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Abstract: Standard video compression techniques have provided pixel-based solutions that have achieved high 
compression performance. However, with new application areas such as streaming, ultra-high definition 
TV(UHDTV) etc., expectations of end user applications are at an all-time high. Never the less, the issue of 
stringent memory and bandwidth optimization remains. Therefore, there is a need to further optimize the 
performance of standard video codecs to provide more flexibility to content providers on how to encode video. 
In this paper, we propose replacing pixels with objects as the unit of compression while still harnessing the 
advantages of standard video codecs thereby reducing the bits required to represent a video scene while still 
achieving suitable visual quality in compressed videos. Test results indicate that the proposed algorithm 
provides a viable hybrid video coding solution for applications where pixel level precision is not required.  

1 INTRODUCTION 

With more sophisticated end user devices constantly 
being introduced onto the market at rapid pace, there 
is an increasing demand for higher quality video e.g. 
UHDTV, high quality streaming services etc. The 
challenge for meeting these requirements necessitate 
creating video content at higher spatial resolutions 
and frame rates resulting in the need for a higher 
bitrate to transmit, distribute and/or store this content. 
Overtime, research has focused on the development 
of both standard and non-standard video compression 
techniques to handle this content. Of these two areas 
of research, standard video compression solutions 
have been by far the more successful solution.  

For the purposes of video processing, to the 
human observer, it is safe to assume that there are 
only minimal identifiable changes as we navigate 
within a video scene from one frame to the next. 
However, when observed at the pixel level by a 
standard video compression algorithm, there can be 
significant differences when one frame is compared 
to the next sequence of frames. These pixel variations 
could be due to object motion, lighting variations, 
shadowing or occlusion etc. and tracking all of these 
changes at the pixel level results in a lot of data, which 
even after compression, take up a lot of valuable 
memory space as well as transmission bandwidth.  

By handling scene variations at the pixel or block 
level and storing this information, even in its encoded 

form, the limited memory available is quickly 
exhausted making compression mandatory. Video 
compression standards have demonstrated 
increasingly high performance starting from the 
H.261 and MPEG-1 standards to the HEVC standard. 
However, their existing uniform and lengthy schema 
is fast becoming unable to meet all the changing 
needs and dynamic nature of the video coding 
community (Mattavelli, Jorn, & Mickaël, 2019) and 
there is a need to find other ways to improve 
compression by adding new functionalities or 
including content adaptation methods which may 
boost their coding efficiency. In this paper, we 
propose a hybrid video compression solution that 
replaces pixels with objects as the unit of 
compression while still harnessing the advantages of 
standard video codecs.  

This paper is presented as follows: in section 2, a 
literature review of existing work in this area of 
research is provided. Section 3 outlines the details of 
the proposed algorithm. Results are presented in 
section 4 and the paper concludes in section 5. 

2 LITERATURE REVIEW 

Video coding solutions can be categorized into 3 
groups on the basis of their approach: standard video 
coding, non-standard video coding and a hybrid of 
both standard and non-standard video coding. Both 
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standard and non-standard video compression 
solutions have been actively investigated for years 
resulting in the implementation of several techniques. 
Standard video compression solutions have been the 
more successful of the two solutions by far.  

While standard codecs have enjoyed large scale 
success, there have also been a few drawbacks, some 
of which are that: 
• While block-based solutions offer great 

flexibility, they also suffer the draw back of 
blocking artifacts in some implementations 

• Existing block-based coding standards, such as 
H.264 and H.265, do not consider the arbitrary 
shape of moving objects and, as a result, their 
prediction efficiency is compromised 

While standard codecs remain the gold performance 
criterion for video compression technologies, there is 
still room for further improvement as well as a need 
for alternative solutions as these codecs are not 
always suitable for every application. There is also a 
need to explore non-pixel/block-based alternatives 
either as a standalone solution or in combination with 
existing standard codecs as they may offer a more 
efficient way to utilize the stringent memory 
available. Several video compression solutions have 
been proposed which either adapt existing standard 
solutions or propose new ways to solve the video 
compression problem, these are reviewed next.  

Mosaics are created by stitching together images 
from a given scene taken at different instances in 
time, thereby creating a panoramic view of that scene. 
Mosaics often contain spatially overlapping 
information about the scene. Authors in (Hsu & 
Anandan, 1996) & (Irani & Anandan, 1998) proposed 
a hybrid mosaic-based video compression algorithm 
that combines mosaics with standard video 
compression. This solution replaces pixels with 
mosaics as the basic unit for compression. By using 
mosaics, the authors were able to address untapped 
redundancies still present in video scenes.  

Pattern based coding (PBC) for video was 
standardized by the introduction of predefined pattern 
code books in the H.263 and H.264 standards 
(Sullivan & Wiegand, 2005). The problem with 
predefined codebooks is that using them does not 
achieve optimal coding efficiency (Manoranjan, 
Murshed, & Dooley, 2003). Authors in (Manoranjan, 
Murshed, & Dooley, 2003) & (Murshed & 
Manoranjan, 2004) introduced the use of dynamically 
extracted patterns from video content thereby 
achieving superior coding efficiencies. Their hybrid 
video coding solution combined the use of 
customized pattern code books with existing standard 
video codecs. 

Authors in (Galpin, Balter, Morin & Pateux, 
2004) & (Balter, Gioia & Morin, 2006) proposed a 
non-standard model-based approach to video 
compression. Without utilizing any standard codecs, 
the authors developed a scalable compression method 
for scenes with unknown content. They harnessed the 
redundancy in the 3D models by only intra coding the 
key frames while all others were compressed in a 
predicted mode. Their approach avoided having to 
transmit texture coordinates by computing the texture 
information at the decoder side.   

Over the last few years, deep learning-based 
video coding has been an actively developing area of 
research (Dong, Jianping, Li & Wu, 2020). This 
emerging area of research has yielded techniques that 
can be considered to be hybrid deep learning-based 
video coding methods as well as non-standard deep 
learning-based coding methods. Non-standard deep 
learning can be divided into either pixel probability 
(PP) modeling-based techniques or auto-encoder (A-
E) based techniques. PP modeling uses deep learning 
to solve prediction problems and is representative of 
predictive coding. Some representative work includes 
(Wu, Singhai, Krahenbuhl, 2018) & (Chen, He, Jin & 
Wu, 2019). Conversely, A-E based techniques work 
by training a deep learning network to encode by 
converting high dimensional signals to low 
dimensional ones and decode by recovering the high 
dimensional signals on the basis of the low 
dimensional signals generated by the encoder. A-Es 
are representative of transform coding. Some 
representative work includes (Chen, Liu, Shen, Yue, 
Cao, & Ma, 2017) & (Lu, Ouyang, Xu, Zhang, Cai, 
& Gao, 2019).  

Hybrid deep learning-based video coding 
methods work by utilizing trained deep networks as 
tools within standard coding schemes or in 
conjunction with standard coding tools such as 
HEVC. As demonstrated in (Dong, Jianping, Li & 
Wu, 2020), deep trained networks can replace almost 
all the modules in standard video codecs. Authors in 
(Li, Li, Xu, Xiong, & Gao, 2018) & (Hu, Yang, Li, & 
Liu, 2019) have proposed replacing the traditional 
intra-coding module with a deep trained network 
version while authors in (Lin, Liu, Li, & Wu, 2018) 
& (Zhao, Wang, Zhang, Wang, Ma, & Gao, 2019) 
utilized unique inter-coding modules. 

Today, while deep learning-based video coding 
continues to show promising results in this field, it is 
important to note that it is an area of research that is 
still in its infancy with a lot of room to develop into a 
mature area of research (Dong, Jianping, Li & Wu, 
2020).  Next, we review the proposed technique. 
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3 OVERVIEW OF PROPOSED 
OBJECT SEGMENTATION AND 
DETECTION METHOD 

When there are changes in a video scene, such 
changes are often associated with specific objects, 
affecting either the whole object or only a subsection 
of the pixels that compose the object. Therefore, 
rather than pixels, objects form the foundation for 
each phase of this proposed algorithm.  

We propose a background subtraction (BGS) 
object-based hybrid video compression scheme. The 
algorithm is made up of three key phases: 
1. BGS Phase 
2. Object Detection and Tracking Phase 
3. Compression and Scene Reconstruction Phase 
In each phase, an object-based algorithm was 
implemented. To achieve a high level of consistency, 
regardless of the phase, a consistent color space was 
used. The Hue Saturation Value (HSV) color space 
was chosen as it is closely aligned with the human 
visual system. An overview of the proposed hybrid 
object-based algorithm is provided in Figure 1. Next, 
each phase of the algorithm is reviewed. 

3.1 BGS Module 

An adaption of the Statistical and Knowledge Based 
Object Detection (SAKBOT) algorithm which was 
proposed by authors in (Cucchiara, Grana, Piccardi & 
Prati, 2003) as well as the improved SAKBOT 
approach proposed by authors in (Calderara, Melli, 
Prati & Cucchiara, 2006) was implemented. The 
SAKBOT BGS algorithm was chosen as the primary 
BGS method because it combines the advantages of 
statistical methods with those of adaptive methods to 
generate a resilient BGS algorithm. While this BGS 
approach met the basic requirements for this 
implementation, there were a few issues that had to 
be remediated to improve the performance of the 
overall object-based compression algorithm. These 
include its inability to (1) provide a measure of 
variance, (2) take advantage of the spatial information 
inherent in a video scene and (3) apply post 
processing to the achieved results. When combined, 
these factors resulted in a higher incident of false 
positives (Prati, Mikic, Grana & Trivedi, 2001).  

Our implementation of the SAKBOT algorithm 
is referred to as the adapted SAKBOT algorithm. It 
added an additional data point to the computation 
which was the spatial location of the moving visual 
objects (MVO), their shadows and any ‘ghosts’ (i.e. 
the set of connected points identified as being in 

motion by the BGS process but which do not belong 
to any real moving objects) in the video scene. This 
change contributed to the reduction of the instances 
of false positives. This adapted SAKBOT has 3 key 
components:  
1. Background Initialization aka Bootstrapping 
2. Foreground Detection  
3. Selective Background Maintenance 

The background was initialized by building the 
background model 𝐵௧  from the video sample. The 
initialization buffer size was set to 120 frames. This 
was optimized by initially using a buffer size of ~ 50 
frames and then subsequently updating the model as 
required throughout the computation. The advantage 
of this modification to the SAKBOT algorithm was a 
reduction in the memory required upfront to create 
the BGS model. The generated background model 
was designated as the background subtractor object 
and served as the input to the next phase.  

The foreground was computed on the frame 
level as the difference between the current frame 𝐼௧ and the background model 𝐵௧ thereby generating 
the foreground mask 𝑀௧(𝑖, 𝑗)  containing the grey-
level information of the foreground. The selective 
model updates were achieved by applying a temporal 
median to a circular buffer that stored pixel values 
over time. This approach benefits from the ability to 
capture statistical dependencies between color 
channels. The input video was converted from its 
native RGB color space to HSV to support the 
implementation of the shadow detection module. 

Next, a binarized motion mask was computed 
and MVO objects at time t were extracted from this 
final binarized motion mask. This generated the first 
list of candidate objects and shadows to be tracked. 
This list was subsequently vetted in the object 
detection module enabling the generation of the final 
list of objects which was later fed as input to the 
object tracking module.  

3.2 Object Detection Module 

As no one feature can provide invariance to all scene 
changes, a multi-feature-based approach was used to 
achieve reliable object identifications. The local 
features selected in this phase were object color and 
object motion. These features are considered to be 
mutually independent as one feature cannot be 
predicted on the basis of another feature (Khan & 
Shah, 2001). The HSV color space was used because 
it is able to explicitly separate luminosity and 
chromaticity. Within the HSV color space, the hue of 
a pixel was assigned a larger weight than its saturation 
and brightness and was used for clustering pixels into 
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regions for the purpose of segmentation and object 
detection. This involved extracting this feature as 
well as generating an HSV Histogram of Oriented 
Gradient (HOG) based on the hue channel which was 
then used to detect and segment objects in the 
foreground.  

The object detection problem was considered to 
be a form of the classification problem in which 
classifications were considered to be good if they 
were homogeneous with respect to a specific feature 
within the region of interest (ROI) and dissimilar 
outside the focus area. Therefore, since the hue of a 
particular color is considered to be at its largest value 
in the center of an object where it is least sensitive to 
colors from adjacent regions, the center hill of the 
histogram was identified as the center of the cluster 
of the color which was then determined to be the 
center of the object to be segmented.  As the HSV 
color space has the added advantage of being able to 
identify color shade and intensity value variations in 
the area of the object’s edge, thereby sharpening the 
object boundaries, it was possible to accurately 
identify the object of interest from its identified center 
to its boundary thereby increasing the accuracy of the 
object segmentation. 

To apply object motion as a feature, thereby 
validating the information provided by the color 
feature, there was a need to compute the motion 
parameters. By assuming that the color segment of the 
detected object was a superset of the motion segment, 
this computation focused only on generating the 
motion parameters for pixels identified as belonging 
to a candidate object/ROI via the dense Farneback 
optical flow-based approach thereby simplifying the 
otherwise cumbersome computation process. 

 Assuming that the motion field within each 
candidate object’s ROI was smooth and that the 
optical flow constraint assumption that the intensity 
of a pixel in an image is constant along the trajectory 
of the pixel’s motion holds true, then, motion 
estimation was computed by generating a parametric 
motion model for each candidate object in the scene. 
The motion segmentation approach used key 
representations highlighted in (Chang, Tekalp & 
Sezan, 1997) because by defining the segmentation 
based on a parametric motion model, physically 
meaningful ROIs could be achieved.  

As such, the motion field was jointly represented 
as both the sum of a parametric field ‘p’ as well as a 
residual field ‘r’. From the current frame 𝑔௞  to the 
search frame 𝑔௞ିଵ , a 2-D motion vector 𝑑(𝑚, 𝑛) for 
pixel location (𝑚, 𝑛) was defined as 𝑑(𝑚, 𝑛) = ሾ𝑢(𝑚, 𝑛), 𝑣(𝑚, 𝑛)ሿ   (1) 

Where u and v are the vectors for each pixel location 
associated with candidate objects in each frame. 
Then, k, the set of independently moving objects was 
set equal to the list of candidate objects generated in 
the previous phase. Provided that a segmentation 
label 𝑥(𝑚, 𝑛) is used to assign motion vector 𝒅(𝑚, 𝑛) 
to a pixel belonging to one of the objects in the set k, 
the motion of each object was approximated by a 6 to 
8 parameter affine parametric mapping of 𝜙, the 
result of which produced the parametric motion 
vector component 𝒅௣ as well as the residual motion 
vector 𝒅௥ at pixel (𝑚, 𝑛) as expressed below 𝒅(𝑚, 𝑛) =  𝒅௣(𝑚, 𝑛) + 𝒅௥ (𝑚, 𝑛)  (2) 

Where 𝒅௣(𝑚, 𝑛)  is dependent on the segmentation 
label 𝑥(𝑚, 𝑛), thereby computing both the parametric 
motion vectors as well as the residual motion vectors. 

The Bayesian rule was applied to the a-posteriori 
Probability Density Function (PDF) of u, v, and x, 
given 𝑔௞  and 𝑔௞ିଵ to obtain the Maximum A-
Posteriori (MAP) estimates. Therefore,  
• Given the best estimates of the motion and 

segmentation fields, the mapping parameters 𝜙 
where obtained by computing a least squares 
procedure 

• Given the best estimate of the parametric field, 
constrained by the assumption that the motion 
field is smooth within each segment, the motion 
field was updated through an estimation of the 
minimum-norm residual field and 

• Given the best estimate of the motion field via 
Gibbsian priors, the segmentation field was 
updated to yield the minimum-norm residual 
field 

A conditional pdf was then used to quantify how well 
the estimates fit the given candidate objects. After 
computation, the following was obtained: a 
parametric model per object, residual motion vectors 
for each 4 by 4 block of pixels belonging to the object, 
a dense motion field, a motion segmentation field and 
a set of mapping parameters. The resulting parametric 
motion model as well as the motion segmentation 
field were overlaid on to the foreground, if there was 
a match between the identified motion areas as well 
as the candidate object, this object was identified as a 
real detected object else it was discarded as a false 
positive. Every detected object was then segmented 
based on the outlined edges identified. The 
segmented object was added to the object list and a 
candidate blob was added to the blob list.  A blob was 
generated on the basis of its connectivity and stored 
in the blob list. Once this task was completed, the 
color space was converted back from the HSV color 
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space to the RGB color space for the next phase of 
processing.  

The tracking module received as input the list of 
detected objects 𝐴𝑙𝑖𝑠𝑡  in addition to the list of 
candidate blobs 𝐵𝑙𝑖𝑠𝑡 which were considered to be 
associated with the tracking objects. A list, 𝐶𝑙𝑖𝑠𝑡 was 
created to track the number of consecutive frames that 
each object in the detected object list had not 
appeared in the scene. If an object was identified as a 
tracking object at some point in the scene but had 
disappeared from the scene and over the next 50 
consecutive frames, the object had not reappeared in 
the scene, then that object was assumed to have exited 
the scene and such an object was then removed from 𝐴𝑙𝑖𝑠𝑡 and only stored in 𝐶𝑙𝑖𝑠𝑡. However, if the i-th 
object in 𝐴𝑙𝑖𝑠𝑡 is recognized as a tracking object, a 
new blob was added to 𝐵𝑙𝑖𝑠𝑡  and the loop was 
repeated. We assigned a candidate blob in 𝐵𝑙𝑖𝑠𝑡 to 
each object in 𝐴𝑙𝑖𝑠𝑡 by computing a distance matrix 
from 𝐴𝑙𝑖𝑠𝑡  to 𝐵𝑙𝑖𝑠𝑡  on the basis of 3 measures - 
position distance, blob distance and color variance 
measure. The position distance, i.e. the distance from 
the center of the current tracking object to the center 
of the previous tracked object was computed. On the 
basis of this known value, the distance between the 
position of the current tracking object and its next 
position was then estimated using the Unscented 
Kalman Filter (UKF). A similar distance metric was 
computed between the blobs as well to effectively 
match blobs to each object’s position in the scene. 
The color variance measure was computed as the 
square of the distance between the histogram of Hue 
of the HSV color space of the previous tracking object 
and that of the current tracking object. Finally, after 
computing the position, blob and color measures, the 
overall distance 𝐷௜௝ was calculated as  𝐷௜,௝ = 𝐶𝑜𝑙𝑜𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 ∗𝑠𝑞𝑟𝑡 (𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) ∗ 𝐵𝑙𝑜𝑏 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (3) 

The value of 𝐷௜௝  for each object and blob position x, 

y was stored in the D array D = ቎ 𝐷௜௝ ቏  (4) 

where, 𝐷௜௝ is the distance from 𝐴௜ to  𝐵௝ 

In cases where a tracked object 𝐴௜ was never 
recognized as a blob 𝐵௝ , the distances were 
individually set to infinity and 𝐷௜௝ was assigned to 
infinity. To solve this problem of assigning a tracked 
object to a blob, the Hungarian algorithm (Kuhn, 
1955) was used. Based on the distance matrix D, this 
algorithm was used to achieve the optimal assignment 
thereby associating blobs in 𝐵𝑙𝑖𝑠𝑡  with tracking 

objects in 𝐴𝑙𝑖𝑠𝑡. The achieved results were updated 
based on 𝐶𝑙𝑖𝑠𝑡  which contained skipped objects. 
There were candidate blobs in 𝐵𝑙𝑖𝑠𝑡 which had not 
yet been matched to any tracking object as the blobs 
were not recognized. The blobs in this category were 
then matched to the objects in 𝐶𝑙𝑖𝑠𝑡  and based on 
their distance and statistics information, the object list 
was updated with the newly matched objects. 

The tracking algorithm developed in this 
research is able to handle single object tracking as 
well as multi-object tracking. In the single object 
tracking case, it was identified that due to possible 
computational errors in earlier phases of the 
algorithm, a single object may have incorrectly been 
identified as two tracking objects. To address this, a 
distance threshold value ‘d’ was defined and set equal 
to 0.5 such that if the distance between any two 
trackers was found to be less than d, the objects 
previously identified to be two distinct tracking 
objects were considered to be just one object, and the 
objects were merged into a single tracking object. On 
the other hand, the multi-tracking algorithm was 
triggered if the computed distance between any two 
objects was found to be greater than d.  

To enable reconstruction, the spatial location of 
each object relative to other objects in a frame was 
computed for each instance of that object across all 
frames. To generate stable tracks of objects across the 
scene, each newly identified object was compared to 
the list of existing validated objects, if a new object 
was matched to an existing object, it was tagged with 
the same tracking ID as the existing object, else it was 
tagged with a new unique tracking ID. Finally, all 
stable object tracks were written into object files.  

3.3 Compression and Object Layer 
Reconstruction Module 

The main goal of this module of the proposed 
algorithm was to iteratively recombine the objects in 
a frame, sequentially compress each recombined 
frame, feed the recombined frame as input into the 
prediction loop of a video codec and ultimately, 
reconstruct the original input video. As the proposed 
algorithm is an object-based hybrid compression 
algorithm, an H.265 codec was utilized for the 
compression phase. This reconstruction module 
received as input a color image of the background, 
scene objects and their stable tracks as well as the 
tracking text file containing the statistics of each 
frame in addition to the objects in the frame. 
Individual object bitstream files were created for each 
object’s stable track across the scene on the basis of 
this data and objects were properly placed in the 
resulting bitstream relative to their location details. 
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Once the object files were created, the next step was 
to encode and reconstruct the video sample by 
recombining the object files after which the video 
sample was decoded. The algorithm worked as 
follows:  
Step 1 – Initialize the video sample 
reconstruction phase by reading the 
colored background image.  

Step 2 – Pass the background as input to 
the standard codec, encode this file as 
a key frame and store the encoded file 
in the buffer. The number of bitstream 
files in the buffer is set = 1,  

set Current bitstream = Recombined 
Bitstream; set bitstream# = 1  

If bitstream# < Total # of 
bitstream -1 

Step 3 – Pass the previously obtained 
Recombined Bitstream as input to the 
inter-frame prediction loop.  

Step 4 - Read the next object bitstream 
from the folder, pass the object 
bitstream as input to the standard codec 
to be encoded and pass its associated 
metadata to the buffer.  

Step 5 – If the number of bitstreams in 
the buffer is > 1, then 

Using the associated metadata 
information, combine the New Object 
bitstream with the current bitstream to 
form the new Recombined Bitstream 

Set Current bitstream = Recombined 
Bitstream; bitstream# ++,   

repeat steps 3-4,  

else 

Step 6 – Write overall recombined 
bitstream to file. This bitstream was 
then passed on to the decoder and the 
video sample was decoded  

end  

4 RESULTS  

This algorithm uses objects as the minimum unit of 
processing, as such, pixel level changes from one 
frame to another were not fully captured. Therefore, 
the Structural Similarity Index Measure (SSIM) 
proposed by in (Wang, Bovik, Sheikh & Simoncelli, 
2004) was used. This metric takes into account the 
similarity of the edges between the original frame and 

the reconstructed frame. According to the authors in 
(Hore & Ziou, 2010), there is a correlation between 
SSIM and the quality perception of the human visual 
system (HVS) and is computed by modeling any 
image distortions resulting from the comparison of 
the reference image against the test image as a 
combination of three factors – Contrast distortion, 
loss of correlation and luminance distortions. 

This algorithm has been designed to integrate with 
any standard video compression algorithm. 
Therefore, its performance when integrated with 
HEVC was assessed against the standard HEVC 
implementation using a few sample videos. The 
results obtained are promising while identifying areas 
for improvement. The test results shown in Figure 2 
are from the pedestrian traffic video sample which is 
an outdoor video scene of medium complexity, 
showing pedestrians in motion, with partial and full 
occlusion at various points in the scene and the people 
in the scene moving in unusual patterns. The scene 
has moderate lighting variations resulting in shadows 
being associated with the objects in motion. As shown 
in Table 1, this algorithm achieved comparable SSIM 
results compared to HEVC while achieving bit 
reduction over H.265. Testing results have 
demonstrated that when the complexity of the scene 
is high, i.e. in scenes where 80% or more of the pixels 
are changing over the course of the scene, this 
proposed algorithm did not achieve the level of bit 
reduction compared to HEVC as it did with less 
complex scenes. A contributing factor is that the BGS 
algorithm which forms the foundation of this 
technique is not as effective at handling the 
complexity of this type of scenes. 

5 CONCLUSIONS 

The main contribution of this work of research is a 
non-pixel-based approach to video coding that 
harnesses the strength of existing pixel based standard 
codecs while eliminating the requirement to process 
a video sample on the basis of pixels, rather offering 
an opportunity to process such samples on the basis 
of scene objects. This algorithm is able to efficiently 
encode all the background areas of each video frame 
i.e. areas observed for the first time; areas revisited by 
the capture camera’s Field of View (FOV) following 
a long period of time when that portion of the scene 
was unavailable as well as areas of the scene that have 
been uncovered by a moving object. Due to the fact 
that this algorithm does not track scene changes at the 
pixel level, it is suitable for use in applications where 
performance is not measured at the pixel level. 
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Future work is still required to optimize the 
performance of this algorithm when processing 
complex scenes. This algorithm offers an alternative 
solution suitable for use in bit constrained 
environments. 
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Table 1: Performance Metrics for Proposed Object Based Video Compression Technique (Highlighting algorithm’s bit 
reduction compared to H.265). 
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Figure 1: An Overview of the Proposed Hybrid Object-based Algorithm. 
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Figure 2: Algorithm Results Across all Stages. 
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