due to
the old webcams used for the records.

6 CONCLUSION AND FUTURE
WORKS

The embeddability capability of CNN networks is of-
ten omitted in the literature and even more in multi-
modal systems where models tend to be computation-
ally expensive. Our developed model leads to perfor-
mances similar to the literature but with a high em-
beddable capability i.e reducing by 2.2 (resp. 13.8)
the numbers of parameters (resp. the memory load).

We are actually working with a real context
dataset which is composed of one driver and one pas-
senger (sat in the back). The subjects are put in dif-
ferent social situations without following scripts. Six
cameras and four microphones set at different posi-
tions in the car are installed. Figure 7 shows the
recording setup. Future works could use and adapt
our model training to such a vehicle context dataset,
with the objective to analyze sentiment interactions
between two passengers.

Figure 7: Recording setup of the Renault dataset. Red
squares refer to the cameras numbered from C0 to C5. Yel-
low squares refer to microphone numbered from M1 to M4.

Moreover, as humans are not varying their emo-
tions every seconds, an interesting approach is to
use based model theories (decision three or Hidden
Markov) or a deep learning model as an output of the

actual framework. These techniques could be promis-
ing in order to keep track of the sentiments or the
emotions of both the driver and the passenger.
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