
Optimal Distribution of CNN Computations on Edge and Cloud

Paul Albert Leroy and Toon Goedemé
PSI-EAVISE, KU Leuven, Campus De Nayer, Belgium

Keywords: Fog Computing, Edge, Cloud, CNN Model Partitioning.

Abstract: In this paper we study the optimal distribution of CNN computations between an edge device and the cloud
for a complex IoT application. We propose a pipeline in which we perform experiments with a Jetson Nano
and a Raspberry Pi 3B+ as the edge device, and a T2.micro instance from Amazon EC2 as a cloud instance.
To answer this generic question, we performed exhaustive experiments on a typical use case, a mobile camera-
based street litter detection and mapping application based on a MobilenetV2 model. For our research, we
split the computations of the CNN model and divided them over the edge and cloud instances using model
partitioning, also including the edge-only and cloud-only configurations. We studied the influence of the
specifications of the instances, the input size of the model, the partitioning location of the model and the
available network bandwidth on the optimal split position. Depending on the choice of gaining either an
economic or performance advantage, we can conclude that a balance between the choice of instances and the
calculation mechanism used should be made.

1 INTRODUCTION

As artificial intelligence algorithms become more and
more complex and computationally demanding, for
every network-connected embedded application, one
of the most important design choices is where to run
the AI calculations: either on the edge device, or in
the cloud. Moreover, the choice is even more diffi-
cult, as one can imagine fog computing too, where the
calculations are distributed over both instances: a part
runs on the edge device, another part in the cloud. In
this paper we study which of these computing mech-
anisms (edge only, cloud only, split at an intermediate
position) is the most optimal, and which parameters
influence this optimum.

In order for conducting our research, we based
ourselves on (Loghin et al., 2019) and introduce a
pipeline consisting of an instance on the edge of the
network and an instance in the cloud. This gives
the opportunity of running computations on two lo-
cations, the edge device and the cloud instance.

Each of the two extremes have their specific ad-
vantages. When computations run on the cloud in-
stance solely, benefits can be made since hardware re-
sources offered by a cloud provider are used instead
of using own acquired hardware. This means clients
don’t have to worry about complicated hardware and
its additional costs like electricity and purchase pric-
ing. The greatest advantage is the cloud’s scalability

and elasticity which give the opportunity of adding
additional instances or upgrading the specifications of
the used instances. Since all data needs to be trans-
mitted from the edge of the network to the cloud, in-
creased bandwidth, delay and security risk drawbacks
are introduced.

These drawbacks can be avoided by running all
the computations on the edge device of the pipeline.
Since the desired output of the computations is avail-
able in an earlier stage, the data can then be reduced
to specific harmless analysis results to send over caus-
ing that less information has to be sent over and thus a
decrease in previously stated drawbacks can be seen.
Despite this, hardware disadvantages emerge due to
the limited amount of resources available on an edge
device. These can be linked to trade-offs between
quality, cost and speed when designing the edge de-
vice.

In this paper, we study hybrid edge/cloud com-
puting where computations are spread over both in-
stances. We want to examine whether a distribu-
tion of computing between edge and cloud can ob-
tain any economical or performance benefits. The re-
search question of this paper is as follows: which pa-
rameters determine the optimal distribution between
edge- and cloud computing to maximise benefits?
The used computations originate from a convolutional
neural network which will be split between a certain
layer position. Using this method, the two resulting

604
Leroy, P. and Goedemé, T.
Optimal Distribution of CNN Computations on Edge and Cloud.
DOI: 10.5220/0010203706040613
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 604-613
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Figure 1: Application pipeline: The device located at the edge of the network captures images and geographical information.
This is then sent over to the cloud which visualises it. Computing can be done on the edge device and the cloud.

submodels can be deployed on the two available in-
stances. By splitting in between various layers, sev-
eral submodels with each a different amount of com-
putations are tested. We also study the effects of scal-
ing this approach to multiple users.

The experiments for this study are based on a use
case in which an image processing algorithm deter-
mines whether or not litter is present in a camera im-
age, captures the geographical coordinates of it, and
eventually visualises it on a map as seen in figure 1.

The remainder of this paper is structured as fol-
lows. Section 2 gives an overview of related work on
hybrid edge/cloud computing. In section 3 we dis-
cuss the litter detection use case and our chosen CNN
model. The approach of realising our pipeline and the
used computation splitting method can be found in
section 4. Results of conducted experiments are eval-
uated in section 5. Conclusions follow in section 6.

2 RELATED WORK

In (Loghin et al., 2019), experiments were done on
a variety of well-known computing applications (ex-
cluding CNN), one computationally more demanding
than the other. The authors conclude that computing
on cloud is usually faster than edge-only, but coun-
terbalanced by the latency of sending over data to the
cloud. They also state that hybrid edge/cloud-only has
benefits when not a lot of bandwidth is available, and
the application uses a large input with small interme-
diate results. The paper overall stated that a benefit in
speed performance depends on the specifications of
the used application and the available bandwidth.

More related to our research is Deepdecision (Ran
et al., 2018) as their computations also are derived
from a CNN. This work proposes a method called
offloading with the purpose of gaining accuracy and
framerate. The system uses a larger CNN running on
the cloud and a smaller CNN running on the edge.
With offloading, a decision is made on the edge par-
tition whether to use the smaller local convolutional
neural network or send over the data to the cloud. This

decision is based on variables like available band-
width, required accuracy, etc. In contrary to our work,
the CNN runs solely on a single instance.

(Teerapittayanon et al., 2017b) proposed dis-
tributed deep neural networks (DDNNs) which show
similarities with Deepdecision. In their work, a reduc-
tion of communication cost is achieved by a factor of
over 20x as oppose to cloud-only computing. Based
on their earlier work Branchynet(Teerapittayanon
et al., 2017a), the number of computations done by
a neural network can be decreased with the introduc-
tion of early exit points. These points create the pos-
sibility of classifying samples in an earlier stage of
the network by adding a classifier in between inter-
mediate layers. An entropy-based confidence crite-
rion decides whether or not any further computations
have to be applied by the following layers of the net-
work. DDNN benefits from this concept by applying
it in a pipeline and partition the model over edge and
cloud. Primary layers of the NN, in conjunction with
an exit point, are deployed on the edge device. On
the edge instance, the decision is made whether ad-
ditional computations is needed due to the lack of the
prediction’s confidence. If not, the intermediate result
is sent over and further computations are executed by
the remaining part of the neural network on the cloud.

In this paper, we base our pipeline architecture
on (Loghin et al., 2019), but extend it towards con-
volutional neural networks and see of their conclu-
sions hold. To spread our computations, we use a
simplified method of the one introduced in (Teerapit-
tayanon et al., 2017b): instead of adding an interme-
diate classifier, we plainly split the CNN model into
two submodels and deploy these individually on two
instances.

3 LITTER DETECTION USE
CASE

To give this research an additional useful purpose, we
chose a use case on which we based our experiments

Optimal Distribution of CNN Computations on Edge and Cloud

605



Figure 2: Examples of our trained model making predic-
tions about the presence of litter in the image.

on. The idea for this arose from a problem humanity
is confronted with globally: litter. Virtually every-
where you walk or bike around on this planet, you
can see trash, such as paper, cans, and bottles, that is
left lying on the ground. We work towards a mobile
embedded device that detects litter in its camera im-
ages, capture the geographical coordinates of it and
eventually visualise it on a map. With many users
in parallel, a quick litter density mapping of a large
region can be obtained, yielding important input for
efficient cleanup operations.

3.1 Neural Network Architecture

Previous work (Mittal et al., 2016; Vo et al., 2019)
show that the majority of proposed techniques for lit-
ter detection, often rely on convolutional deep neural
networks. For realising the use case, we chose to train
a convolutional neural network for classification in-
stead of object detection. As we only know the GPS
position of the mobile device taking the litter photos,
and not the orientation of it, information about the lo-
cation of the litter in the image has no added value in
our use case.

During the experiments of this paper, we want
to compare different hybrid edge/cloud splits to the
cloud-only and edge-only extremes. Therefore we
need to take into account that a CNN architecture
needs to be chosen which is capable of running
entirely on an edge device with limited resources.
Two of the most promising architectures are the
well-known MobilenetV2(Sandler et al., 2018) and
YOLOv2(Redmon and Farhadi, 2016). The main dif-
ference is that MobilenetV2 is a network used for
classification, whereas YOLOv2 is used for object de-
tection. Since object detection does not have any ben-
efit in our use case as described above, our preference
goes to MobilenetV2. This lightweight architecture
offers fairly good accuracy and fast inference speeds
for a minimal amount of operations, thus making it
possible to run on devices with limited resources (e.g.
Raspberry Pi).

3.2 Training

We selected the Garbage In Images dataset (GINI)
(Mittal et al., 2016) to train our network on. It pro-
vides us with the required classes: garbage-queried-
images and non-garbage-queried-images. GINI con-
tains 907 images of scenes with litter and 1605 images
where litter is not present.

To train our network we utilised Tensorflow 2.0.0
and Keras and performed transfer learning from a Mo-
bilenetV2 model pre-trained on ImageNet. We first
trained our classification layers using 20 epochs, and
then fine-tuned our model for 10 epochs to increase
the accuracy. Additionally, as is described in section
5, we want to test if the image input size influences
the latency. In order to do this, we trained two mod-
els with different input size: 160×160 and 224×224
pixels. Figure 2 shows example predictions of our
trained model on self captured data.

4 APPROACH

The goal of this paper is to identify which parame-
ters influence the most advantageous choice of how
to distribute CNN computations over an edge device
and the cloud. These advantages can be economically
or in terms of performance. In this section, we ex-
plain our test setup to conduct experiments on. We
will first (section 4.1) present the pipeline we de-
signed which uses computations of our self-trained
MobilenetV2 model. In order to divide our compu-
tations and spread these over the available instances,
we used a model partitioning procedure explained in
section 4.2.

4.1 Pipeline

For this paper we developed a pipeline, based on the
one used in (Loghin et al., 2019), but altered to our
use case (see figure 3 for an overview). Notice the
two instances where computations can be done, the
edge and the cloud. This gives us the possibility of
applying the three different computing mechanisms

Figure 3: Overall pipeline designed for our research.
Docker containers run on the edge instance (Raspberry Pi
or Jetson Nano) and cloud instance (T2.micro).

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

606



discussed in section 1. We further discuss the imple-
mented instances first.

A large variety of instances can be chosen to be
placed on the edge of the device depending on the ap-
plication. When choosing our edge device we want to
use, we needed to keep in mind that the possibility of
running deep learning architectures on the device was
possible. We decided to compare two edge devices in
this study: Jetson Nano and Raspberry Pi. In table 1
an overview of specifications from both can be seen.
We can see that the Jetson Nano is equipped with a
very powerful GPU as opposed to the Raspberry Pi.
This is due to the fact that the Nano is designed with
the main purpose of running machine learning algo-
rithms, which can be noticed on the AI Performance
specification. We observe that this compute perfor-
mance is a trade-off with device cost. For this rea-
son, we want to compare it with a less powerful, but
cheaper alternative. We have decided to go with the
popular Raspberry Pi, model 3B+ in particular.

For our cloud instance we configured a t2.micro
instance provided by Amazon Web Services. Due
to our limited budget costs, we decided to use AWS
since it offers an AWS educate programme. Specifi-
cations of the used instance can be found in table 2.
As we notice, the cloud instance is capable of reach-
ing higher clock speeds opposite to the chosen edge
devices.

During the development of this test setup, we
have taken advantage of Docker containers. This
simplifies the task of deploying and running applica-
tions independent from the used operating system. In
our pipeline, we created four containers: publisher,
MQTT broker, subscriber and a visualisation con-
tainer. The communication between these is estab-
lished using the MQTT (Message Queuing Telemetry
Transport) protocol. Our flow begins with the pub-
lisher on the Edge device which is responsible for
collecting image data, resizing it to the appropriate in-
put size, if needed processing the data using a model,
and eventually parsing our data to JSON format. The
choice of data we need to send over depends on the
computing mechanism we are applying. For exam-
ple the cloud-only mechanism needs data of the entire
image to transfer, while for the splitted networks, an
intermediate activation tensor must be transferred.

Our JSON data is sent over to another container
which is running an instance called a broker. The ob-
jective of the broker is to handle incoming and outgo-
ing data messages sent over MQTT, we need to run
this application in the cloud since it needs to han-
dle the messages of multiple edge devices. Running
alongside the broker is a container holding a sub-
scriber application. MQTT messages of multiple pub-

lishers, hence multiple edge devices, are received by
this application. When receiving the data, the sub-
scriber decodes the JSON, if needed run a model to
make a prediction for the received information, and
saves this data. The end objective of our use case is to
use the information we have gathered to visualise the
litter locations on a map. For this task, we uilised the
Plotly Dash framework. To communicate with this
container, Redis is used since using the application
as MQTT subscriber simultaneously gave problems.
The map is automatically updated when new data is
added by the MQTT subscriber.

4.2 Model Partitioning

We selected a number of places, spread over the Mo-
bilenetV2 architecture, where we could to split the
model. As we can see on figure 4 plots the size of
the intermediate activation tensor of the CNN when
using a 160× 160 pixels input architecture, and the
14 points where we will try to split it. The decision
of a certain point is based on how much information
is outputted by the previous layer, to be sent over to
the second partition of the model which is located
in the cloud. It is evident that we want to minimise
the amount of data sent over. Usually, these places
occur between two overall bottleneck blocks or in-
side a linear bottleneck block. This is no coincidence
since it is logical to not split inside an inverted resid-
ual block. As we can read in (Sandler et al., 2018),
we can conclude that the data of the first link layer’s
output also is needed by the next layers on the sec-
ond part of the model. This introduces the drawback
of sending over more data. We have chosen a vari-
ety of split points spread over the whole architecture
of MobilenetV2 since we want to research the model
partitioning method with the interest of obtaining any
benefits economically or performance-wise.

To analyse these split points theoretically, we
counted the amount of Multiply-Add operations each
resulting submodel of the CNN architecture needs.
This is a coarse approximation of the flops needed
by each submodel, as one Multiply-Add can be ap-
proximated as two flops. The calculated1 amount of
MAdds for each layer are visualised in figure 5.

5 EVALUATION

In this section, we describe the experiments we
conducted to research the performance advantages.
These were performed on the pipeline we introduce

1https://machinethink.net/blog/how-fast-is-my-model/

Optimal Distribution of CNN Computations on Edge and Cloud

607



Table 1: Specifications of the Jetson Nano and the Raspberry Pi 3B+.

Specification Jetson Nano Dev Board Raspberry Pi 3B+
AI Performance 472 GFLOPs 21.4 GFLOPs

GPU 128-core NVIDIA Maxwell Broadcom VideoCore IV
CPU 1.4 GHz 64-bit Quad-Core ARM Cortex-A57 MPCore 1.4 GHz 64-bit quad-core ARM Cortex-A53

Power usage P 5 to 10 Watts 1.7 to 5.1 Watts
RAM 4GB LPDDR4 1GB LPDDR2 SDRAM

Price per device ±e122 ±e40

Figure 4: MobilenetV2 architecture with input size 160× 160: output size of every layer plotted, as well as the linear and
inverted residual blocks. Vertical lines are proposed CNN split points.

Table 2: T2.micro instance specifications and pricing. The
instance is equipped with a powerful CPU.

Specification t2.micro:
vCPU 3.3 GHz Intel Scalable Processor

RAM (GiB) 1.0
CPU Credits/hr 6

On-Demand Price/hr $.0116 = e.01
1-yr Reserved Price/hr $.007 = e.0062
3-yr Reserved Price/hr $.005 = e.0044

Figure 5: Total Giga flops for each splitted model. Yellow:
edge, blue: cloud.

in section 4.1. For each test we used the same 40 test
pictures, with associated geographical data, read in by
the edge instance, being respectively a Jetson Nano
or a Raspberry Pi. These send data over to the AWS
t2.micro cloud instance. The content of this data de-
pends on the mechanism as we explained in section
4.1. We timed every interesting stage of the pipeline,

Figure 6: Average time for predicting single picture when
running the 160× 160 model solely on each available in-
stance.

and measured these using the partitioned models de-
scribed in section 4.2 as well as running the entire
model on the edge or cloud individually. One of the
advantages of edge-only computing is that we do not
need to send over all our data. We apply this in our
case study by only sending over the data of images
containing litter, thus sending over fewer data to the
cloud. For each of the split positions, the amount of
data sent over depends on the size of the activation
tensor of the CNN at the chosen point (see fig. 4).

5.1 Processing Time Experiments

Various parameters were observed during our exper-
iments including: different computing mechanisms,
varying the image resolution and networks with dif-

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

608



ferent bandwidths.
During the analysis of the results we gathered, we

noticed that the time, data sits in the waiting queue
of MQTT to be sent over, is not consistent. Because
it is an obvious future work optimisation to make
sure queue waiting times are minimal, we neglect
this waiting time in our measurements. Therefore we
will report below all latencies as ”Hypothetical Total
Per Image”, where we neglect the waiting time in the
queue.

5.1.1 Individual Processing Power of Edge and
Cloud Instances

Since each of the instances we used has various spec-
ifications, hence different performances, it may be in-
teresting to inspect these individually. Figure 6 shows
the average inference time we measured of each in-
stance. We observe that the cloud has the fastest in-
ference time, followed by the GPU-powered Jetson
Nano.

5.1.2 Influence of the Computing Mechanism

In the first experiment we conducted, we wanted to
discover whether a split architecture has any perfor-
mance benefits. We visualise our measured results
in figure 7 for the 160×160 model. When we anal-
yse our measurements, we observe that overall a par-
titioned model has a better performance in compari-
son to cloud-only. In both cases, a split model is the
fastest among the researched models. The reason for
this is probably the fact that the size of the interme-
diate data is smaller than the input size when com-
paring it with the cloud-only mechanism. Edge-only
also shows great results, but this is overshadowed due
to the computing power of the cloud.

5.1.3 Influence of the Image Resolution

Another parameter which could affect the perfor-
mance is the input size of the used model. When
adjusting the input size, the output size of all inter-
mediate layers changes simultaneously. When study-
ing our results in fig.8, we can conclude the Jetson
is faster due to its GPU performance. More interest-
ing is when we compare these results with previous
results for a 160 × 160 model found in figures: 7a
and 7b, we notice a decrease in time performance.
This can be linked to two occurrences in our mea-
sured data. To start off, we observe that the prediction
time of our model will increase when the input size is
increased. We can see this phenomenon both on the
edge and cloud side. Additionally, a second reason for
the increase in our total measured latency the increase

in sending over time, due to the increased amount of
data to be sent over.

When reviewing the total latency per image, we
notice that the Jetson Nano benefits most with split13.
This behaviour can be linked to the small intermedi-
ate activation tensor of split13 as seen in figure 4. The
Raspberry has more advantage when sending over the
resized input to the cloud. When comparing this with
split13, we notice the relatively fast prediction times
of the cloud counterbalances the slower prediction
times of the Raspberry Pi.

5.1.4 Influence of the Network Speed

We have to keep in mind that in the future, our use
case application will run on portable edge devices.
This means in order to have a connection with the
cloud, a mobile network must be used, e.g. 4G. The
disadvantages with these are the limited upload and
download speeds. For this reason, it is interesting
to research whether these setbacks have any conse-
quences that influence our speed performance. Mea-
surements are visualised in figure 9. As expected we
can see our send over times increase due to slower up-
load speed leading to edge only being the better per-
forming mechanism.

5.2 Economical Model

The purpose of this paper is to research whether we
can gain any benefits by utilising this pipeline with
different instances and splitting mechanisms. The op-
timal choice, however, depends on the optimisation
criterium: calculation speed performance or total eco-
nomical cost. As in many cases, these two form a
trade-off.

When speed performance is very important, for
example for a monitoring system for a dangerous
industrial process, our experiments described above
suggest that the best choice is using a pipeline with
a powerful edge device. If a normal or high amount
of bandwidth is available, a split model might be the
best option. When in a case with limited bandwidth,
we are better off with running the entire model on
the edge and only send over the necessary data to the
cloud. In this situation, we have a big economical
drawback since powerful edge devices cost a lot of
money and have large power consumption as can be
seen in table 1. When the costs need to be minimised,
a cheaper edge device can be used, but latency will in-
crease as seen in the test results. To know where this
trade-off lies, in this section we will calculate an esti-
mated cost for the different computing mechanisms of
our test case at hand, the MobilenetV2 litter detection
application.

Optimal Distribution of CNN Computations on Edge and Cloud

609



(a) Measured latency for Jetson Nano.

(b) Measured latency for Raspberry Pi.

Figure 7: Measured timings with 160×160 model.

(a) Measured latency for Jetson Nano. (b) Measured latency for Raspberry Pi.
Figure 8: Measured latencies with 224×224 model.

(a) Measured latency for Jetson Nano.

(b) Measured latency for Raspberry Pi.

Figure 9: Measured latencies with 224× 224 model using
4G.

We first clarify the costs between using a cheap and
expensive edge device. We take worst-case values
for power consumption: the energy prices for Belgian
companies in April 2020 (e0.20/kWh). In table 3, we

Table 3: Comparing costs between the Jetson Nano and the
Raspberry Pi.

Jetson Nano Raspberry Pi
Purchase price ±e122 ±e40
Energy usage E 0.01kW 0.0051kW

Energy costs/hour e0.002 e0.001
Energy costs/month per device e1.46 e0.73

calculated the total price for purchasing a device and
running it one month. As we can tell from the results,
using a more powerful edge device can almost triple
the costs in worse case scenarios.

Not only the choice of the edge device makes a
difference. When multiple users are deployed simul-
taneously, the computing cost of the instance in the
cloud and the choice of the used mechanism need to
be taken into account. This is due to the different
amounts of cloud processing power usage across var-
ious mechanisms.

Applied to our test case, let assume we have 5000
edge devices running simultaneously for a month’s
time, which are connected to the same t2.micro in-
stance as used in the example with a limited CPU load
of 95%. Specifications of this instance can be found
in table 2. For this example, we measured the com-
puting power usage of the cloud for various choices
of computing mechanisms and calculated the required
amount of instances needed for 5000 edge devices.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

610



Table 4: Example calculation of cloud processing costs for
5000 users for the computing mechanisms. (Hardware and
energy cost of the edge devices is not taken into account).

Cloud only Edge only Split5 Split10 Split13
#users/instance 10 228 29 32 143
#instancestotal 500 22 173 157 35

total costs/month e3763.5 e165.594 e1302.171 e1181.739 e263.445
monthly costs/user e0.7526 e0.0331 e0.2604 e0.2363 e0.0526

Also, we calculated the costs of running the t2.micro
instance for these 5000 users for a month were calcu-
lated. Results are listed in table 4.

As we can see in table 4, pricing can change dras-
tically depending on the used computing mechanism.
We notice that the costs depend on the number of
needed instances, thus on the maximum amount of
users per instance. When we combine the results of
table 3 and table 4, we can calculate the total costs
per month for the global pipeline. Results of these
costs can be found in table 5 for the Jetson Nano and
table 6 for the Raspberry Pi. We assume that the de-
vices keep functioning one year, such that the pur-
chase cost of the edge hardware needs to be venti-
lated over 12 months. As previously mentioned, we
can see a huge difference between the various com-
puting mechanisms. Another noticeable fact, which
we already noticed in table 3, is the huge difference in
expenses depending on the used edge device. These
originate from the energy costs difference and the to-
tal costs of purchasing 5000 devices.

We can conclude that a balance needs to be found
between the costs of the edge device and the used
mechanism depending on the requirements of the ap-
plication. For example, when using an edge-only
method we can see cloud costs are minimal, but as
stated earlier a splitted model may have more speed
performance benefits. This benefit has the disadvan-
tage of a higher monthly cost due to the higher CPU
usage of the cloud. This trade-off between time per-
formance and cost is visualised in fig. 10. It is re-
markable that indeed for different situations, differ-
ent distribution mechanisms are optimal. We observe
that, for smaller edge devices, edge-only computation
is the cheapest and the fastest solution for this net-
work, while for larger devices a middle split between
edge and cloud is preferable.

6 CONCLUSION

In this paper, we studied which parameters determine
the optimal distribution of CNN computations be-
tween edge and cloud computing to maximise speed
and performance benefits. In order to answer this
question we studied a practical use case, the detec-
tion of litter on a fleet of cloud-connected embedded

devices. We trained a MobilenetV2 CNN model, and
performed experiments on a self designed pipeline in
which we splitted this CNN model over the edge and
cloud instances.

We first conducted research on the three differ-
ent instances separately. Our used instances were two
possible edge devices: a Jetson Nano and a Raspberry
Pi, and the cloud. These each have distinctive specifi-
cations, hence different performance values.

In our experiments, we splitted the MobilenetV2
architecture between the convolution layers. We com-
pared these partitioned models with ordinary comput-
ing mechanisms (egde-only and cloud-only) by tim-
ing each interesting process of the pipeline. When
analysing the tests done on the 160× 160 model, we
can see a partitioned model has more gain in ben-
efits. This behaviour can be linked to the amount
of data sent over. We observed that edge comput-
ing can reduce latency by sending over less data, but
this is counterbalanced by the computing power of the
cloud.

For a larger input image size, 224×224, the model
gave different results. The obvious difference we first
notice is the prediction times on both the edge and
the cloud increased. Due to the change in input size
of the neural network, intermediate activation tensor
sizes change simultaneously. Because of this split13
becomes the fastest choice for the Jetson Nano as op-
posed to the 160×160 model. Because of the weaker
computational performance of the Raspberry Pi and
the good computing power of the cloud, the fastest
mechanism is offloading this larger model to the cloud
and sending over the resized input image.

As we see that sending intermediate results over
the network consumes a substantial amount of the to-
tal latency, we investigated the influence of the speed
of this network. We conclude that networks with lim-
ited specifications (like 4G) indeed have an impact
on the performance of the pipeline. The most bene-
ficial mechanism for this situation is running the en-
tire model on the edge device, indeed sending over the
least amount of data.

Next to an optimisation towards maximal speed
performance, we also studied the economical cost
of each mechanism, an optimisation criterium that
is orthogonal to performance. When speed is im-
portant, we can conclude a high bandwidth together
with a splitted mechanism and a powerful but expen-
sive edge device is recommended. Economically, our
choice of the used mechanism makes a huge differ-
ence in expenses. From our detailed cost estimate,
we can state that when the CPU usage of the cloud in-
creases, costs will increase simultaneously since more
instances are needed to divide the workload. This

Optimal Distribution of CNN Computations on Edge and Cloud

611



Table 5: Total costs between the various computing mechanisms with a Jetson Nano edge instance.

Jetson Nano
Edge device costs:

Total purchase price for 5000 devices e610000
Purchase per month spread over 1 year e50833.333

Energycostsdevice/month e7300
Total for edge device: e58133.333

Cloud costs:
Cloud-only Edge-only Split5 Split10 Split15

Cloud costs/month e3763.5 e165.594 e1302.171 e1181.739 e263.445
Total cost per month e61896.83 e58298.93 e59435.5 e59315.07 e58396.78

Total monthly cost per user e12.37 e11.66 e11.88 e11.86 e11.67

Table 6: Total costs between the various computing mechanisms with a Raspberry Pi edge instance.

Raspberry Pi
Edge device costs:

Total purchase pricing for 5000 devices e200000
Purchase per month spread over 1 year e16666.667

Energycostsdevice/month e3650
Total for edge device: e20316.667

Cloud costs:
Cloud-only Edge-only Split5 Split10 Split15

Cloud costs/month e3763.5 e165.594 e1302.171 e1181.739 e263.445
Total cost per month e24080.17 e20482.26 e21618.84 e21498.41 e20580.11

Total monthly cost per user e4.816 e4.096 e4.324 e4.300 e4.116

Figure 10: Monthly costs per user w.r.t. the latency for the 160×160 model and standard network bandwidth.

means a more powerful cloud instance can also make
a difference. In this paper we used two edge devices
from different price classes, resulting in a huge to-
tal cost difference.Remarkable, for the more expen-
sive device we notice a partitioned mechanism is the
best trade-off when both performance and total cost
are taken into account.

The overall conclusion is that indeed a balance
needs to be found between the choice of the edge de-
vice and the decision of the used splitting mechanism.
This balance is based on the criterion in which we
want to gain benefits. In our case study, the edge-only
mechanism appears to be the cheapest, a split model
has the best benefit in speed performance.

ACKNOWLEDGEMENTS

This work is supported by VLAIO and Klarrio via the
Start to Deep Learn TETRA project.

REFERENCES

Loghin, D., Ramapantulu, L., and Teo, Y. M. (2019).
Towards analyzing the performance of hybrid edge-
cloud processing. In 2019 IEEE Intl. Conf. on Edge
Computing (EDGE), pages 87–94. IEEE.

Mittal, G., Yagnik, K., Garg, M., and Krishnan, N. (2016).
Spotgarbage: smartphone app to detect garbage using
deep learning. In Proceedings of the 2016 ACM In-
ternational Joint Conference on pervasive and ubiqui-
tous computing, UbiComp ’16, pages 940–945. ACM.

Ran, X., Chen, H., Zhu, X., Liu, Z., and Chen, J.
(2018). Deepdecision: A mobile deep learning frame-

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

612



work for edge video analytics. In IEEE INFO-
COM 2018-IEEE Conference on Computer Commu-
nications, pages 1421–1429. IEEE.

Redmon, J. and Farhadi, A. (2016). Yolo9000: Better,
faster, stronger.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residuals
and linear bottlenecks.

Teerapittayanon, S., McDanel, B., and Kung, H. T. (2017a).
Branchynet: Fast inference via early exiting from
deep neural networks.

Teerapittayanon, S., McDanel, B., and Kung, H. T. (2017b).
Distributed deep neural networks over the cloud, the
edge and end devices.

Vo, A. H., Hoang Son, L., Vo, M. T., and Le, T. (2019).
A novel framework for trash classification using deep
transfer learning. IEEE Access, 7:178631–178639.

Optimal Distribution of CNN Computations on Edge and Cloud

613


