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Abstract: In recent years, Neural Machine Translation (NMT) has achieved great success, but we can not ignore two
important problems. One is the exposure bias caused by the different strategies between training and infer-
ence, and the other is that the NMT model generates the best candidate word for the current step yet a bad
element of the whole sentence. The popular methods to solve these two problems are Schedule Sampling and
Generative Adversarial Networks (GANs) respectively, and both achieved some success. In this paper, we
proposed a more precise approach called “similarity selection” combining a new GAN structure called twin-
GAN to solve the above two problems. There are two generators and two discriminators in the twin-GAN.
One generator uses the “similarity selection” and the other one uses the same way as inference (simulate the
inference process). One discriminator guides generators at the sentence level, and the other discriminator
forces these two generators to have similar distributions. Moreover, we performed a lot of experiments on the
IWSLT 2014 German→English (De→En) and the WMT’17 Chinese→English (Zh→En) and the result shows
that we improved the performance compared to some other strong baseline models which based on recurrent
architecture.

1 INTRODUCTION

Thanks to recent advances in deep learning, many ap-
proaches have emerged to implement Neural Machine
Translation (NMT). Because the translation task is
a sequential problem, most of those approaches are
based on Seq2Seq models (Kalchbrenner and Blun-
som, 2013) (Sutskever et al., 2014) (Cho et al., 2014).
The Seq2Seq models generally consist of two sub
neural networks called encoder and decoder. The en-
coder is to extract a representation of the input source
sequence; the decoder is to transfer the representation
to the target sequence. Generally, the decoder’s in-
put is a target-side sequence during training (teacher
forcing mode) and the input is generated by itself dur-
ing the inference phase (recurrent mode). This strat-
egy brings a discrepancy called exposure bias (Ran-
zato et al., 2015) causing a gap between the training
and the inference. That is, the words accepted by the
decoder in training is the ground-truth sentence, but
in testing, it accepts the output of its previous unit
as the input of this unit. The inconsistency between
these two settings will lead to error accumulation at
test time. Schedule Sampling (Bengio et al., 2015) is
one of the most common solutions to this problem.

This method is only used in the training and it works
like this: in the early stages of training, the method
mainly uses the target-side sequence as the decoder’s
input, which can quickly guide the model from a ran-
domly initialized state to a reasonable state. As the
training progresses, the method will gradually use the
generated words as the decoder’s input. The proba-
bility of using the generated word as input in Sched-
ule Sampling changes with the training time, which is
reasonable. But we think that the probability should
change with the performance of the model, that is, the
better the model performs, the higher the probability
should be. In this paper, we use the similarity of gen-
erated words and labels to indicate the performance
of the model, which we call “similarity selection”.
Like Schedule Sampling, it still does not completely
solve the problem of inconsistent data distribution
during training and generation (Huszár, 2015). In-
spired by (Lamb et al., 2016), we introduced Genera-
tive Adversarial Networks (GANs)(Goodfellow et al.,
2014) (Goodfellow, 2016) in combination with “sim-
ilarity selection” to solve the problem. GAN is a deep
learning model and one of the most popular meth-
ods for unsupervised learning on complex distribu-
tions in recent years. It consists of two modules (Gen-
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erative Network and Discriminative Network) and it
produces fairly good output through the mutual game
learning of the two modules. Since GAN has achieved
remarkable success in image generation since it was
proposed, some works (Lamb et al., 2016) (Zhang
et al., 2016) introduced GAN to NLP. In this paper,
we design two generators, one using “similarity selec-
tion” to generate sequences, the other using recurrent
mode to generate sequences. And we use a discrimi-
nator to make the latter generator close to the forward
one to solve the problem of inconsistent data distribu-
tion.

Most of the NMT models are learned only under
the guidance of the ground-truth translations. Models
are generally optimized by maximizing the likelihood
estimation of the target-side sequence at each step at
training time. This optimization strategy just guar-
antees that the model can generate the best word at
every single step but ignore the coherence and natu-
ralness of the whole sentence. To address this issue,
there are some works (Shen et al., 2015) (Bahdanau
et al., 2016) trying to optimize the model in sentence
level not just in word level. Those works aim to avoid
the limitation of maximum likelihood estimation by
directly optimizing the evaluation (BLEU) (Papineni
et al., 2002) and the results show that they have im-
proved the quality of translation a little. Some re-
searchers also use the idea of GAN to solve the prob-
lem: the discriminator learns to distinguish whether
a given sentence is a ground-truth sentence or not,
which can be regarded as a guide of the generator
in sentence level. The generator can be the ordinary
neural machine translation networks, which learns
by generating sentences more similar to ground-truth
translations. However, applying the traditional GANs
directly to sequence generation like neural machine
translation is not appropriate. Traditional GANs gen-
erating an image is a real-valued data mapping trans-
formation, which is a continuous process. There-
fore, the discriminator’s gradient can be propagated
back to the generator. But for NMT, in the process
of decoding and generating text, the model genera-
tion is actually the process of selecting words in the
vocabulary, which is a discrete and non-differential
process (Huszár, 2015). Therefore, the gradient of
the discriminator can not be propagated back to the
generator, and the parameters of generator can not
be updated (Goodfellow, 2016). To address the is-
sue and guarantee those two sub-modules in GANs
are effectively optimized when the data is discrete,
(Kusner and Hernández-Lobato, 2016) proposed the
Gumbel-softmax distribution, which is a continuous
approximation to a polynomial distribution based on
the so f tmax function. Inspired by (Yang et al., 2017)

(Wu et al., 2017), in this work, we use the idea of
the policy gradient method (Williams, 1992), widely
used in reinforcement learning (Sutton et al., 1998),
to make the gradient of the discriminator can be prop-
agated back to the generator. Therefore, we pro-
pose another discriminator that identifies the coher-
ence and naturalness of the generated sentences and
feeds the value back to the generator using the recur-
rent mode through the policy gradient.

Our work provides the following contributions:

• We propose a novel generative adversarial net-
work model for NMT. As our best knowledge, this
is the first work that leverages two generators and
two discriminators in GAN. One generator gener-
ates sentences with “similarity selection” and the
other generates with ordinary recurrent mode as
in the test. One discriminator closes the distance
between the two generators, the other guides the
generator to generate more natural and fluent sen-
tences in sentence level.

• We design a more precise method named “similar-
ity selection” as opposed to the “Scheduled Sam-
pling”. We believe that selecting a word as input
should depend on the quality of the generated data
rather than the training time.

• We carried out extensive experiments on
German→English and Chinese→English trans-
lation tasks. We compared some strong basic
recurrent structure models with twin-GAN and
the result of the twin-GAN significantly outper-
forms the RNNsearch (Bahdanau et al., 2015)
by +4.20 BLEU points on IWSLT 2014 De-En
data set. Comparing with the related model, our
model further achieved a significant improvement
by about +1.09 BLEU points.

2 RELATED WORK

2.1 Neural Machine Translation

Neural Machine Translation (NMT) is a Machine
Translation method that applies neural networks to
predict the likelihood of a sequence of words. Since
Sequence to Sequence (Seq2Seq) architecture (Kalch-
brenner and Blunsom, 2013) (Sutskever et al., 2014)
(Cho et al., 2014) was proposed, the most popular
structures of NMT are based on it, such as (Wu et al.,
2016) (Tan et al., 2019) (Artetxe et al., 2017) (Lam-
ple et al., 2017) (Lample et al., 2018) (He et al.,
2018) (Song et al., 2018). The architecture of the
Seq2Seq comprises of two processes, the encoder
process and decoder process. And these two parts are
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very flexible. Researchers started with RNN in these
two processes and later gradually introduced Long
Short-Term Memory (LSTM) units (Hochreiter and
Schmidhuber, 1997) and Gate Recurrent Unit (GRU)
(Cho et al., 2014) to in place of RNN units. Con-
volutional Neural Network (CNN) is the most com-
monly used neural network for analyzing visual im-
ages. As witnessed the great success of CNN in com-
puter vision, some researchers introduced it to NLP.
And some works (Lamb and Xie, 2016) (Kalchbren-
ner et al., 2016)(Gehring et al., 2017) used CNN for
machine translation with success. The two processes
in Seq2Seq are relatively independent and not closely
related. To this end, (Luong et al., 2015) proposed
the attention mechanism, which greatly improved the
performance of Seq2Seq through making these two
parts more closely. (Vaswani et al., 2017) proposed
a fully-connected attention-based model called trans-
former, which discards the CNN and RNN. And trans-
former became popular in natural language process-
ing applications, notably machine translation and lan-
guage modeling. Since the Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014) was pro-
posed, it was widely used in unsupervised learning in
the field of computer vision and had a good perfor-
mance. Therefore, some researchers (Yu et al., 2017)
(Lamb et al., 2016) (Goodfellow, 2016) (Zhang et al.,
2016) introduced GAN into NLP. For NMT, (Yang
et al., 2017) and (Wu et al., 2017) achieved competi-
tive performance through GAN.

2.2 Exposure Bias

As described above, the Seq2Seq model (Sutskever
et al., 2014) has been popular in Neural Machine
Translation recently. The decoder of Seq2Seq re-
quires the target sequence as it’s input at training time,
but the output of the previous time step is used to in-
stead at test time. The difference between training
and inference causes the exposure bias (Ranzato et al.,
2015). (Venkatraman et al., 2015) proposed a method
to alleviate the impact of errors in the current time
step on posterior steps by reusing the training data
which serves as a “demonstrator” by providing cor-
rections for the errors. Based on this method, (Ben-
gio et al., 2015) proposed another one called “Sched-
ule Sampling”. That is, the input used in the train-
ing phase uses the ground-truth with a probability of
p, and uses the output of the previous word with a
probability of 1-p. And this probability p increases
as training progress. And (Zhang et al., 2019) has a
more precise formula to get the probability p. Unlike
those works that use a simple function to calculate a
probability, we use the similarity of label and output

to guide the probability p.
Another direction of trying to solve exposure bias

is to borrow the idea of GANs, like (Lamb et al.,
2016), (Yang et al., 2017) and (Wu et al., 2017). How-
ever, they still use “teacher forcing” mode (Williams
and Zipser, 1989) in the generator at training time.
Unlike them, we use the “similarity selection” to re-
place the “teacher forcing” mode. Furthermore, We
also have another generator, which generates sen-
tences in the same way as in the test. And we use
a discriminator to force the distribution of the latter
generator to be close to the previous one. In the fi-
nal test, we only use the latter generator, whose data
distribution is the same for testing and training.

2.3 Sentence Level Strategy

To make the generated sequence closest to the
ground-truth sequence, maximizing the likelihood es-
timation (MLE) of the ground-truth sequence at each
time step is the most commonly used optimization
method. This method optimizes model in word level
because that MLE forces model to generate a word
that corresponded to the target word at the current
step. In this work, we use a discriminator that is simi-
lar to (Yang et al., 2017) and (Wu et al., 2017), which
optimizes generator in sentence level by discriminat-
ing the sentence is generated by machine or written
by humans. Therefore, in order to “cheat” the dis-
criminator, the generator will generate more natural
and coherent sentences like those written by humans.
But there is a limitation when generating sequences
of discrete tokens because it’s difficult to pass the gra-
dient update from the discriminator to the generator.
Same as (Yu et al., 2017), we borrowed a idea of re-
inforcement learning called policy gradient to make it
differentiable in this discrete process. We use the re-
sult of the discriminator as a reward and feed it back
to the generator.

The remainder of this paper is organized as fol-
lows. Section 3 provides the background of Neural
Machine Translation, including its commonly used
architecture and the application of GAN in NMT. Our
proposed twin-GAN is introduced in Section 4. We
discuss our experiments in Section 5, including data
sets, specific model settings and results analysis. Sec-
tion 6 concludes the paper.
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3 BACKGROUND

3.1 Encoder-Decoder with Attention

The translation task is to transfer one sequence into
another sequence. In Neural Machine Translation,
Encoder-Decoder is the most popular and empirically
effective structure. Encoder and decoder can be any
model like RNN based and CNN based. Assume the
source sequence and target sequence are X = {x1,x2,
... ,xn} and Y = {y1,y2, ... ,ym} respectively. Note the
E = {e1,e2, ... ,en} is employed to represent the em-
bedding matrix of the source sentence X. When yi,i∈
1,2...,m is generated, the model assigns attention to
different words in source sequence for the i-th decode
step. According to different attention, E is encoded as
intermediate context representation ci,i∈ 1,2...,m that
varies based on the current word generated. And then
input the combination of context vector ci and pre-
vious output into the decoder. Finally, the decoder
outputs yi,i∈ 1,2...,m.

3.2 Generative Adversarial Network in
NMT

(Goodfellow et al., 2014) proposed Generative Ad-
versarial Networks (GANs) and it got great success
in computer vision. The GANs is a new framework
that optimizes the generative model through the ad-
versarial process. The idea of GANs is a two-player
game that is played between a generative model and
a discriminative model. The training strategies of its
two sub-models are as follows: the training process
of the generator G is to maximize the probability of
the discriminator making mistakes, that is, the dis-
criminator mistakenly believes that the data are real
samples rather than the fake samples generated by the
generator. The training process of the discriminator
D is to maximize the probability of making a correct
judgment on the input data. Generally, the discrimi-
nator is a classification model or scoring model like
multilayer perceptron (MLP). GANs are first applied
to generate realistic pictures with random noise. It
works well in generating images since the image is
continuous data, and small changes can be reflected
on the pixels. But if the generated data is based on
discrete tokens, the information given by D is often
meaningless. Small changes to tokens are invalid due
to there may not be corresponding tokens in the vo-
cabulary space.

In neural machine translation, sentences are com-
posed of a series of discrete tokens. Because the gen-
erator G needs to be trained using the gradient ob-
tained from the discriminator D, and both G and D

need to be completely differentiable. Problems arise
when there are discrete variables, where Back Prop-
agation (BP) (Rumelhart et al., 1986) cannot pro-
vide the training gradient form D for G. There are
two main approaches to solve this problem, Gumbel-
softmax (Kusner and Hernández-Lobato, 2016) and
policy gradient (PG) method (Williams, 1992). In
this paper, we use the latter which is a common op-
timization method in reinforcement learning. Differ-
ent from original back-propagation, PG does not back
propagate by error but directly carries out back prop-
agation by selecting a behavior through observation
information. It does not have errors, but uses rewards
to directly enhance and diminish the likelihood of a
chosen action, Therefore, good actions increase the
probability of being selected next time, while bad ac-
tions decrease the probability of being selected next
time.

(Wu et al., 2017) is a recent work that applied
GANs and the idea of policy gradient to NMT, which
replaces the previous method. It improves the trans-
lation quality of model by minimizing the difference
between human translation and the translation given
by the NMT model. This work proposed a Convo-
lutional Neural Network that can accurately capture
high-level abstract correspondence of concatenation
of source sequence and target sequence. First, they
join the output sequence Ỹ of the NMT model or the
human translation output sequence Y with the source
language sentence X to form a two-dimensional ma-
trix and then measure the similarity between Y (or Ỹ )
and X through the convolution neural network. The
output label is 0(irrelevant) or 1(relevant). Specifi-
cally, they join the word embedding corresponding to
the i-th word xi in the source sequence and the j-th
word y j in the target sequence follow zi, j = [xT

i ,y
T
j ]

T

to gain a three-dimensional tensor representation Z.
Then through the convolution layers and max-pooling
layers to get more abstract feature expressions. The
obtained feature expressions are then fed to a multi-
layer perceptron, and the sigmoid activation function
of the last layer outputs a 2-class probability distri-
bution. And generative network update parameters
by the policy gradient. The loss of the discriminative
network is used as a reward to the generative network,
which makes the gradient of discriminator can propa-
gate to the generator.

4 MODEL

Part of our model is based on (Wu et al., 2017), and
we have another generator and discriminator in our
model. We use the “similarity selection” we designed
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to train generator1 and use the policy gradient to
train generator2. Two discriminators are called “sen-
tence discriminator” and “hidden state discriminator”,
which are represented by Ds and Dh respectively. Ds
is used to distinguishing whether the sentence is gen-
erated by our generators or written by human. And
its result is used as a reward to generator2; and Dh is
used to reduce the difference between generator1 and
generator2. The framework of the model is shown
in the Figure.1. We introduce our model in three
parts:(1) “similarity selection”, (2) Generators and (3)
Discriminators.

4.1 Similarity Selection

The Encoder-Decoder framework has achieved great
success and has been widely used in many natural lan-
guage processing tasks. And Recurrent Neural Net-
work (Mikolov et al., 2010) is the most commonly
used model in the two sub-modules of Encoder-
Decoder when it comes to machine translation task.
In the structure of RNN, dealing with the timing prob-
lem like sentences is to recurrent input and output one
by one. Assume X = {x0,x1 , ... ,xn} are the input units
and Y = {y0,y1, ... ,ym} is the label. RNNs also con-
tain hidden units that marked as {s0,s1, ... ,sn} and
express them as vector form S. st is the state at the t-
th time step of the hidden layer, which is the memory
unit of the network. st is calculated based on the cur-
rent input xt and the previous state of the hidden layer
st−1.

st = f (U ∗ xt +W ∗ st−1) (1)

in which f is a non-linear activation function like
ReLU. U and W are model’s weights. When calcu-
lating s0, that is, the hidden state of the first word, s0
can be 0 vector. The output process of RNNs as blew:

ot =V ∗ st (2)

where ot is the output at time step t, that is, the vec-
tor representation of the next word. And V is the
learnable weights. In the decoding process, these hid-
den units complete the most important work but the
way to get st will cause exposure bias (Ranzato et al.,
2015). To address it, we proposed a new and effec-
tive method called “similarity selection”. As the name
suggests, it uses the previous output or the label as in-
put based on the similarity between the output and the
label. When the output of the previous time step and
label have high similarity, we use the output of pre-
vious step as the current input, otherwise, we use the
current label to input. Inspired by (Li and Han, 2013),

(Muflikhah and Baharudin, 2009) and (Nguyen and
Bai, 2010), the similarity of these two vectors is cal-
culated by Eq.3:

similarity(A,B) =
A ·B

‖ A ‖‖ B ‖

=
∑

n
i=1 Ai×Bi√

∑
n
i=1(Ai)2×

√
∑

n
i=1(Bi)2

(3)

where A and B represent two word embeddings, and
n is the dimension of the word embedding. The sim-
ilarity of the two vectors ranges from 1 to -1, and
the angle between them increases as the similarity de-
creases. The smaller the value is from 1, the closer
these two vectors are. When the similarity is 0, the
two vectors are vertical. When the similarity is less
than 0, it means that the vectors are more dissimilar.
So we treat the vectors with a similarity of 0 to -1 as
the vectors with a similarity of 0. In this work, We
first calculate the similarity of the output of the pre-
vious time step and the label of the current time step.
Then we input the similarity into ReLU function and
get a result from 0 to 1. And then we take this result
as the probability of using the output instead of the
label. It means that the more similar these two word
vectors are, the more likely we are to use the output
from the previous step to input.

4.2 Generators

We have two generators named generator1 and
generator2 in our work. generator1 uses “similar-
ity selection” and generator2 uses policy gradient.
These two generators are both based on the encoder-
decoder framework and share parameters. We use
Long Short-Term Memory (LSTM) network (Hochre-
iter and Schmidhuber, 1997) in encoder and decoder:

it = σ(Wi · [ht−1,xt ]+bi) (4)
ft = σ(Wf · [ht−1,xt ]+b f ) (5)

C̃t = tanh(Wc · [ht−1,xt ]+bc) (6)
ot = σ(Wo[ht−1,xt ]+bo) (7)

Ct = ft ∗Ct−1 + it ∗C̃t (8)
ht = ot ∗ tanh(Ct) (9)

where Wi, Wf , Wc, Wo and bi, b f , bc, bo are matrices
of learnable weights and biases. Eq.4 is input gate;
Eq.5 and Eq.6 is forget gate; Eq.7 is output gate; Eq.8
and Eq.9 are represent long term memory and short
term memory respectively. ht is the hidden state of
the network at time step t and xt is the input unit at the
current step t. Different from other works, here xt is
the current label or the previous step output selected
by the “similarity selection” in generator1. And we
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Figure 1: Model framework: The top of the framework is generator1, and the bottom is generator2. The Dh represents the
“hidden state discriminator”, whose input is the hidden states of the generator’s decoder. The Ds represents the “sentence
discriminator”. The generator’s outputs are input to Ds and its output is fed back to generator2 as a reward.

also add attention mechanism (Bahdanau et al., 2015)
into the connection between encoder and decoder:

ct =
|X |

∑
i=1

αithi (10)

αit =
exp(F(si,ht−1))

∑
|X |
j=1 exp(F(si,ht−1))

(11)

F(si,ht−1) = ht−1 · si (12)

where |X| represents the length of the source sen-
tence. ct is the result of the attention mechanism
for decoder at time step t. hi and si represent the i-
th hidden state of encoder and decoder respectively.
We use Eq.12 (dot-multiply) to calculate the attention
score. Eq.11 is the so f tmax function and it obtains
αit , which is the final attention score of the encoder
hidden states for the t-th time step decoder. The itera-
tive optimization scheme of generator1 is:

minimizing :−
|Y |

∑
j=1

logPj[y j] (13)

where | Y | indicates the length of the ground-truth
sentence, Pj refers to the predicted probability distri-
bution at the j-th step, y j is the token generated by
generator1 at the j-th step.

In generator2, we train it in the same way as the
inference (recurrent mode), that is, we use the previ-
ous step output as the current input to train it recur-
rently. This strategy during training makes it more
like an inference process to achieve the purpose of
alleviating the discrepancy between training and in-
ference. We apply the idea of policy gradient to
generator2. We use the result of the Ds as the reward
to this generator. With the notations for generator2
model G(θ2) and sentence discriminator model Ds,
the iterative optimization scheme of generator2 is:

minimizing :−EX∼Pdata(X),Ỹ∼G(θ2,X)log(1−Ds(X ,Ỹ ))
(14)

where X is the data sampled from source sentences,
θ2 is parameters of generator2 and Ỹ is the target sen-
tences generated by generator2.

We use a discriminator Dh (introduced in the Sec-
tion 4.3 ) to force generator2 to close generator1, and
finally make their data distribution close. At the end,
we use generator2 to test.

4.3 Discriminators

In this paper, we proposed two discriminators in one
GAN innovatively. And one is to discriminate be-
tween the results of the generators and ground-truth
translations, and the other is to discriminate against
the data distributions of these two generators.

One discriminative network, called Ds for short,
is inspired by (Wu et al., 2017). We use it to di-
rectly reduce the difference between sentences gen-
erated by generators and written by human to train
these two generators at the same time. And we use the
results of Ds as a reward feed to generator2. There-
fore, generator2 is updated by its own error and the
reward received from Ds. We first concatenate the
source sentence (X) and synthetic sentence (Ỹ ) gener-
ated by our generators or the target ground-truth sen-
tence (Y) to form a matrix Z̃ or Z, which also helps
to measure the translative matching degree of source
sentence and target sentence. Then the Z̃ and Z are
fed to Ds and outputs a probability that Z̃ and Z is
from ground-truth data. The structure of Ds is based
on CNNs which ignores some overly detailed features
of input sequences to capture the overall features and
the relevance of these two sequences.

For the other discriminator, called Dh for short,
it is used to make the model distributions of these
two generators more similar through discriminating
the hidden states of them. It is based on a bidirec-
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tional recurrent neural network (Bi-RNN) that con-
sists of two RNNs. One runs forward in time on the
input hidden states sequence, and the other runs back-
ward in time with the same input sequence. The hid-
den states of the two RNNs are connected at each time
step to form a new hidden state which is continuing to
feed the next layers. The output of Bi-RNN is fed to
the Multilayer Perceptron (MLP) and the output layer
consists of an affine transformation and a sigmoid.
Finally, Dh outputs a result indicating the probabil-
ity that the input hidden state sequence is the hidden
states of generator1. We re-train the Dh as:

minimizing :−EX∼Pdata(X),h1∼G(θ1,X)log(Dh(h1))

−EX∼Pdata(X),h2∼G(θ2,X)log(1−Dh(h2))

(15)

in which h1 and h2 are the hidden states of generator1
and generator2 respectively.

5 EXPERIMENTS

5.1 Dataset

We carry out experiments on the IWSLT 2014 (Cet-
tolo et al., 2014) German→English (De→En) and the
WMT’17 Chinese→English (Zh→En) respectively.

IWSLT 2014: This data set is bilingual corpus
pairs of German and English, consisting of a train-
ing set, a validation set and a test set, with 153k, 7k
and 6.5k pairs of sentences respectively. And we set
the maximum sentence length to 50. Our dictionary
keeps the first 22,822 high-frequency English words
and 32,009 German words, and the remaining words
not in the vocabulary are replaced by “<UNK>”.

WMT’17: In this dataset, in order to obtain Chi-
nese word segmentation, we use jieba1 to process Chi-
nese corpus. We use the newsdev2017 as the dev set
and newstest2017 as the test set. And we use byte
pair encoding (BPE) (Sennrich et al., 2015) approach
to preprocess the Chinese and English corpus, gener-
ating Chinese and English vocabularies with 37,516
and 25,524 types, respectively.

5.2 System

For the whole model, the dimension of the word em-
bedding is set as 512; We initialized the learning rate
of both discriminators and generators at 0.001. Since
discriminators are simpler and easier to train than
generators, we trained them at different frequencies.

1https://github.com/fxsjy/jieba

We trained discriminators only once every ten times
the generators are trained. The source code is avail-
able at GitHub2.

Generators: both two generators share the same
encoder-decoder structure as described in Section 4.2,
and these two generators share weights. The details
of generators are as follow: 2-layers LSTM networks
act as encoder and decoder employ 2-layers LSTM
and an attention. We set the hidden units for both
encoders and decoders as 1000. We initialized the pa-
rameters of LSTM networks following the Uniform
distribution U(-1, 1). The attention mechanism we
used in the decoder is the same as (Bahdanau et al.,
2015). And we also applied dropout(=0.3) for train-
ing the generators. During testing, we used a beam
search with a beam size of 5 and the length penalty
is not applied. In the forward process, we used the
“similarity selection” method and the inference way
in generator1 and generator2 respectively to train
them. And we set fifty percent probability to train
generator1, and another fifty percent probability to
train generator2.

Discriminators: for “sentence discriminator”
(Ds), we used two CNN layers and each layer is fol-
lowed by a max-pooling layer, with 3×3 convolution
kernel size and 2×2 pooling window size. And then
fed the output of the CNN layer to a MLP network
which has two full connection layers and each layer
with a ReLU activation function. Finally, we mapped
it into a score through a sigmoid function. For hid-
den state discriminator(Dh), it is based on a bidirec-
tional recurrent neural network, which consists of two
RNNs (two GRU networks (Cho et al., 2014)), The
hidden states of these two RNNs are fed to an MLP
network. That MLP has three layers, each consist of
an affine transformation and a ReLU activation func-
tion. Finally, the output layer comprises an affine
transformation and a sigmoid.

5.3 Results

The translation results of our experiments are eval-
uated by BLEU (Papineni et al., 2002) score3. As
shown in table Table 1 which compares the results of
our twin-GAN model with some strong basic mod-
els on the IWSLT 2014 De→En data set. (Bahdanau
et al., 2016) uses an approach to train model to gen-
erate sequences through using actor-critic approach
from reinforcement learning (RL) to replace the uni-
versal log-likelihood training approach. (Bahdanau
et al., 2015) allows a basic encoder–decoder model to

2https://github.com/zhao1402072392/twin-GAN
3https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/generic/multi-bleu.perl
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automatically search for parts of a source sequence re-
lated to the predicted target word to improve the per-
formance of it. And we carried out experiments with
our twin-GAN model at different learning rates and
the different ratios of times of training generators and
discriminators. And the result shows that this BLUE
score of this work (with learning rate=1e-3, update
G/10 times update D) on the IWSLT 2014 De→En
data set is 1.09 points higher than that of the related
model (Wu et al., 2017).

Table 1: Comparisons of different competitive NMT sys-
tems on IWSLT 2014 De→En data set.

Systems BLEU

CNN + actor-critic 22.45a

RNN Search 23.87b

Adversarial NMT 26.98c

twin-GAN
update/5 times, lr=1e-3 27.73

update/10 times, lr= 5e-4 27.81

update/10 times lr=1e-3 28.07†

a reported in (Bahdanau et al., 2016)
b reported in (Wiseman and Rush, 2016)
c reported in (Wu et al., 2017)
† the best performance of our twin-GAN model

We also train twin-GAN with other strategies in
generator1, instead of “similarity selection”, we use
“teacher forcing” and schedule sampling respectively,
in order to verify that it was important to use this more
reasonable method “similarity selection” on the twin-
GAN model.

Table 2: Comparisons of different training strategies on
twin-GAN based on IWSLT 2014 De→En data set.

Strategies BLEU

twin-GAN with “teacher forcing” 27.10

twin-GAN with schedule sampling 27.74

twin-GAN with “similarity selection” 28.07†

† the best performance of twin-GAN model with dif-
ferent strategies in generator1

In addition, we evaluate different models, based on
WMT’17 Zh→En corpus. The results are shown in
Table 3, where “RNN Enc-Dec Att” represents the
encoder and decoder of the model are the same RNN
architecture(2 layers LSTM network here) with an at-
tention mechanism. We also compared the result of
our work with Adversarial NMT (Wu et al., 2017).

The result shows that our method improved the per-
formance of those recurrent architecture model.

Table 3: Comparisons of different competitive NMT sys-
tems on WMT’17 Zh→En data set.

Systems BLEU

RNN Enc-Dec Attn 18.06

Adversarial NMT 19.90

twin-GAN
update/5 times, lr=1e-3 20.86

update/10 times, lr= 5e-4 20.32

update/10 times lr=1e-3 21.06†

† the best performance of our twin-GAN model

6 CONCLUSIONS

The end-to-end model is very popular and effective
in Neural Machine Translation. But this process of
generating translations word by word is different dur-
ing training and inference, which can cause exposure
bias. Many researchers tried to use Generative Adver-
sarial Networks to address this problem and they in-
deed had some success, but there is still room for im-
provement. We introduce the first GAN with two gen-
erators and two discriminators for NMT. We not only
make the training phase and test phase similar in data
distribution, but also make them similar in model dis-
tribution to solve the exposure bias problem through
one of the discriminators. In addition, the proposed
“similarity selection” method in generator1 can more
accurately make the data distributions of the model
similar at training and test. The results clearly show
that after using this new model, it does improve the
performance of the basic recurrent model. The twin-
GAN also has enhanced the Adversarial NMT model
after adding an extra “hidden state discriminator” and
applying “similarity selection” method, achieving the
competitive results on recurrent models.
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