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Abstract: The driving environment is a complex dynamic scene in which a driver’s eye fixation interacts with traffic scene
objects to protect the driver from dangerous situations. Prediction of a driver’s eye fixation plays a crucial
role in Advanced Driving Assistance Systems (ADAS) and autonomous vehicles. However, currently, no
computational framework has been introduced to combine the bottom-up saliency map with the driver’s head
pose and gaze direction to estimate a driver’s eye fixation. In this work, we first propose convolution neural
networks to predict the potential saliency regions in the driving environment, and then use the probability of the
driver gaze direction, given head pose as a top-down factor. We evaluate our model on real data gathered during
drives in an urban and suburban environment with an experimental vehicle. Our analyses show promising
results.

1 INTRODUCTION

Recently, visual driver attention has become a no-
ticeable element of intelligent Advanced Driver As-
sistance Systems (i-ADAS) to increase traffic safety.
Based on the World Health Organization (WHO)
studies, approximately 1.35 million fatalities and any-
where between 20 to 50 million injuries occur every
year on the roads. The WHO predicts that road traffic
accidents will rise to become the fifth primary reason
for mortality in 2030 (Organization et al., 2018). Ev-
idence has shown that a considerable number of acci-
dents are due to distraction.

Driver monitoring research has been carried out
for years in various research fields, from science to
engineering, to protect the driver from dangerous situ-
ations. The driver’s eye fixation plays a crucial role in
the research on Driver Safety System and Enhanced
Driver Awareness (EDA) systems to alert drivers on
incoming traffic conditions and warn them appropri-
ately. Some driver monitoring systems use head and
eye location to evaluate the driver’s gaze-direction
and gaze-zone (Zabihi et al., 2014; Shirpour et al.,
2020). Their purpose is to estimate the driver’s intent
and predict the driver’s maneuvers a few seconds be-
fore they occur (Khairdoost et al., 2020; Jain et al.,
2015). Their results illustrate a strong connection be-
tween a driver’s visual attention and action.

The driver’s eye generally fixates on parts of the
driving environment that depend on a number of ob-
jective and subjective factors that are based on two
classes of attentional mechanisms: bottom-up and

top-down. Bottom-up mechanisms consider features
obtained from the driving scene such as traffic signs,
vehicles, traffic lights, and so on. In contrast, top-
down mechanisms are driven by internal factors such
as a driver’s experience or intent (Deng et al., 2016).
Saliency maps identify essential regions in the scene
(Cazzato et al., 2020). In a driving context, top-down
factors significantly contribute to the estimation of
traffic saliency maps, which in turn provides an in-
sight as to what a driver’s gaze may be fixated on
while driving.

In this study, we focus on developing a framework
to predict the driver’s eye fixation onto the forward
stereo system’s imaging plane located on the instru-
mented vehicle’s rooftop. This paper is structured as
follows: an overview on the current literature in the
field of saliency regions is provided in Section 2, fol-
lowed by a description of the RoadLAB vehicle in-
strumentation and data collection processes in Section
3. Section 4 describes our proposed method. In Sec-
tion 5, we present and evaluate the experimental re-
sults. We provide a conclusion and areas for further
research in Section 6.

2 RELATED WORKS

Traffic saliency methods focus on highlighting salient
regions or areas in a given environment. This is an
active area in the fields of computer vision and intel-
ligent vehicle systems. We provide a summary of the
literature that brings the essential concepts of visual
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attention and salient regions applied to driving envi-
ronments.

Saliency, as it relates to visual attention, refers
to areas of fixation humans or drivers would con-
centrate on at a first glance. The modern history of
visual saliency goes back to the works of Itti (Itti
et al., 1998). They considered low-level features,
namely intensity, color, and orientation at multiple
scales extracted from images, and then normalized
and combined with linear and non-linear methods to
estimate a saliency map. (Harel et al., 2007) sug-
gested a saliency method based on Graph-Based Vi-
sual Saliency (GBVS). They defined the equilibrium
distribution of Markov chains from low-level features
and then combined them to obtain the final saliency
map. (Schauerte and Stiefelhagen, 2012) proposed
quaternion-based spectral saliency methods that ap-
ply the integration of quaternion DCT and FFT-based
to estimate spectral saliency for predicting human eye
fixations. (Li et al., 2012) proposed a bottom-up fac-
tor for visual saliency detection, which is considered
a scale-space analysis of amplitude spectra of images.
They convolved image spectra with properly scaled
low-pass Gaussian kernels to obtain saliency maps.
(Deng et al., 2016) demonstrated that a driver’s at-
tention was mainly focused on the vanishing points
present in the scene. They applied the road vanish-
ing point as guidance for the traffic saliency detection.
Subsequently, they proposed a model based on a ran-
dom forest to predict a driver’s eye fixation according
to low-level features (color, orientation, intensity) and
vanishing points (Deng et al., 2017). Details on low-
level features for non-deep learning approaches are
provided in (Borji et al., 2015).

Deep learning-based models brought a paradigm
shift in computer vision research. Deep-learning
methods commonly perform better when compared
with classical learning methods. (Vig et al., 2014)
introduced one of the early networks that performed
large scale searches over different model configura-
tions to predict saliency regions. (Liu et al., 2015)
proposed Multi-resolution Convolutional Neural Net-
works (Mr-CNN) to learn two types of visual features
from images simultaneously. The Mr-CNNs were
trained to classify image regions for saliency at differ-
ent scales. Their model used top-down feature factors
learned in upper-level layers, and bottom-up features
gathered by a combination of information over vari-
ous resolutions. They then integrated bottom-up and
top-down features with a logistic regression layer that
predicted eye fixations. (Kümmerer et al., 2016) pre-
sented the DeepGaze model that applied the VGG-19
deep neural network for feature extraction, where fea-
tures for saliency prediction were extracted without

any additional fine-tuning. (Huang et al., 2015) pro-
posed a deep neural network (DNN) obtained from
concatenating two pathways: the first path considered
a large scale image to extract coarse features, and the
second path considered a smaller image scale to ex-
tract fine ones. This model and similar ones are suit-
able to extract features at various scales. (Wang and
Shen, 2017) proposed a framework that extracted fea-
tures from deep coarse-layers with global information
and shallow fine layers with local information that
captured hierarchical saliency features to predict eye
fixation. Subsequently, they designed the Attentive
Saliency Network (ASNet) from the fixations to de-
tect salient objects (Wang et al., 2019).

In the driving context, (Palazzi et al., 2018) pro-
posed a model based on a multi-branch deep neural
network on the DR(eye)VE dataset, which consisted
of three-stream convolutional networks for color, mo-
tion, and semantics. Each stream possessed its param-
eter set, and the final map aggregated a three-stream
prediction. Also, (Tawari and Kang, 2017) estimated
drivers’ visual attention with the use of a Bayesian
Network model and detected the saliency region with
a fully convolutional neural network. (Deng et al.,
2019) proposed a model to detect driver’s eye fixa-
tions based on a convolutional-deconvolutional neu-
ral network (CDNN). Their framework could predict
the primary fixation location and was able to predict
the second saliency region in the driving context, if it
existed.

This contribution aims to apply a Deep Neural
Network to our natural driving sequence for the esti-
mation of saliency maps followed by a Gaussian Pro-
cess Regression (GPR) to estimate the driver’s con-
fidence region for the final estimation of driver’s eye
fixation.

3 VEHICLE INSTRUMENTATION
AND DATA COLLECTION

3.1 Vehicle Configuration

Our experimental vehicle is equipped with a stereo
system placed on the vehicle’s roof to capture the
frontal driving environment. A remote eye-gaze
tracker located on the dashboard captures several fea-
tures related to the driver, including head position and
orientation, left and right gaze Euler angles, and left
and right eye center locations within the coordinate
system of the tracker. Furthermore, the On-Board Di-
agnostic system (OBD-II) records the current status of
vehicular dynamics such as vehicle speed, brake and
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Figure 1: RoadLAB configuration. (top): vehicular con-
figuration: stereoscopic vision system on rooftop and 3D
infrared eye-tracker located on the dashboard. (bottom):
software systems: The on-board system displays frame se-
quences with depth maps, dynamic vehicle features, and
eye-tracker data.

accelerator pedal pressure, steering wheel angle, etc.
Figure 1 depicts the RoadLAB experimental vehicle
and its software systems as described in (Beauchemin
et al., 2011).

3.2 Cross-calibration Technique

The calibration process between the eye-tracker and
stereo system is essential for generating a useful Point
of Gaze (PoG). We applied a technique developed in
our laboratory to cross-calibrate these systems and
project the PoGs onto the stereo system imaging
plane. Details are provided in (Kowsari et al., 2014).

3.3 Participants

Sixteen drivers participated in this experiment, in-
cluding nine females and seven males. The partici-
pants drove frequently. Each participant was recorded
by our instrumented vehicle on a pre-determined
28.5km route within the city of London, ON, Canada.

Table 1: Description of Data.

Seq# Date Weather Gender
1 2012-08-24 29 ◦C Sunny M
2 2012-08-24 31 ◦C Sunny M
3 2012-08-30 23 ◦C Sunny F
4 2012-08-31 24 ◦C Sunny M
5 2012-09-05 27 ◦C Par-

tially Cloudy
F

6 2012-09-10 21 ◦C Par-
tially Cloudy

F

7 2012-09-12 21 ◦C Sunny F
8 2012-09-12 27 ◦C Sunny M
9 2012-09-17 24 ◦C Par-

tially Cloudy
F

10 2012-09-19 8 ◦C Sunny M
11 2012-09-19 12 ◦C Sunny F
12 2012-09-21 18 ◦C Par-

tially Cloudy
F

13 2012-09-21 19 ◦C Par-
tially Cloudy

M

14 2012-09-24 7 ◦C Sunny F
15 2012-09-24 13 ◦C Par-

tially Cloudy
F

16 2012-09-28 14 ◦C Par-
tially Cloudy

M

Each sequence represented a driving time of ap-
proximately one hour. Sequences were recorded
in different circumstances, including scenery (down-
town, urban, suburban) and traffic conditions vary-
ing from low-traffic to high-traffic situations. They
were recorded in various weather conditions (sunny,
partially-cloudy, cloudy) and at various times of the
day (see Table 1).

3.4 Driver Gaze-movement Analysis

Our eye-tracker performed the gaze estimation and
provided a confidence measure on its quality. This
metric ranged from 0 to 3, and we considered the
driver’s gaze to be reliable when this metric had a
value of 2 or higher. We selected the PoGs projected
onto the vehicle’s forward stereo system in the pre-
ceding 15 consecutive frames. The driver’s PoG data
implemented with the Gaussian distribution (Figure 2
) were considered the ground-truth data.

4 DRIVER FIXATION

We proposed method to predict a driver’s eye fixation
in the forward stereo vision reference frame. First,
we introduce a model to predict the saliency maps in
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Figure 2: An example of PoG and matching fixation
saliency map. (left): PoGs projected onto the forward
stereo system of the vehicle obtained with the preceding 15
consecutive frames. (right): The driver’s point of gaze as a
2-D Gaussian distribution.

the driving scene, inspired by (Wang and Shen, 2017).
Following this, we use a framework proposed in our
laboratory to estimate the probability of driver’s gaze
direction, as top-down information for prediction of
driver’s eye fixation (Shirpour et al., 2020).

4.1 Model Architecture

The network configuration selection is a fundamen-
tal step when using a neural network. There are
various types of deep neural network saliency mod-
els, mainly divided into three groups: single stream,
multi-stream, and skip layer networks. Our network
inherits the advantage of skip layer networks capa-
ble of capturing hierarchical features. This network
configuration learns multi-scale features inside the
model; the low-level layers reflect primitive features
such as edges, corners, etc; and the high-level layers
represent meaningful information such as parts of ob-
jects in various positions. The network architecture is
shown in Figure 3. This architecture promotes perfor-
mance via:

• The creation of multi-scale saliency features in-
side the network.

• The preservation of high-resolution features from
the encoder path

Our network encoder is based on the first five
convolutional layers of VGG16 (Simonyan and Zis-
serman, 2014), used for feature extraction from in-
put images. The dimensions of the input images are
H ×W × 3. The network encoder includes a stack
of convolution layers that gradually learns from local
to global information. The spatial feature dimensions
generated from VGG16 are consequently divided by
2 until, in the last convolution layers, the dimensions
reach H/16×W/16. We choose three feature maps
from the encoder path generated by convolution lay-
ers ConV 3−3, ConV 4−3, and ConV 5−3 to capture
multi-scale saliency information. We use these three-
channel feature maps with different dimensions and
resolutions to obtain the final saliency prediction.

In the decoder part for each path, we apply multi-
ple deconvolution layers to increase the spatial dimen-
sion toward getting a saliency prediction map with di-
mensions identical to those of the input images. For
instance, the feature map in the ConV 3−3 layer has a
H/4×W/4 spatial dimension (after each convolution
block, the spatial dimension size is halved). Its de-
coder network path includes two deconvolution lay-
ers, where the first one doubles the spatial size of fea-
ture map to H/2×W/2, while the second deconvo-
lution increases the spatial size of the feature map to
H×W . Each deconvolution in these paths is followed
by a Rectified Linear Unit ReLU layer, which learns
a nonlinear upsampling. Similarly, the other decoder
path related to ConV 4− 3 and ConV 5− 3 layers has
three and four deconvolution layers, respectively.

The loss function L(SF ,SG) is defined as follows:

L(SF ,SG) =
1
N

N

∑
n=1

SGi log(SFi)+(1−SGi)log(1−SFi)

(1)
where N is the number of pixels, SGi is the ith pixel
from the ground truth driver’s fixation map, and SFi is
the ith pixel from the predicted driver’s fixation map.

4.2 Top-down Information

The driver gaze is not explicitly related to the head
pose due to the interaction between head and eye
movements. Generally, the driver moves both the
head and the eyes to obtain a fixation. In our previ-
ous research, we suggested a stochastic model for de-
scribing a driver’s visual attention. This method uses
a Gaussian Process Regression (GPR) approach that
estimates the driver gaze direction probability, given
head pose. We refer the reader to (Shirpour et al.,
2020) for details on the confidence interval for the
driver’s gaze direction process.

Based on the driver’s head pose information, we
propose a traffic saliency maps framework, which uti-
lizes the gaze direction as a top-down constraint. The
primary part of the framework is to find top-down
features according to the driver’s head pose and to
estimate the probability of a driver’s gaze direction,
which is then fused with the saliency map, as follows:

SF(x,y) = wSCI(x,y)+(1−w)Sm(x,y) (2)

where w is the weighting factor, SCI(x,y) represents
the confidence interval of driver’s gaze according to
the head pose information, and Sm(x,y) represents the
saliency map model. The weight w in (2) is a critical
parameter of the framework, as it dictates the impor-
tance of the top-down factor in our model. To choose
a correct weight, we have shown that the drivers focus
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Figure 3: Network configuration.

most of their attention on the 95% confidence interval
region estimated with the driver head pose. Since, the
top-down saliency area includes 80% of the informa-
tion that is related to a driver’s fixation within the area
of the confidence interval of the driver’s head pose,
we hypothesized that 0.8 was a suitable value for w.

5 EXPERIMENTAL EVALUATION

In this section, we describe the training of our pro-
posed network and evaluate its performance both
qualitatively and quantitatively.

5.1 Qualitative Evaluation

To evaluate our model against a number of cutting-
edge methods, we chose various sample frames from
challenging driving environments, including difficult
situations and conditions, such as traffic objects with
different sizes, low contrast scenes, and multiple traf-
fic objects. Figure 4 illustrates the comparison of our
network against other methods, namely: Graph-based
Visual Saliency (GBVS) (Harel et al., 2007), Image
Signature (Hou et al., 2011), Itti (Itti et al., 1998), and

Hypercomplex Fourier Transform (HFT) (Li et al.,
2012). Results clearly demonstrate that our method
highlights the drivers’ fixation areas more accurately
and preserves details compared to other methods. Our
model displays excellent prediction of traffic objects
such as traffic signs, traffic lights, pedestrians, vehi-
cles, among others. Other models displayed difficul-
ties when attempting to detect relevant information
from the driving environments. Conversely, by way
of bottom-up and top-down processes, our model ac-
curately predicts the driver’s fixation, including the
primary and secondary fixation, if they exist.

5.2 Quantitative Evaluation Metrics

We have evaluated our model’s performance on vari-
ous metrics to measure the correspondence between
the driver’s eye fixation prediction and the ground
truth driver’s eye fixation.

Some of the metrics considered herein are based
on the location of fixation, such as Normalized Scan-
path Saliency (NSS) (Peters et al., 2005), and Area
under ROC Curve (AUC-Borji (Borji et al., 2012),
AUC-Judd (Judd et al., 2012)). They evaluate the sim-
ilarity between the driver’s eye fixation prediction and
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Figure 4: We selected results from the RoadLab dataset from different driving scenes, including large, small, and multiple
traffic objects, in addition to low contrast scenes, to better show the processing capability of each approach. (from left to
right:) input frames, ground truth fixation maps, our predicted saliency maps, and the predictions of Itti (Itti et al., 1998),
GBVS (Harel et al., 2007), Image Signature (Hou et al., 2011), and HFT (Li et al., 2012).

ground-truth. In contrast, others are based on distri-
butions, such as Earth Movers Distance (EMD) (Pele
and Werman, 2008), Similarity Metric (SIM) (Judd
et al., 2012), and Linear Correlation Coefficient (CC)
(Le Meur et al., 2007). They evaluate the dissimilar-
ity between the model’s prediction and ground truth.
Let SG represent the ground-truth driver’s eye fixation
map and SF the saliency maps prediction provied by
the various methods:

• Normalized Scanpath Saliency (NSS): The NSS
metric is computed by the average normalized
saliency at driver’s eye fixation locations, as fol-
lows:

NSS =
1
N

N

∑
n=1

SF(xn,yn)−µSF

σSF

(3)

where N is the number of eye positions, (xn,yn)
the eye-fixation point location, and µSF , and σSF
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Table 2: Saliency metric scores of our model as compared with state-of-the-art saliency models on the RoadLab dataset.

Models NSS CC SIM AUC-
Borji

AUC-
Judd

EMD

GT 3.26 1 1 0.88 0.94 0
ITTI (Itti et al., 1998) 1.15 0.23 0.25 0.62 0.64 2.13

GBVS (Harel et al., 2007) 1.32 0.29 0.32 0.69 0.71 1.91

Image Signature (Hou et al., 2011) 1.48 0.29 0.30 0.73 0.75 2.06

HFT (Li et al., 2012) 1.42 0.42 0.38 0.64 0.66 2.31

∆QDCT (Schauerte and Stiefelha-
gen, 2012)

1.68 0.34 0.32 0.71 0.73 1.72

RARE2012 (Riche et al., 2013) 1.34 0.31 0.33 0.67 0.68 1.48

ML Net (Cornia et al., 2016) 2.47 0.72 0.66 0.76 0.80 1.43

Wang (Wang and Shen, 2017) 2.87 0.78 0.68 0.81 0.85 1.23

Proposed 2.98 0.82 0.72 0.81 0.89 1.06

are the mean and standard deviation of a driver’s
eye fixation map predication.

• Area Under the ROC Curve (AUC): AUC is
commonly used for evaluating estimated saliency
maps. With AUC, two types of locations are con-
sidered: the true driver fixation points, regarded
as the positive set, versus a negative set consisting
of the sum of other fixation points. The driver’s
eye fixation map is classified into the salient and
non-salient regions with a predetermined thresh-
old. Then, the ROC curve is plotted by the true-
positive (TP) rate versus the false-positive (FP)
rate, as the threshold varies from 0 to 1. De-
pending on the non-fixation distribution’s selec-
tion, there are two commonly used types of AUC,
namely AUC-Judd and AUC-Borji.

• Linear Correlation Coefficient (CC): The CC
provides a measure of the linear relationship be-
tween SF and SG. This metric varies between −1
and 1, and a value close to either −1 or 1 shows
alignment between SF and SG.

CC =
cov(SF ,SG)

σSF ×σSG

(4)

• Similarity Metric (SIM): This metric estimates
the similarity between the distributions of pre-
dicted and ground truth driver’s eye fixation maps
by measuring the intersection between two distri-
butions, calculated by a sum of the minimum val-

ues at any pixel location from distributions (SF(n)
and SG(n)):

SIM =
N

∑
n=1

min(SF(n),SG(n)) (5)

where, SF(n) and, SG(n) are normalized distribu-
tions, and N is the number of locations of inter-
est in the maps. A value close to 1 indicates that
the two saliency maps are similar, while the score
close to zero denotes little overlap.

• Earth Mover’s Distance (EMD): This metric
computes the spatial distance between two proba-
bility distributions SF(n) and SG(n) over a region,
as the minimum cost of transforming the probabil-
ity distribution of the computed driver’s eye fixa-
tion map SF(n) into the ground truth SG(n). A
high value for EMD indicates little similarity be-
tween the distributions.

To illustrate the effectiveness of the saliency map
model in predicting a driver’s eye fixation, we com-
pared our model with eight state-of-the-art tech-
niques, including six non-AI models: ITTI (Itti et al.,
1998), GBVS (Harel et al., 2007), Image Signature
(Hou et al., 2011), HFT (Li et al., 2012), RARE2012
(Riche et al., 2013), ∆QDCT (Schauerte and Stiefel-
hagen, 2012), and two deep learning-based models:
ML-Net (Cornia et al., 2016), and Wang (Wang and
Shen, 2017). These models have been introduced in
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recent years and are often utilized for comparison pur-
poses.

The quantitative results obtained on the RoadLAB
dataset (Beauchemin et al., 2011) are presented in Ta-
ble 2. Our proposed model gives the maximum sim-
ilarity and minimum dissimilarity with respect to the
ground truth data. We conclude that our model pre-
dicts the driver’s eye fixation maps more accurately
than other saliency models.

6 CONCLUSIONS

We proposed convolution neural networks to predict
the potential saliency maps in the driving environ-
ment, and then employed our previous research re-
sults to estimate the probability of the driver gaze di-
rection, given head pose as a top-down factor. Fi-
nally, we statistically combined bottom-up and top-
down factors to obtain accurate drivers’ fixation pre-
dictions.

Our previous study established that driver gaze es-
timation is a crucial factor for driver maneuver predic-
tion. The identification of objects that drivers tend to
fixate on is of equal importance in maneuver predic-
tion models. We believe that the ability to estimate
these aspects of visual behaviour constitutes a signifi-
cant improvement for the prediction of maneuvers, as
drivers generally focus on environmental features a
few seconds before affecting one or more maneuvers.
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