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Abstract: Secure multi-party computation (MPC) allows a set of 𝑛 servers to jointly compute an arbitrary function of 
their inputs, without revealing these inputs to each other. A (𝑘, 𝑛) threshold secret sharing is a protocol in 
which a single secret is divided into 𝑛 shares and the secret can be recovered from a threshold 𝑘 shares. 
Typically, multiplication of (𝑘, 𝑛) secret sharing will result in increase of polynomial degree from 𝑘 − 1 to 2𝑘 − 2, thus increasing the number of shares required from 𝑘 to 2𝑘 − 1. Since each server typically hold only 
one share, the number of servers required in MPC will also increase from 𝑘 to 2𝑘 − 1. Therefore, a set of 𝑛 
servers can compute multiplication securely if the adversary corrupts at most 𝑘 − 1 < 𝑛/2 of the servers. In 
this paper, we differentiate the number of servers 𝑁 required and parameter 𝑛 of (𝑘, 𝑛) secret sharing scheme, 
and propose a method of computing (𝑘 − 1) sharing of multiplication 𝑎𝑏 by using only 𝑁 = 𝑘 servers. By 
allowing each server to hold two shares, we realize MPC of multiplication with the setting of 𝑁 = 𝑘, 𝑛 ≥2𝑘 − 1. We also show that our proposed method is information theoretic secure against a semi-honest 
adversary. 

1 INTRODUCTION 

1.1 Background 

In recent years, advancement of IoT ecosystem and 
big data had attracted considerable anticipation that it 
will be possible to utilize big data to obtain valuable 
statistical data. Here, big data refer to large quantities 
of unstructured and semi structured data. Analyzation 
of these data allows researchers and businesses to 
extract important and useful information. However, 
since big data also includes individuals’ privacy 
information, there is a risk that their privacy 
information can be leaked if it is not used correctly. 
Therefore, a method that allows for the utilization of 
big data while protecting sensitive information such 
as individuals’ privacy information is required. One 
of the methods that can realize this is known as secure 
multi-party computation (Yao, 1982). Secure multi-
party computation allows for a set of servers to jointly 
compute an arbitrary function of their inputs, without 
revealing these inputs to each other. Typically, there 
are two main techniques that had been proposed to 
realize secure multi-party computation: homomorphic 

encryption (Bendlin et al. 2011; Brakerski et al., 
2011; Damgard et al., 2012; Damgard et al., 2013; 
Gentry, 2009) and secret sharing schemes (Ben-Or et 
al., 1988; Chaum et al., 1988; Cramer et al., 2000; 
Gennaro et al., 1998; Shingu et al., 2016; Watanabe 
et al., 2015). However, homomorphic encryption is 
known to be typically computationally very expensive 
in term of computation cost. Therefore, secret sharing 
schemes that have a relatively low computational cost 
are preferable to homomorphic encryption when 
considering utilization in a cloud system. 

A secret sharing scheme is a protocol in which a 
single secret is divided into shares, which are then 
distributed. An example of a secret sharing scheme is 
Shamir’s (𝑘, 𝑛)  threshold secret sharing scheme 
(Shamir, 1979). It divides a secret 𝑠 into an 𝑛 number 
of shares, distributes the shares, and restores the 
original secret 𝑠 from a threshold 𝑘 number of shares. 
Any 𝑘 − 1  or smaller number of shares reveals 
nothing about the secret.  

The classical result of secure multi-party 
computation using secret sharing scheme state that  𝑛 
servers can compute any function in such a way that 
any subset of up to 𝑘 − 1 < 𝑛/2 servers obtains no 
information about the other servers’ inputs, except for 
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what can be derived from the public information 
(Ben-Or et al., 1988; Hirt, 2001). Conventional 
methods of secure multi-party computation using 
Shamir’s (𝑘, 𝑛)  secret sharing scheme perform 
addition by locally adding the shares together. 
However, this is not so in the case of multiplication. 
For example, let secrets 𝑎  and 𝑏  be encoded by 
polynomials 𝑓(𝑥) and 𝑔(𝑥) of (𝑘 − 1) degree. Note 
that the free coefficient of the polynomial ℎ(𝑥) =𝑓(𝑥)𝑔(𝑥)  is 𝑎𝑏 . However, the problems of using ℎ(𝑥) to encode the product of 𝑎 times 𝑏 is that the 
degree of ℎ(𝑥)  increase from 𝑘 − 1  to 2𝑘 − 2 . In 
most conventional methods, this poses no problem of 
interpolating ℎ(𝑥)  from its 𝑛  shares since it is 
assumed that parameter 𝑛 ≥ 2𝑘 − 1 . Since each 
server holds only one share for each secret, this means 
that, for each multiplication performed, the number of 
servers required will increase from 𝑘 to 2𝑘 − 1.   

Shingu et al. proposed a solution for 
multiplication method called the TUS method 
(Shingu et al, 2016). In this method, the secret is first 
encrypted with a random number; when performing 
multiplication, the encrypted secret is momentarily 
restored as a scalar value and multiplication is 
realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) 
approach to prevent an increase in the polynomial 
degree. However, in the TUS method, there is a 
limitation where input with a value of 0 is not allowed 
in the protocol.  

On the other hand, Watanabe et al. proposed a 
solution by taking an approach of differentiating the 
relationship between the number of servers required 𝑁 and parameter 𝑛 of Shamir’s (𝑘, 𝑛) secret sharing 
(Watanabe et al., 2015). In other word, Watanabe et 
al. had proposed a method using 𝑁 ≤ 𝑘  servers to 
realize 𝑛 ≥ 2𝑘 − 1  multiplication. However, this 
method still did not solve the problem of increase in 
the polynomial degree. Therefore, although the 
multiplication was performed using only 𝑁 = 𝑘 
servers, shares required to restore the multiplication 
result are 2𝑘 − 1 and not 𝑘. 

1.2 Our Results 

In this study, we focus on solving the problem of 
increase in polynomial degree during multiplication. 
We propose a new method of multiplication that 
could compute 𝑘 − 1  sharing of multiplication 𝑎𝑏 
using only 𝑁 = 𝑘 servers. The contributions of this 
paper can be summarized as follows: 

Our Contributions: 
─ We propose a new protocol that allows for 

multiplication with the setting of 𝑛 ≥ 2𝑘 − 1 to be 

performed using only 𝑁 = 𝑘  servers, and show 
that 𝑘 − 1 sharing of 𝑎𝑏 can be computed by using 
only 𝑁 = 𝑘 servers. (we also include protocols for 
addition and scalar multiplication in Appendices 1 
and 2) 

─ We present a clear security evaluation and show 
that our proposed method is secure against semi-
honest adversaries. 

─ Finally, we present a clear evaluation of efficiency 
of our method. In addition, we also present a 
comparison between the methods in (Watanabe et 
al., 2015; Shingu et al., 2016).  

System Model: 
In this paper, we assume a client/server model, where 
the clients (e.g. the owner of the secret information 𝑎, 𝑏 ) send shares of their inputs to 𝑛  number of 
servers. The servers then carry out the computation 
and return the results to them without learning 
anything about secret information 𝑎  and 𝑏 . This 
model is widely used nowadays and in fact is the 
business model used in Cybernetica (Sharemind). In 
addition, we assume a semi-honest adversary, where 
the adversary follows the protocol specification but 
may try to learn more than is allowed by the protocol, 
with at most 𝑘 −  1  corrupted servers. We also 
assume that secure communication exists between the 
client and the servers. 

The organization of this paper is as follows. In 
Section 2, we present preliminaries. In Section 3, we 
explain the related works. In Section 4, we present our 
new protocol for multiplication. In Section 5, we 
discuss the security of our proposed method of 
multiplication. In addition, in Chapter 6, we evaluate 
our proposed method. Finally, in Chapter 7, we show 
the comparison between our proposed method and 
conventional methods. 

2 PRELIMINARIES 

In this section, we introduce some notations and 
known techniques. 

2.1 (𝒌, 𝒏) Threshold Secret Sharing 
Scheme 

A secret sharing scheme that satisfies both conditions 
stated below is known as (𝑘, 𝑛)  threshold secret-
sharing scheme. 

─ Any 𝑘 − 1 or fewer number of shares will reveal 
nothing about the original secret information 𝑠. 
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─ Any 𝑘 or greater number of shares will allow for 
the reconstruction of the original secret 
information 𝑠. 

The classic methods for the (𝑘, 𝑛) threshold secret 
sharing scheme is Shamir’s (𝑘, 𝑛)  threshold secret 
sharing scheme, proposed by Shamir (Shamir, 1979) 
(Shamir’s (𝑘, 𝑛)  method). In our protocol, all 
computations are performed in finite field 𝐺𝐹(𝑝) and 
shares of secret information 𝑠 is represented by ሾ𝑠ሿതതതത.  

The protocol for the distribution and 
reconstruction of Shamir’s (𝑘, 𝑛)  method is as 
follows.  

Distribution Protocol: 
1. The dealer selects 𝑛  number of 𝑥 (𝑖 = 0, 1, … , 𝑛 −  1)  and assigns them as the server 𝐼𝐷. 
2. The dealer selects 𝑘 −  1  random numbers 𝛼 (𝑙 = 1, 2, … , 𝑘 −  1)  and generates a random 

polynomial 𝑊(𝑥). ሾ𝑠ሿതതതത = 𝑊(𝑥) = 𝑠 + 𝛼ଵ𝑥 +  𝛼ଶ𝑥ଶ  + … + 𝛼ିଵ𝑥ିଵ 

3. The dealer then inserts the server 𝐼𝐷  into 𝑥 , 
calculates the shares ሾ𝑠ሿതതതത  corresponding to 
each 𝐼𝐷, and distributes them. 

Restoration Protocol: 
1. The player who wishes to restore the original 

secret collects 𝑘 shares ሾ𝑠ሿതതതത (𝑗 =  0, … , 𝑘 −  1). 
2. The player restores the original secret 𝑠 by using 

Lagrange’s Interpolation.  

𝑠 =  ෑ 𝛼𝛼 − 𝛼


ୀଵ, ஷ 𝑠
ୀଵ  

2.2 Multiplication based on Shamir’s (𝒌, 𝒏) Method 

Let 𝑎 and 𝑏 be two secrets. Shares of each secret are 
produced by Shamir’s (𝑘, 𝑛) method as shown below 
and are distributed to 𝑛  servers. Note that 𝑖 =0, 1, … , 𝑛 − 1. ሾ𝑎ሿതതതത = 𝑎 + 𝛼ଵ𝑥 +  𝛼ଶ𝑥ଶ  +  … + 𝛼ିଵ𝑥ିଵ ሾ𝑏ሿതതതത = 𝑏 + 𝛽ଵ𝑥 +  𝛽ଶ𝑥ଶ  + … + 𝛽ିଵ𝑥ିଵ 

Each server then computes the multiplication 
between shares of 𝑎  and 𝑏 , and produces ሾ𝑎𝑏ሿതതതതതത  as 
shown below. ሾ𝑎𝑏ሿതതതതതത = 𝑎𝑏 + … + (𝛼ିଵ𝛽ିଵ)𝑥ଶିଶ 

Although secrets 𝑎  and 𝑏  are shared using 
polynomials of (𝑘 − 1)  degree, the result of 
multiplication 𝑎𝑏  is a polynomial of (2𝑘 − 2) 
degree. Therefore, the problem with conventional 
method of multiplication of Shamir’s (𝑘, 𝑛) method 
is that the number of shares required to reconstruct 𝑎𝑏 
increase from 𝑘  to 2𝑘 − 1 . Thus, the following 
Theorem 1 was proposed for the passive model (Ben-
Or et al., 1988). 

Theorem 1. In the passive mode, a set 𝒫 =൛𝑃ଵ,  … , 𝑃ൟ  of 𝑛  servers can compute every 
specification securely if and only if the adversary 
corrupts at most 𝑘 − 1 < 𝑛/2 of the servers. 

2.3 Multiplication of Shares using 
Recombination Vector 

As mentioned in Section 2.2, the result of 
multiplication of two polynomials of degree (𝑘 − 1) 
will be a polynomial of degree (2𝑘 − 2). Note that 𝑛 ≥ 2𝑘 − 1  implies that the 𝑛  product shares are 
sufficient for recovering 𝑎𝑏 . However, any further 
multiplication will raise the degree, and once the 
degree passes 𝑛, there will be not have enough points 
for the interpolation. Hence, a (𝑘 − 1) sharing of 𝑎𝑏 
can be achieved by using recombination vector as 
shown in (Cramer et al. 2015).  

To better understand this, let us assume that the 
parameter 𝑘 = 2, 𝑛 = 2𝑘 − 1 = 3 , the resulting 
multiplication will be a quadratic polynomials 𝑦(𝑥 )  =  𝛼 + 𝛼ଵ𝑥 +  𝛼ଶ𝑥 ଶ, where 𝛼 is the result 
of the multiplication. Since 𝑛 = 3, the shares for each 
server 𝐼𝐷 are as follows. 𝑦(1) =  𝛼  + 𝛼ଵ + 𝛼ଶ 𝑦(2) =  𝛼  +  2𝛼ଵ  +  4𝛼ଶ 𝑦(3)  =  𝛼  +  3𝛼ଵ  +  9𝛼ଶ 

By solving the equations above, we can state that 
multiplication result 𝛼  can always be computed 
from the shares 𝑦(1), 𝑦(2)  and 𝑦(3)  as 𝛼  = 3𝑦(1) − 3𝑦(2) + 𝑦(3) . This formula was found 
using simple Gaussian elimination, but is also given 
by the Lagrange interpolation formula, where 𝑟 = (3, −3, 1) is known as the recombination vector.  

More precisely, each party first shares its value of 
multiplication result ሾ𝑎𝑏ሿതതതതതത using polynomials of (𝑘 −1)  degree to all parties. The parties then locally 
combine their shares by an inner product with the 
recombination vector.  By this, each party will hold (𝑘 − 1) sharing of 𝑎𝑏. However, the problem with 
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this method is that it still requires 𝑛 > 2𝑘 − 1 
number of servers, therefore increasing the total 
operation cost of the system. 

3 RELATED WORKS 

3.1 Watanabe Method 

Typically, in a (𝑘, 𝑛)  threshold secret sharing 
scheme, a server possesses only one share. When 
multiplication of shares is performed, the number of 
servers required will also increase from 𝑘 to 2𝑘 − 1.  

Watanabe et al. solved this problem by allowing 
a server to hold two shares (Watanabe et al., 2015). 
However, this method does not solve the problem of 
increase in degree of polynomial from 𝑘 − 1 to 2𝑘 −2. This means that the number of shares required to 
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘. 
Therefore, the communication cost between the client 
and the servers remain the same as all conventional 
methods. Our method solves this by proposing 
method of computing (𝑘 − 1)  sharing of 𝑎𝑏  using 
only 𝑁 = 𝑘 servers.  

Due to the page limit, we only included the 
distribution and multiplication protocols below. Note 
that variables 𝑎, 𝑏 and all random numbers generated 
are derived from finite field 𝐺𝐹(𝑝) and all 
computations are performed under finite field 𝐺𝐹(𝑝). 

Distribution Protocol: 
1. Players 𝐴  and 𝐵  each generates 2𝑛  shares from 

secrets 𝑎  and 𝑏  and distributes ሾ𝑎ሿതതതത, ሾ𝑏ሿതതതത (𝑖 =0, … , 𝑛 − 1) to 𝑛 servers 𝑆.  
2. Player 𝐴  generates a random number 𝑟   and 

distributes ሾ𝑟𝑎ሿതതതതതതത, … . , ሾ𝑟𝑎ሿതതതതതതതଶିଵ  to 𝑛  servers 𝑆 . 
Then, distributes shares ሾ𝑟ሿതതതതത of 𝑟 to 𝑛 servers 𝑆. 

3. Player 𝐵  generates a random number  𝑟 and 
distributes ሾ𝑟𝑏ሿതതതതതതത, … , ሾ𝑟𝑏ሿതതതതതതതଶିଵ  to 𝑛  servers 𝑆 . 
Then, distributes shares ሾ𝑟ሿതതതതത of 𝑟 to 𝑛 servers 𝑆. 

Multiplication Protocol: 
1. Each server calculates the following: ሾ𝑎𝑏ሿതതതതതത = ሾ𝑎ሿതതതത × ሾ𝑏ሿതതതത (𝑖 = 0, 1, … , 𝑛 − 1) ሾ𝑟𝑟𝑎𝑏ሿതതതതതതതതതതതା = ሾ𝑟𝑎ሿതതതതതതതା × ሾ𝑟𝑏ሿതതതതതതതା  
3.2 The TUS Method 

Shingu et al. proposed a 2-inputs-1-output multi-
party computation named the TUS method (Shingu et 

al., 2016), where the secret (e.g. 𝑎) is first encrypted 
with a random number (e.g. 𝛼 ). When performing 
multiplication, the encrypted secret is momentarily 
restored as a scalar value (e.g. 𝛼𝑎) and multiplication 
is realized using the (𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 × 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙) 
approach to prevent an increase in the polynomial 
degree. However, the TUS method introduced 
another problem: when the reconstructed scalar value 𝛼𝑎 = 0, the adversary will learn that secret 𝑎 = 0. 
Therefore, condition where the secret does not 
include the value 0 is required.  

Due to the page limit, we only included the 
distribution and multiplication protocols below. Note 
that variables 𝑎, 𝑏 and all random numbers generated 
are derived from finite field 𝐺𝐹(𝑝), provided that the 
secret inputs  𝑎, 𝑏  and all random numbers do not 
include 0.  

Distribution Protocol: 
1. Players 𝐴  and 𝐵  each selects 𝑘  random numbers 𝛼, 𝛽 (𝑗 = 0, 1, … , 𝑘 − 1) and computes the value 

of 𝛼 = ∏ 𝛼ିଵୀ  and 𝛽 = ∏ 𝛽ିଵୀ , respectively.  
2. Player 𝐴  computes 𝛼𝑎 = 𝛼 × 𝑎  and distributes 𝛼𝑎, 𝛼 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method.  
3. Player 𝐵  computes 𝛽𝑏 = 𝛽 × 𝑏  and distributes 𝛽𝑏, 𝛽 to 𝑛 servers using Shamir’s (𝑘, 𝑛) method. 
4. Each server 𝑆 (𝑖 = 0, 1, … , 𝑛 − 1)  holds the 

following as set of shares about secrets 𝑎, 𝑏: ሾ𝑎ሿ = ሾ𝛼𝑎ሿതതതതതത, ሾ𝛼ሿതതതതത, … , ሾ𝛼ିଵሿതതതതതതതത,     ሾ𝑏ሿ = ሾ𝛽𝑏ሿതതതതതത, ሾ𝛽ሿതതതതത, … , ሾ𝛽ିଵሿതതതതതതതത 
Multiplication Protocol: 
1. One of the servers (here, we assume server 𝑆 ) 

collects ሾ𝛼𝑎ሿതതതതതത  from 𝑘 servers. Server 𝑆  then 
restores 𝛼𝑎 and sends it to all servers 𝑆. 

2. Servers 𝑆 compute ሾ𝛼𝛽𝑎𝑏ሿതതതതതതതതത = 𝛼𝑎 × ሾ𝛽𝑏ሿതതതതതത.  
3. 𝑘  number of servers 𝑆  each collect 

shares ሾ𝛼ሿതതതതതℓ, … , ሾ𝛼ିଵሿതതതതതതതതℓ, ሾ𝛽ሿതതതതതℓ, … , ሾ𝛽ିଵሿതതതതതതതതℓ (ℓ =0, 1, … , 𝑘 − 1) and restore 𝛼, 𝛽 . Servers 𝑆  then 
calculate 𝛼𝛽 = 𝛼 × 𝛽.  

4. Servers 𝑆 distribute 𝛼𝛽 to all servers 𝑆 by using 
Shamir’s (𝑘, 𝑛) method. 

5. Each server 𝑆 now holds the following as a set of 
shares for the result of 𝑎𝑏.  ሾ𝑎𝑏ሿ = ሾ𝛼𝛽𝑎𝑏ሿതതതതതതതതത, ሾ𝛼𝛽ሿതതതതതതതത, … , ሾ𝛼ିଵ𝛽ିଵሿതതതതതതതതതതതതതത 
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4 PROPOSED METHOD OF 
MULTIPLICATION 

Our protocol focus on an approach that differentiate 
between parameter 𝑁, which is the number of servers 
that is actually needed, and parameter 𝑛 of the (𝑘, 𝑛) 
threshold secret sharing scheme, and realizes 
multiplication under a setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 − 1. 
In addition, to solve the problem of Watanabe 
method, where the result of multiplication can only be 
reconstructed by collecting 2𝑘 shares from 𝑘 servers, 
we propose a new method of reducing the polynomial 
degree of 𝑎𝑏  from 2𝑘 − 2  to 𝑘 − 1  by using 
recombination vector with only 𝑁 = 𝑘 servers.  

Below, for ease of understanding, we demonstrate 
multiplication under the setting of 𝑁 = 𝑘, 𝑛 ≥ 2𝑘 −1 . In the protocol below, secrets 𝑎, 𝑏 , all random 
numbers and all computations are performed in finite 
field 𝐺𝐹(𝑝)．  

Notation: 
─ ሾ𝑎ሿ: Share of 𝑎 for server 𝑆 where the number of 

shares required for reconstructing 𝑎 is 𝑘 
─ ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿ∗:  Share of 𝛼ଵ𝛽ଵ𝑎𝑏  for server 𝑆  where 

the number of shares required for reconstructing 𝛼ଵ𝛽ଵ𝑎𝑏 is 2𝑘 − 1. 

Distribution Protocol: 
1. Player 𝐴  generates 2𝑘  random numbers 𝛼ଵ,, … , 𝛼ଵ,ିଵ, 𝛼ଶ,, … , 𝛼ଶ,ିଵ  and computes the 

following. 

𝛼ଵ = ෑ 𝛼ଵ,ିଵ
ୀ  

  𝛼ଶ = ෑ 𝛼ଶ,ିଵ
ୀ  

2. Player 𝐴  generates 2𝑘  shares of secret 𝑎  using 
Shamir’s (𝑘, 2𝑘)  method and computes the 
following. ሾ𝛼ଵ𝑎ሿ = 𝛼ଵ × ሾ𝑎ሿ, … , ሾ𝛼ଵ𝑎ሿିଵ = 𝛼ଵ × ሾ𝑎ሿିଵ ሾ𝛼ଶ𝑎ሿ = 𝛼ଶ × ሾ𝑎ሿ, … , ሾ𝛼ଶ𝑎ሿଶିଵ = 𝛼ଶ × ሾ𝑎ሿଶିଵ 

3. Player 𝐴 sends ሾ𝛼ଵ𝑎ሿ, ሾ𝛼ଶ𝑎ሿା, 𝛼ଵ,, 𝛼ଶ, to server 𝑆 (𝑖 = 0, 1, … , 𝑘 − 1). 
4. Player 𝐵  generates 2𝑘  random numbers 𝛽ଵ,, … , 𝛽ଵ,ିଵ, 𝛽ଶ,, … , 𝛽ଶ,ିଵ  and computes the 

following. 

𝛽ଵ = ෑ 𝛽ଵ,ିଵ
ୀ  

 𝛽ଶ = ෑ 𝛽ଶ,ିଵ
ୀ  

5. Player 𝐵  generates 2𝑘  shares of secret 𝑏  using 
Shamir’s (𝑘, 2𝑘)  method and computes the 
following.  ሾ𝛽ଵ𝑏ሿ = 𝛽ଵ × ሾ𝑏ሿ, … , ሾ𝛽ଵ𝑏ሿିଵ = 𝛽ଵ × ሾ𝑏ሿିଵ ሾ𝛽ଶ𝑏ሿ = 𝛽ଶ × ሾ𝑏ሿ, … , ሾ𝛽ଶ𝑏ሿଶିଵ = 𝛽ଶ × ሾ𝑏ሿଶିଵ 

6. Player 𝐵 sends ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿା, 𝛽ଵ,, 𝛽ଶ,  to server 𝑆 (𝑖 = 0, 1, … , 𝑘 − 1). 

Multiplication Protocol: 
1. Each server 𝑆 (𝑖 = 0, 1, … , 𝑘 − 1)  computes the 

following. ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿ∗ = ሾ𝛼ଵ𝑎ሿ × ሾ𝛽ଵ𝑏ሿ ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿା∗ = ሾ𝛼ଶ𝑎ሿା × ሾ𝛽ଶ𝑏ሿା 𝛼ଵ,𝛽ଵ, = 𝛼ଵ, × 𝛽ଵ, 𝛼ଶ,𝛽ଶ, = 𝛼ଶ, × 𝛽ଶ, 
2. Each server 𝑆  generates random number 𝛾 , 

computes the following and sends to one of the 
servers (here, we assume server 𝑆). 𝛾𝛼ଵ,𝛽ଵ, , 𝛾𝛼ଶ,𝛽ଶ, 

3. Server 𝑆 computes the following and sends to all 
servers. 𝛾𝛼ଵ𝛽ଵ = ෑ 𝛾𝛼ଵ,𝛽ଵ,

ିଵ
ୀ  

𝛾𝛼ଶ𝛽ଶ = ෑ 𝛾𝛼ଶ,𝛽ଶ,
ିଵ
ୀ  

4. Each server 𝑆  computes ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗  as 
follows, and distribute ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗  using 
Shamir’s (𝑘, 𝑘) method to all servers 𝑆. ሾ𝛾𝑎𝑏ሿ∗ = 𝛾𝛼ଵ𝛽ଵ × ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿ∗ 

ሾ𝛾𝑎𝑏ሿା∗ = 𝛾𝛼ଶ𝛽ଶ × ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿା∗  

Improvement of Secure Multi-Party Multiplication of (k, n) Threshold Secret Sharing Using Only N = k Servers

81



ሾ𝛾𝑎𝑏ሿ∗ ⟹ ቐ ሾ𝛾𝑎𝑏ሿ, ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆⋮ሾ𝛾𝑎𝑏ሿ,ିଵ ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ିଵ 

ሾ𝛾𝑎𝑏ሿା∗ ⟹ ቐ ሾ𝛾𝑎𝑏ሿା, ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆⋮ሾ𝛾𝑎𝑏ሿା,ିଵ ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ିଵ 

5. Each server 𝑆 computes the following (𝜆 are the 
recombination vector). ሾ𝛾𝑎𝑏ሿ = 𝜆 × ሾ𝛾𝑎𝑏ሿ, + ⋯ + 𝜆ଶିଵ × ሾ𝛾𝑎𝑏ሿଶିଵ, 

Reconstruction Protocol: 
1. The player collects ሾ𝛾𝑎𝑏ሿ, 𝛾  from 𝑘  servers 𝑆 , 

reconstructs 𝛾𝑎𝑏 and computes 𝛾 as follows. 

𝛾 = ෑ 𝛾ିଵ
ୀ  

2. Finally, the player reconstructs multiplication 
result 𝑎𝑏 as follows. 𝑎𝑏 = 𝛾𝑎𝑏𝛾  

5 SECURITY OF THE PROPOSED 
METHOD 

In a 2-input-1-output multiplication process, when the 
adversary has information of one of the inputs (e.g. 
input 𝑎) and output (e.g. output 𝑎𝑏), the second input 
(e.g. input 𝑏 ) will be leaked. Therefore, we only 
consider the following adversaries. The attack is 
considered a success if the adversary can achieve the 
aim of learning the information that he/she wants to 
know. Therefore, we can state that our proposed 
method is secure if it is secure against the following 
adversaries. 

Adversary 1: The adversary has information from 𝑘 −  1  servers. According to this information, the 
adversary attempts to know inputs 𝑎, 𝑏  and output 𝑎𝑏.  

Adversary 2: One of the players who inputted a 
secret is the adversary. In addition, the adversary also 
has information from 𝑘 − 1 servers. According to this 
information, the adversary attempts to know the 
remaining one input 𝑎 or 𝑏, and output 𝑎𝑏.  

Adversary 3: The player who reconstructed the 
output is the adversary. In addition, the adversary has 
information from 𝑘 − 1 servers. According to this 

information, the adversary attempts to know two 
inputs 𝑎 and 𝑏. 

In the following, we evaluate the security of our 
proposed method. 

Evaluation of Security against Adversary 1: 
Here, Adversary 1 has information from 𝑘 − 1 
number of servers. In the distribution protocol, 
Adversary 1 has the following information 𝐷 from 
Player 𝐴 and 𝐷 from Player 𝐵. 𝐷 = ሾ𝛼ଵ𝑎ሿ, ሾ𝛼ଶ𝑎ሿା, 𝛼ଵ,, 𝛼ଶ, (𝑙 = 0, … , 𝑘 − 2) 𝐷 = ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿା, 𝛽ଵ,, 𝛽ଶ, (𝑙 = 0, … , 𝑘 − 2) 

However, encrypted secrets  𝛼ଵ𝑎, 𝛼ଶ𝑎, 𝛽ଵ𝑏, 𝛽ଶ𝑏  are 
not leaked from 𝑘 − 1 shares. Moreover, Adversary 1 
is not able to learn about random numbers 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ  from 𝑘 − 1  servers. Therefore, even 
with this information, secrets 𝑎 and 𝑏 are not leaked. 
Thus, the following are true. 𝐻(𝑎) = 𝐻(𝑎|𝐷) 𝐻(𝑏) = 𝐻(𝑏|𝐷) 

In Step 1 of the multiplication protocol, Adversary 1 
learns about 𝛼ଵ,𝛽ଵ,, 𝛼ଶ,𝛽ଶ, (𝑙 = 0, … , 𝑘 − 2) , in 
Step 2 about 𝛾, 𝛾 𝛼ଵ,𝛽ଵ,⁄ , 𝛾 𝛼ଶ,𝛽ଶ,⁄ , in Step 3 
about 𝛾 𝛼ଵ𝛽ଵ⁄ , 𝛾 𝛼ଶ𝛽ଶ⁄ , in Step 4 about ሾ𝛾𝑎𝑏ሿ∗ , … , ሾ𝛾𝑎𝑏ሿିଶ∗ , ሾ𝛾𝑎𝑏ሿ∗ , … , ሾ𝛾𝑎𝑏ሿଶିଶ∗  and in 
Step 5 about ሾ𝛾𝑎𝑏ሿ, … , ሾ𝛾𝑎𝑏ሿିଶ. As a result, we can 
transform the problem into determining whether the 
adversary can learn about inputs 𝑎, 𝑏  or output 𝑎𝑏 
from the following information. 𝛼ଵ,, 𝛼ଶ,, 𝛽ଵ,, 𝛽ଶ,, 𝛾, 𝛾𝛼ଵ𝛽ଵ , 𝛾𝛼ଶ𝛽ଶ, ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗ , ሾ𝛾𝑎𝑏ሿ (𝑙 = 0, … , 𝑘 − 2) 

Since ሾ𝛾𝑎𝑏ሿ∗ is represented by polynomial of (2𝑘 −2) degree, 2𝑘 − 1 number of shares are required to 
reconstruct 𝛾𝑎𝑏 . However, Adversary 1 only has 
information of 2𝑘 − 2 number of shares, therefore, 𝛾𝑎𝑏 is not leaked. The same is true when Adversary 
1 only has information of 𝑘 − 2  number of shares ሾ𝛾𝑎𝑏ሿ ,  𝛾𝑎𝑏  is not leaked. Moreover, because 
Adversary 1 has no information 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ , 
random number 𝛾 used to encrypt the output 𝑎𝑏 is not 
leaked. Therefore, our proposed method is secure 
against Adversary 1 and the following are true: 𝐻(𝛾) = 𝐻 ൬𝛾|𝛼ଵ,, 𝛼ଶ,, 𝛽ଵ,, 𝛽ଶ,, 𝛾, 𝛾𝛼ଵ𝛽ଵ , 𝛾𝛼ଶ𝛽ଶ൰ 
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𝐻(𝛾𝑎𝑏) = 𝐻൫𝛾𝑎𝑏|ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗ , ሾ𝛾𝑎𝑏ሿ (𝑙= 0, … , 𝑘 − 2)൯ 

Evaluation of Security against Adversary 2: 
Assume that the player who inputted input 𝑎  is 
Adversary 2. Adversary 2 also has information from 𝑘 −  1  servers. Therefore, in the distribution 
protocol, Adversary 2 has information about 𝑎, 𝛼ଵ,, 𝛼ଶ,, 𝛼ଵ, 𝛼ଶ (𝑖 = 0, … , 𝑘 − 1)  in addition to 
information  from 𝑘 − 1 servers (Adversary 1). 

Therefore, the evaluation of security against 
Adversary 2 can be translated to the problem of 
determining whether the adversary can learn about 
the remaining input 𝑏  and output 𝑎𝑏  from the 
following information: 𝑎, 𝛼ଵ,, 𝛼ଶ,, 𝛼ଵ, 𝛼ଶ, 𝛽ଵ,, 𝛽ଶ,, 𝛾, 𝛾𝛽ଵ , 𝛾𝛽ଶ, ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿା, ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗ , ሾ𝛾𝑎𝑏ሿ  (𝑙= 0, … , 𝑘 − 2) 
To obtain information about secret 𝑏, the adversary 
must first obtain information of 𝛽ଵ𝑏, 𝛽ଶ𝑏 and random 
numbers 𝛽ଵ, 𝛽ଶ . The information that is related to 
random numbers 𝛽ଵ, 𝛽ଶ  are 𝛽ଵ,, 𝛽ଶ,, 𝛾, 𝛾 𝛽ଵ⁄ , 𝛾 𝛽ଶ⁄ . 
However, even from this information, random 
numbers 𝛽ଵ, 𝛽ଶ are not leaked. Moreover, encrypted 
secret 𝛽ଵ𝑏, 𝛽ଶ𝑏   will not be leaked from 𝑘 − 1 
number of shares. Therefore,  𝐻(𝛽ଵ𝑏) = 𝐻(𝛽ଵ𝑏|ሾ𝛽ଵ𝑏ሿ, … , ሾ𝛽ଵ𝑏ሿିଶ) 𝐻(𝛽ଶ𝑏) = 𝐻(𝛽ଶ𝑏|ሾ𝛽ଶ𝑏ሿ, … , ሾ𝛽ଶ𝑏ሿିଶ) 𝐻(𝛽ଵ) = 𝐻 ൬𝛽ଵฬ𝛽ଵ,, 𝛾, 𝛾𝛽ଵ൰ 

𝐻(𝛽ଶ) = 𝐻 ൬𝛽ଶ|𝛽ଶ,, 𝛾, , 𝛾𝛽ଶ൰ 

Finally, to obtain multiplication result 𝑎𝑏 , the 
adversary must first obtain information 𝛾𝑎𝑏  and 
random number 𝛾 . However, from 𝑘 − 1  shares ሾ𝛾𝑎𝑏ሿ  and 2𝑘 − 2  shares of ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗ , and 
random numbers 𝛾, 𝛾 𝛽ଵ⁄ , 𝛾 𝛽ଶ⁄ , information of 𝛾𝑎𝑏 
and random number 𝛾 are not leaked. Therefore,  𝐻(𝛾𝑎𝑏) = 𝐻൫𝛾𝑎𝑏|ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗ , ሾ𝛾𝑎𝑏ሿ (𝑙= 0, … , 𝑘 − 2)൯ 𝐻(𝛾) = 𝐻 ൬𝛾|𝛾, 𝛾𝛽ଵ , 𝛾𝛽ଶ൰ 

In addition, the evaluation above remains valid even 
if the adversary is the player who inputted input 𝑏. 

Therefore, our proposed method is secure against 
Adversary 2. 

Evaluation of Security against Adversary 3: 
Assume that the player who reconstructed output 𝑎𝑏 
is Adversary 3. Adversary 3 also has information from 𝑘 − 1  servers. Therefore, in the reconstruction 
protocol, Adversary 3 has information about ሾ𝛾𝑎𝑏ሿ, 𝛾, 𝛾𝑎𝑏, 𝛾 (𝑖 = 0, … , 𝑘 − 1)  in addition to 
information from 𝑘 − 1 servers (Adversary 1). 

Therefore, the evaluation of security against 
Adversary 3 can be translated to the problem of 
determining whether the adversary can learn about 
the inputs 𝑎, 𝑏 from the following information: 𝐴 = {𝑎𝑏, 𝛾, 𝛾, 𝛼ଵ,, 𝛼ଶ,, 𝛽ଵ,, 𝛽ଶ,, 𝛼ଵ𝛽ଵ, 𝛼ଶ𝛽ଶ, ሾ𝛼ଵ𝑎ሿ, ሾ𝛼ଶ𝑎ሿ, ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿ  (𝑙 = 0, … , 𝑘 − 2) } 

To obtain information about secret 𝑎, 𝑏, the adversary 
must first obtain information of 𝛼ଵ𝑎, 𝛼ଶ𝑎, 𝛽ଵ𝑏, 𝛽ଶ𝑏 
and random numbers 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ. The information 
that is related to random numbers 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ  are 𝛼ଵ,, 𝛼ଶ,, 𝛽ଵ,, 𝛽ଶ,, 𝛼ଵ𝛽ଵ, 𝛼ଶ𝛽ଶ . However, even from 
these information, random numbers 𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ are 
not leaked. Moreover, encrypted secret 𝛼ଵ𝑎, 𝛼ଶ𝑎, 𝛽ଵ𝑏, 𝛽ଶ𝑏   will not be leaked from 𝑘 − 1 
number of shares. Finally, even with the 
multiplication result 𝑎𝑏, Adversary 3 will not be able 
to learn about each secret 𝑎, 𝑏. Therefore,  𝐻(𝑎) = 𝐻(𝑎|𝐴) 𝐻(𝑏) = 𝐻(𝑏|𝐴) 

Therefore, we can state that our proposed method is 
also secure against Adversary 3. 

6 EVALUATION OF OUR 
PROPOSED METHOD 

In this section, we perform evaluation of our proposed 
method in term of computation and communication 
costs. Below is the definition of parameters used 
throughout our analysis. Note that in secret sharing 
scheme, size of share 𝑑ଵ is usually almost the same 
size as the original secret. Moreover, in a secret 
sharing scheme, the computational cost of the 
distribution and the reconstruction process differs, but 
for ease of understanding, we consider that the 
computation cost of both the distribution and 
reconstruction process of a secret sharing scheme to 
be the same. Table 1 shows the communication cost 
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and number of rounds of our proposed method. Table 
2 shows the computational cost of our method. 

Definition of Parameters: 
─ 𝑑ଵ: Size of share from secret sharing scheme 
─ 𝐶ଵ: Computational cost of Shamir’s (𝑘, 2𝑘) secret 

sharing scheme 
─ 𝐶ଶ: Computational cost of Shamir’s (𝑘, 𝑘) secret 

sharing scheme 
─ 𝑀: Computational cost of multiplication 
─ 𝐷: Computational cost of division 
─ 𝐴: Computational cost of addition 

Table 1: Communication and number of rounds of the 
proposed method. 

Process Communication  Rounds 
Distribution of 𝑎 4𝑘𝑑ଵ 

1 
Distribution of 𝑏 4𝑘𝑑ଵ 

Multiplication of 𝑎 and 𝑏 

Step 2 2𝑘𝑑ଵ 
3 Step 3 2𝑁𝑑ଵ 

Step 4 2𝑁𝑘𝑑ଵ 
Reconstruction of 𝑎𝑏 2𝑘𝑑ଵ 1 

Table 2: Computational cost of the proposed method. 

Process Computation Cost 

Distribution of 𝑎, 𝑏 

Step 1 2(𝑘 − 1)𝑀 
Step 2 𝐶ଵ + (2𝑛 − 1)𝑀 
Step 4 2(𝑘 − 1)𝑀 
Step 5 𝐶ଵ + (2𝑛 − 1)𝑀 

Multiplication 
of 𝑎 and 𝑏 

Step 1 4𝑘𝑀 
Step 2 2𝑘(𝑀 + 𝐷) 
Step 3 2(𝑘 − 1)𝑀 
Step 4 2𝑘(𝑀 + 𝐶ଶ) 
Step 5 2𝑁𝑘(𝑀 + 𝐴) 

Reconstruction 
of 𝑎𝑏 𝐶ଶ + (𝑘 − 1)𝑀 + 𝐷 

7 COMPARISON WITH 
CONVENTIONAL METHODS 

In this section, we perform comparison with 
conventional methods (Watanabe method (Watanabe 
et al., 2015) proposed by Watanabe et al. and the TUS 
method (Shingu et al., 2016) proposed by Shingu et 
al.) that also realize multiplication of secret sharing 
schemes using only 𝑁 = 𝑘 servers.  

First, the TUS method allows for multiplication in 
the setting of 𝑁 = 𝑛 ≥ 𝑘  since multiplication is 
performed by multiplying scalar value with a share, 
therefore, allowing the result of multiplication to be 
restored by only 𝑘 shares instead of the conventional 2𝑘 − 1 shares. However, the TUS method requires 
one precondition where the input does not include the 
value 0 to securely perform multiplication. In contrast, 
our method allows for any values (including 0) to be 
used since the encrypted secret is not reconstructed in 
the protocol. 

Next, Watanabe method also allows for 
multiplication in the setting of 𝑁 ≥ 𝑘 and 𝑛 ≥ 2𝑘 −1 ; however, the number of shares required to 
reconstruct the result remain at 2𝑘 − 1 instead of 𝑘. 
On the other hand, our method allows for 
multiplication in the setting of 𝑛 ≥ 2𝑘 − 1  and 
number of servers 𝑁 to remain at 𝑘. Moreover, our 
protocol produces 𝑘 − 1 sharing of 𝑎𝑏, therefore, we 
only need to collect 𝑘 instead of 2𝑘 − 1 shares for 
reconstruction. All the comparisons discussed above 
are summarized in Table 3. 

Table 3. Comparison with conventional methods (for 
multiplication). 

 Proposed 
method 

Watanabe 
method 

TUS 
method 

Parameter of 𝑛, 𝑘 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 2𝑘 − 1 𝑛 ≥ 𝑘 

Number of 
servers 𝑁 𝑁 = 𝑘 𝑁 ≥ 𝑘 𝑁 ≥ 𝑘 

Number of 
shares for 

reconstruction
𝑘 2𝑘 − 1 𝑘 

Number of  
Precondition 0 0 1 

Next, in Table 4, we show comparison with 
conventional methods. However, since the 
computation cost of secret sharing scheme 𝐶ଵ, 𝐶ଶ are 
typically larger than local computation cost of 𝑀, 𝐷 
and 𝐴, we omit the cost of 𝑀, 𝐷 and 𝐴 when either 𝐶ଵ 
or 𝐶ଶ is present in the computation cost. 

Table 4 shows that the computation cost for 
distribution of 𝑎, 𝑏  and reconstruction of 𝑎𝑏  of our 
method are lower than both Watanabe and TUS 
methods. Next, since our proposed method includes the 
process of redistributing of local shares to all servers, 
we learnt that the computation cost of multiplication of 
our proposed method is larger than Watanabe method. 
However, we were able to reduce the computation cost 
for the reconstruction, and therefore, reducing the 
computation cost needed by the client.  
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Table 4: Comparison with conventional methods. 

 Process Proposed method Watanabe method TUS method 

Co
m

pu
ta

tio
n

 

Distribution 
of 𝑎, 𝑏 2𝐶ଵ 2(𝐶ଵ + 𝐶ଶ) 2(𝑘 + 1)𝐶ଶ 

Multiplication 
of 𝑎𝑏 2𝑘𝐶ଶ 2𝑛𝑀 (3𝑘 + 1)𝐶ଶ 

Reconstruction 
of 𝑎𝑏 𝐶ଶ 𝐶ଵ + 2𝐶ଶ (𝑘 + 1)𝐶ଶ 

Co
m

m
un

ic
at

io
n

 

Distribution 
of 𝑎, 𝑏 8𝑘𝑑ଵ 8𝑛𝑑ଵ 2𝑛𝑑ଵ(𝑘 + 1) 

Multiplication 
of 𝑎𝑏 (2𝑘 + 2𝑁 + 2𝑁𝑘)𝑑ଵ 0 (𝑘 + 𝑛 + 2𝑘ଶ + 𝑛𝑘)𝑑ଵ 

Reconstruction 
of 𝑎𝑏 2𝑘𝑑ଵ 4𝑘𝑑ଵ (𝑘ଶ + 𝑘)𝑑ଵ 

Ro
un

ds

 

Distribution 
of 𝑎, 𝑏 1 1 1 

Multiplication 
of 𝑎𝑏 3 0 4 

Reconstruction 
of 𝑎𝑏 1 1 1 

 

In terms of communication cost, the merits and 
demerits of each method depend on 𝑑ଵ, 𝑛, 𝑘 . 
However, when comparing with Watanabe method, 
since our proposed method produce a polynomial of (𝑘 − 1)  degree instead of polynomial of (2𝑘 − 2) 
degree, we were able to reduce the communication 
cost for reconstruction of 𝑎𝑏  by half. Finally, a 
comparison of each method’s number of rounds, 
since our proposed method includes the process of 
redistributing and computation of random numbers, 
Table 4 shows that the number of rounds of our 
proposed method is considerably more than 
Watanabe method but lower than the TUS method. 

8 CONCLUSIONS 

In this paper, we proposed an improved method of 
multiplication of shares by using only 𝑁 = 𝑘 number 
of servers. Furthermore, by implementing the use of 
recombination vector, we proposed a method of 
computing 𝑘 − 1  sharing of multiplication 𝑎𝑏  by 
using only 𝑘 servers instead of the previous 2𝑘 − 1 
servers. Through this proposed method, we realized 
secure multi-party computation of multiplication 
using Shamir’s (𝑘, 𝑛) method in the setting of 𝑛 ≥2𝑘 − 1, 𝑁 = 𝑘. 

In a future study, we will focus on including the 
function for verification of shares in addition to 
allowing for different combination of computation 

(such as product-sum operation) to be performed 
simultaneously.   
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APPENDIX 1: ADDITION (𝒂 + 𝒃)  

Protocol for computing addition of 𝑎 + 𝑏 using our 
proposed method of distribution is as follows: 

1. Each server 𝑆 (𝑖 = 0, 1, … , 𝑛 − 1)  generates 
random number 𝛾 , computes the following and 
sends to one of the servers (here, we assume server 𝑆). 𝛾𝛼ଵ, , 𝛾𝛽ଵ, 

2. Server 𝑆 computes the following and sends to all 
servers. 

𝛾𝛼ଵ = ෑ 𝛾𝛼ଵ,
ିଵ
ୀ , 𝛾𝛽ଵ = ෑ 𝛾𝛽ଵ,

ିଵ
ୀ  

3. Each server 𝑆 computes ሾ𝛾(𝑎 + 𝑏)ሿas follows. ሾ𝛾(𝑎 + 𝑏)ሿ = 𝛾𝛼ଵ × ሾ𝛼ଵ𝑎ሿ + 𝛾𝛽ଵ × ሾ𝛽ଵ𝑏ሿ 
Security. 
Here, due to the page limit, we had omitted the 
security proof against Adversaries 2 and 3. Below, we 
show the security against Adversary 1, where the 
adversary has information from 𝑘 − 1 servers. In the 
distribution protocol, Adversary 1 has the following 
information 𝐷 from Player 𝐴 and 𝐷 from Player 𝐵. 𝐷 = ሾ𝛼ଵ𝑎ሿ, ሾ𝛼ଶ𝑎ሿା, 𝛼ଵ,, 𝛼ଶ, (𝑙 = 0, … , 𝑘 − 2) 𝐷 = ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿା, 𝛽ଵ,, 𝛽ଶ, (𝑙 = 0, … , 𝑘 − 2) 

As shown in Section 5, Adversary 1 will not able 
to learns neither 𝑎 nor 𝑏 from the information above. 
Moreover, in the protocol for addition, the adversary 
learns about the following. 𝛾𝛼ଵ , 𝛾𝛽ଵ , 𝛾, 𝛼ଵ,, 𝛽ଵ,, ሾ𝛾(𝑎 + 𝑏)ሿ (𝑙 = 0, … , 𝑘 − 2) 

To learn the output 𝑎 + 𝑏 , Adversary 1 has to 
obtain information 𝛾(𝑎 + 𝑏) and random number 𝛾. 
However, from 𝑘 − 1  shares ሾ𝛾(𝑎 + 𝑏)ሿ  and 
random numbers 𝛾 , information of 𝛾(𝑎 + 𝑏) and 𝛾 
are not leaked. Therefore, we can state that the 
addition protocol is secure against Adversary 1. 

APPENDIX 2: SCALAR 
MULTIPLICATION (𝒄𝒂) 

Protocol for computing scalar multiplication between 
constant 𝑐 and secret 𝑎 is as follows: 

1. Let 𝑐 ∈ 𝐺𝐹(𝑝), 𝑐 ≠ 0  be some constant. Each 
server 𝑆 (𝑖 = 0, 1, … , 𝑛 − 1)  computes the 
following locally. ሾ𝛼ଵ(𝑐𝑎)ሿ = 𝑐 × ሾ𝛼ଵ𝑎ሿ 

Security. In the protocol for scalar multiplication 
between constant 𝑐 and secret 𝑎, all computations are 
performed locally without any communication 
between players. Therefore, the security will depend 
on the distribution of secret 𝑎 (which was proven to 
be secure in Section 5). Moreover, the adversary will 
not be able to learn the result of 𝑐𝑎 if no more than 
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𝑘 − 1 shares of ሾ𝛼ଵ(𝑐𝑎)ሿ are leaked. Therefore, we 
can state that our protocol for scalar multiplication of 𝑐𝑎 is also secure against semi-honest adversary (we 
omitted the detailed proof due to the page limit). 

APPENDIX 3: EXAMPLE OF 
COMPUTATION 

Below, for ease of understanding, we demonstrate the 
computation of multiplication between secrets 𝑎 = 3 
and 𝑏 = 2 of Players 𝐴 and 𝐵, respectively, under the 
setting of 𝑁 = 𝑘 = 2, 𝑛 ≥ 3 . Since 𝑘 = 2 , 
multiplication of shares of 𝑎  and 𝑏  will produce a (2𝑘 − 2) = 2  degree polynomial. As shown in 
Section 2.3, the process of reducing the degree of 
polynomial from (2𝑘 − 2) = 2  to (𝑘 − 1) = 1  can 
be achieved by using the recombination vector 𝑟 = (3, −3, 1). In the example shown below, secrets 𝑎, 𝑏, 
all random numbers and all computations are 
performed with 𝑝 = 97. 

Distribution Protocol: 
1. Player 𝐴  generates 2𝑘 = 4  random numbers 𝛼ଵ,, 𝛼ଵ,ଵ, 𝛼ଶ,, 𝛼ଶ,ଵ and computes the following. 𝛼ଵ, = 2, 𝛼ଵ,ଵ = 4  𝛼ଶ, = 3, 𝛼ଶ,ଵ = 6 𝛼ଵ = 𝛼ଵ, × 𝛼ଵ,ଵ = 2 × 4 = 8 (𝑚𝑜𝑑 97)  𝛼ଶ = 𝛼ଶ, × 𝛼ଶ,ଵ = 3 × 6 = 18 (𝑚𝑜𝑑 97) 
2. Player 𝐴 generates 2𝑘 = 4 shares of secret 𝑎 = 3 

using Shamir’s (2, 4)  method and computes the 
following. Here, let ሾ𝑎ሿ = 3 + 𝑥. ሾ𝛼ଵ𝑎ሿ = 8 × 4 = 32 (𝑚𝑜𝑑 97) ሾ𝛼ଵ𝑎ሿଵ = 8 × 5 = 40 (𝑚𝑜𝑑 97) ሾ𝛼ଶ𝑎ሿଶ = 18 × 6 = 11 (𝑚𝑜𝑑 97) ሾ𝛼ଶ𝑎ሿଷ = 18 × 7 = 29 (𝑚𝑜𝑑 97) 

3. Player 𝐴 sends ሾ𝛼ଵ𝑎ሿ, ሾ𝛼ଶ𝑎ሿଶ, 𝛼ଵ,, 𝛼ଶ,  to server 𝑆 and ሾ𝛼ଵ𝑎ሿଵ, ሾ𝛼ଶ𝑎ሿଷ, 𝛼ଵ,ଵ, 𝛼ଶ,ଵ to server 𝑆ଵ . 
4. Player 𝐵  generates 2𝑘 = 4  random numbers 𝛽ଵ,, 𝛽ଵ,ଵ, 𝛽ଶ,, 𝛽ଶ,ଵ and computes the following. 𝛽ଵ, = 1, 𝛽ଵ,ଵ = 6  𝛽ଶ, = 8, 𝛽ଶ,ଵ = 2 𝛽ଵ = 𝛽ଵ, × 𝛽ଵ,ଵ = 1 × 6 = 6 (𝑚𝑜𝑑 97)  

𝛽ଶ = 𝛽ଶ, × 𝛽ଶ,ଵ = 8 × 2 = 16 (𝑚𝑜𝑑 97) 
5. Player 𝐵 generates 2𝑘 = 4 shares of secret 𝑏 = 2 

using Shamir’s (2, 4)  method and computes the 
following. Here, let ሾ𝑏ሿ = 2 + 3𝑥. ሾ𝛽ଵ𝑏ሿ = 6 × 5 = 30 (𝑚𝑜𝑑 97) ሾ𝛽ଵ𝑏ሿଵ = 6 × 8 = 48 (𝑚𝑜𝑑 97) ሾ𝛽ଶ𝑏ሿଶ = 16 × 11 = 79 (𝑚𝑜𝑑 97) ሾ𝛽ଶ𝑏ሿଷ = 16 × 14 = 30 (𝑚𝑜𝑑 97) 

6. Player 𝐵  sends  ሾ𝛽ଵ𝑏ሿ, ሾ𝛽ଶ𝑏ሿଶ, 𝛽ଵ,, 𝛽ଶ,  to server 𝑆 and  ሾ𝛽ଵ𝑏ሿଵ, ሾ𝛽ଶ𝑏ሿଷ, 𝛽ଵ,ଵ, 𝛽ଶ,ଵ to server 𝑆ଵ. 
7. Finally, each server 𝑆 (𝑖 = 0, 1)  holds the 

following. 

─ Server 𝑆 holds the following: ሾ𝛼ଵ𝑎ሿ = 32, ሾ𝛼ଶ𝑎ሿଶ = 11, 𝛼ଵ, = 2, 𝛼ଶ, = 3 ሾ𝛽ଵ𝑏ሿ = 30, ሾ𝛽ଶ𝑏ሿଶ = 79, 𝛽ଵ, = 1, 𝛽ଶ, = 8 
─ Server 𝑆ଵ holds the following: ሾ𝛼ଵ𝑎ሿଵ = 40, ሾ𝛼ଶ𝑎ሿଷ = 29, 𝛼ଵ,ଵ = 4, 𝛼ଶ,ଵ = 6 ሾ𝛽ଵ𝑏ሿଵ = 48, ሾ𝛽ଶ𝑏ሿଷ = 30, 𝛽ଵ,ଵ = 6, 𝛽ଶ,ଵ = 2 
Multiplication Protocol: 
1. Each server 𝑆 (𝑖 = 0, 1) computes the following. 

─ Server 𝑆 computes the following: ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿ∗ = ሾ𝛼ଵ𝑎ሿ × ሾ𝛽ଵ𝑏ሿ = 32 × 30= 87 (𝑚𝑜𝑑 97) ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿଶ∗ = ሾ𝛼ଶ𝑎ሿଶ × ሾ𝛽ଶ𝑏ሿଶ = 11 × 79= 93 (𝑚𝑜𝑑 97) 𝛼ଵ,𝛽ଵ, = 𝛼ଵ, × 𝛽ଵ, = 2 × 1 = 2 (𝑚𝑜𝑑 97) 𝛼ଶ,𝛽ଶ, = 𝛼ଶ, × 𝛽ଶ, = 3 × 8 = 24 (𝑚𝑜𝑑 97) 
─ Server 𝑆ଵ computes the following: ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿଵ∗ = ሾ𝛼ଵ𝑎ሿଵ × ሾ𝛽ଵ𝑏ሿଵ = 40 × 48= 77 (𝑚𝑜𝑑 97) ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿଷ∗ = ሾ𝛼ଶ𝑎ሿଷ × ሾ𝛽ଶ𝑏ሿଷ = 29 × 30= 94 (𝑚𝑜𝑑 97) 𝛼ଵ,ଵ𝛽ଵ,ଵ = 𝛼ଵ,ଵ × 𝛽ଵ,ଵ = 4 × 6 = 24 (𝑚𝑜𝑑 97) 𝛼ଶ,ଵ𝛽ଶ,ଵ = 𝛼ଶ,ଵ × 𝛽ଶ,ଵ = 6 × 2 = 12 (𝑚𝑜𝑑 97) 
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2. Each server 𝑆 (𝑖 = 0, 1)  generates random 
number 𝛾 , computes the following and sends to 
one of the servers (here, we assume server 𝑆). 

─ Server 𝑆  generates 𝛾 = 4 , computes the 
following and sends to server 𝑆. 𝛾𝛼ଵ,𝛽ଵ, = 42 = 2 (𝑚𝑜𝑑 97) 

  𝛾𝛼ଶ,𝛽ଶ, = 424 = 81 (𝑚𝑜𝑑 97) 
─ Server 𝑆ଵ  generates 𝛾ଵ = 2 , computes the 

following and sends to server 𝑆. 𝛾ଵ𝛼ଵ,ଵ𝛽ଵ,ଵ = 224 = 89 (𝑚𝑜𝑑 97), 
  𝛾ଵ𝛼ଶ,ଵ𝛽ଶ,ଵ = 212 = 81 (𝑚𝑜𝑑 97) 

3. Server 𝑆 computes the following and sends to all 
servers. 𝛾𝛼ଵ𝛽ଵ = 𝛾𝛼ଵ,𝛽ଵ, × 𝛾ଵ𝛼ଵ,ଵ𝛽ଵ,ଵ = 2 × 89= 81 (𝑚𝑜𝑑 97)   𝛾𝛼ଶ𝛽ଶ = 𝛾𝛼ଶ,𝛽ଶ, × 𝛾ଵ𝛼ଶ,ଵ𝛽ଶ,ଵ = 81 × 81= 62 (𝑚𝑜𝑑 97) 

4. Each server 𝑆 (𝑖 = 0, 1)  computes ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗  as follows, and distribute ሾ𝛾𝑎𝑏ሿ∗, ሾ𝛾𝑎𝑏ሿା∗  using Shamir’s (2, 2) method to 
all servers 𝑆. 

─ Server 𝑆 computes the following: ሾ𝛾𝑎𝑏ሿ∗ = 𝛾𝛼ଵ𝛽ଵ × ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿ∗ = 81 × 87= 63 (𝑚𝑜𝑑 97) ሾ𝛾𝑎𝑏ሿଶ∗ = 𝛾𝛼ଶ𝛽ଶ × ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿଶ∗ = 62 × 93= 43 (𝑚𝑜𝑑 97) 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 ሾ𝛾𝑎𝑏ሿ∗ = 63 + 𝑥 ቊሾ𝛾𝑎𝑏ሿ, = 64 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ሾ𝛾𝑎𝑏ሿ,ଵ = 65 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ଵ 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 ሾ𝛾𝑎𝑏ሿଶ∗ = 43 + 2𝑥 ቊሾ𝛾𝑎𝑏ሿଶ, = 45 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ሾ𝛾𝑎𝑏ሿଶ,ଵ = 47 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ଵ 

─ Server 𝑆ଵ computes the following: ሾ𝛾𝑎𝑏ሿଵ∗ = 𝛾𝛼ଵ𝛽ଵ × ሾ𝛼ଵ𝛽ଵ𝑎𝑏ሿଵ∗ = 81 × 77= 29 (𝑚𝑜𝑑 97) ሾ𝛾𝑎𝑏ሿଷ∗ = 𝛾𝛼ଶ𝛽ଶ × ሾ𝛼ଶ𝛽ଶ𝑎𝑏ሿଷ∗ = 62 × 94= 8 (𝑚𝑜𝑑 97) 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 ሾ𝛾𝑎𝑏ሿଵ∗ = 29 + 𝑥 ቊሾ𝛾𝑎𝑏ሿଵ, = 30 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ሾ𝛾𝑎𝑏ሿଵ,ଵ = 31 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ଵ 𝑙𝑒𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑏𝑒 ሾ𝛾𝑎𝑏ሿଷ∗ = 8 + 3𝑥 ቊሾ𝛾𝑎𝑏ሿଷ, = 11 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ሾ𝛾𝑎𝑏ሿଷ,ଵ = 14 ⟹ 𝑠𝑒𝑛𝑑 𝑡𝑜 𝑆ଵ 
5. Each server 𝑆 (𝑖 = 0, 1) computes the following 

using the recombination vector 𝑟 = (3, −3, 1, 0). 

─ Server 𝑆 computes the following: ሾ𝛾𝑎𝑏ሿ = 3 × ሾ𝛾𝑎𝑏ሿ, + (−3) × ሾ𝛾𝑎𝑏ሿଵ, + 1× ሾ𝛾𝑎𝑏ሿଶ, + 0 × ሾ𝛾𝑎𝑏ሿଷ, = 3 × 64 − 3 × 30 + 1 × 45 + 0 × 11= 50 (𝑚𝑜𝑑 97) 
─ Server 𝑆ଵ computes the following: ሾ𝛾𝑎𝑏ሿଵ = 3 × ሾ𝛾𝑎𝑏ሿ,ଵ + (−3) × ሾ𝛾𝑎𝑏ሿଵ,ଵ + 1× ሾ𝛾𝑎𝑏ሿଶ,ଵ + 0 × ሾ𝛾𝑎𝑏ሿଷ,ଵ = 3 × 65 − 3 × 31 + 1 × 47 + 0 × 14= 52 (𝑚𝑜𝑑 97) 
Reconstruction Protocol: 
1. The player collects ሾ𝛾𝑎𝑏ሿ = 50, ሾ𝛾𝑎𝑏ሿଵ =52, 𝛾 = 4, 𝛾ଵ = 2  from 𝑁 = 𝑘 = 2  servers 𝑆 (𝑖 = 0, 1), reconstructs 𝛾𝑎𝑏 using Shamir’s (2, 

2) method and computes 𝛾 as follows.  𝛾𝑎𝑏 = 48 𝛾 = 𝛾 × 𝛾ଵ = 4 × 2 = 8 (𝑚𝑜𝑑 97) 
2. Finally, the player reconstructs multiplication 

result 𝑎𝑏 as follows. 𝑎𝑏 = 𝛾𝑎𝑏𝛾 = 488 = 6 (𝑚𝑜𝑑 97) 
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