
Integration of CAD Models into Game Engines 

Bruno Santos1, Nelson Rodrigues1,2, Pedro Costa2 and António Coelho1,3 
1Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n,4200-465 Porto, Portugal 

2Abyssal, S.A, Porto, Portugal 
3INESC TEC, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal 

Keywords: CAD, Mesh Parameterization, UV Mapping, Boundary First Flattening. 

Abstract: Computer-aided design (CAD) and 3D modeling are similar, but they have different functionalities and 
applications. CAD is a fundamental tool to create object models, design parts, and create 2D schematics from 
3D designed objects that can later be used in manufacturing. Meanwhile, 3D modeling is mostly used in 
entertainment, to create meshes for animation and games. When there is the necessity of using real-life object 
models in game engines, a conversion process is required to go from CAD to 3D meshes. Converting from 
the continuous domain of CAD to the discrete domain of 3D models represents a trade-off between processing 
cost and visual accuracy, in order to obtain the best user experience. This work explores different methods for 
the creation of meshes and the reduction of the number of polygons used to represent them. Based on these 
concepts, an interactive application was created to allow the users to control how the model looks in the game 
engine, in a simple way, while also optimizing and simplifying the mapping of textures for the generated 
meshes. This application (CADto3D) generates accurate 3D models based on CAD surfaces while giving the 
user more control over the final result than other current solutions. 

1 INTRODUCTION 

One of the main processes when creating a 3D 
application with a game engine is asset creation. 
However, the 3D objects that are typically displayed 
on a game are modeled by designers from scratch, 
using specific modeling software. This type of 
software gives the user the ability to sculpt objects to 
match their needs and artistic vision and with the aim 
of performance. On the other hand, CAD models 
describe objects that are supposed to be created and 
manufactured in real life instead of just being digital. 
Thus, these models must ensure the necessary 
accuracy for a perfect assembly and to assure the 
physical properties. Current tools to integrate CAD 
models into game engines mainly rely on file format 
conversion. The main objective of this work is to 
provide the user with a way to control how the mesh 
is created and to provide control of the outcome of the 
process, interactively. Also, as a secondary objective 
we present the development of a method that can 
create texture coordinates automatically for the 
generated meshes. Since the created meshes are 3D 
objects, while images belong to a two-dimensional 
domain, a parameterization process is required to 

assign 2D coordinates to 3D vertices. This paper will 
explore how this mapping is done to obtain UV 
coordinates that minimize both discontinuities and 
distortion of the used textures. 
In Chapter 2, concepts on mesh simplification and 
automatic UV mapping are discussed, and the tools 
and libraries available for converting CAD models to 
mesh are analyzed. Chapter 3 describes the 
methodology used to simplify mesh geometry, how 
automatic UV wrapping, and patches 
parameterization is manufactured. Chapter 4 is 
presented as the application of the proposed 
methodology to build a prototype named CADto3D. 
Results and comparison with Datasmith are presented 
on chapter 5. The last chapter describes the 
conclusions and future work. 

2 LITERATURE REVIEW 

CAD applications store objects by the mathematical 
functions that define them. This mathematical 
representation allows better accuracy and good 
translation into manufacturing. The need for high 
fidelity also means that, to analyze and display these, 
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CAD surfaces, it is preceded a transformation on 
these surfaces, from the original continuous domain 
into a discrete sampled domain. 

Unlike CAD models, Game Engines represent the 
objects in a scene using polygonal meshes. The 
composition of polygons in a mesh serves as a linear 
approximation of their underlying surface (Gregory, 
2014). Triangular meshes are widely used because 
triangles are automatically convex, planar, and easy 
to interpolate, making geometric transformations, and 
color and lightning calculations easier (Foley et al., 
1990). 

2.1 Tessellation 

Triangulation refers to the tessellation of surfaces into 
triangles (Gregory, 2014). Triangular meshes are 
typically characterized by being unstructured and 
having greater freedom in the placement of nodes, 
which allows to significantly reduce the number of 
vertices used to represent a surface while maintaining 
the same accuracy regarding the distance to the 
surfaces (Shewchuk, 1999). 

There are three different approaches to generating 
triangular meshes identified by (Baker, 2005): the 
moving/advancing front method (Lo, 1985), 
Delaunay based methods (Shewchuk, 2014), and the 
Octree approach. 

2.2 Mesh Simplification 

When generating a mesh, there exists a trade-off 
between the number of polygons used and the 
performance of the mesh when used in real-time 
environments like game engines. This is especially 
true when multiple objects are visible at the same 
time, meaning some sort of optimization has to be 
done in order to increase performance (Low & Tan, 
1997). 

Frequently, there exist vertices and faces in a 
mesh that are visually redundant. When the 
underlying mathematical surface of a mesh is known, 
this issue can be resolved by re-meshing the surface 
with a higher error tolerance. However, when the 
mathematical surface is not known, mesh 
simplification algorithms have to be applied to try to 
obtain a good approximation. These algorithms work 
by removing vertices and reconstructing polygons 
into larger ones, reducing the geometry used to 
represent a mesh while keeping the perceptual 
difference between original and simplified at a 
minimum (Talton, 2004). Even though these 
algorithms tend to be faster than re-meshing, they 
introduce irregularities that substantially alter the 

topology of the mesh, often in an unpredictable 
manner.  

2.3 CAD to Geometry Conversion 

While the study of surface meshing spans several 
decades, the integration of CAD models into game 
engines seems to be an under-explored area. 

Datasmith (Datasmith, 2020) is a built-in plugin 
of Unreal Engine that was first introduced in 2017, 
and is currently in beta testing. Datasmith reads many 
common CAD file formats, both open formats like 
STEP and IGES, but also proprietary formats like the 
ones used in CAD applications like SolidWorks and 
3ds Max (Datasmith Overview, 2020). 

Optim (Theia Optim, 2020) is also an Unreal 
Engine plugin by Theia, developed on top of 
Datasmith and, like Datasmith, is also in beta (Theia 
Optim, 2020). Optim provides visualization tools for 
an easier analysis of a generated mesh, displaying 
triangle count, distribution and scale, and material 
and light lists, among others (Optim Documentation, 
2020). It also allows the creation of rules to optimize 
imported meshes. 

PiXYZ is a company focusing on CAD data, mesh 
generation, and optimization (PiXYZ, 2020). They 
have two main products related to mesh generation 
from CAD files. The PiXYZ Plugin is available for 
both Unreal Engine and Unity and works much like 
Unreal's Datasmith. The user selects the CAD file, 
and what tessellation quality they want. A 3D mesh is 
generated and imported into the game engine (PiXYZ 
Plugin, 2020). The PiXYZ Studio is a standalone 
application that can import CAD files and export the 
desired mesh file format. It features tessellation by 
parts, hole removal, the decimation of vertices, and 
provides repair functions such as removal of 
duplicated faces or normal orientation unification 
(PiXYZ Studio, 2020). 

2.4 Automatic UV Mapping 

Meshes are usually defined in three-dimensional 
space, while texture images have a two-dimensional 
domain. Mesh parameterization is the name given to 
the process of calculating and assigning UV 
coordinates to vertices of a mesh. 

Most parameterization algorithms can only 
handle surfaces homeomorphic to a disk. Since CAD 
model parts are closed surfaces, it is necessary to 
introduce seams when passing the mesh into a 2D 
domain representation. This subject causes the 
process of UV mapping to have two parts: the 
computation of optimal cuts, as so to reduce seam 
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length and discontinuity artifacts, and the 
minimization of distortion of triangles of the mesh 
mapped onto the plane, as so to reduce distortion 
artifacts (Poranne et al., 2017). 

More seams result in lower distortion, but too 
many seams will result in an inadequate 
parameterization with too much discontinuity 
(Sorkine et al., 2002). The goal is to optimize 
distortion and cuts simultaneously. 

2.4.1 Bounded-distortion Piecewise Mesh 
Parameterization 

The algorithm proposed by (Sorkine et al., 2002) 
starts with a random seed triangle. This triangle is 
mapped to the plane without any distortion, and 
constitutes the initial patch, with its edges being 
referred to as the patch front. The algorithm then 
examines all of the triangles adjacent to the patch 
front, grading each of the "free" vertices of these 
triangles (vertices that do not already belong to the 
patch) according to multiple criteria such as distortion 
of the resulting flattened triangle. New triangles are 
then added to the patch iteratively, by selecting the 
vertex with the highest grade and mapping it to the 
plane, with its "free" neighbours’ grades being 
recalculated based on its position. This mapping has 
a distortion threshold defined by the user and is 
checked for intersections with the patch, as to avoid 
overlaps. When there are no more triangles that can 
be added to the patch due to the previous constraints, 
a new unmapped triangle is selected randomly to start 
a new patch, with the algorithm terminating when 
there are no more unmapped triangles left. 

The distortion measure used is given by the 
Jacobian of the transformation function between the 
original 3D triangle and its counterpart on the plane. 
Other criteria can be added to the distortion measure 
like crease angles or the ratio between the patch area 
and its squared perimeter, to avoid long, thin patches. 

2.4.2 Autocuts 

Autocuts (Poranne et al., 2017) tries to parameterize 
meshes with minimal distortion and a minimal length 
of cuts by optimizing an energy function that takes 
into account both measures. 

The distortion measure is the symmetric Dirichlet 
energy (Smith & Schaefer, 2015), which computes 
the Frobenius norm (square root of the sum of the 
absolute squares of elements of a matrix) of the 
Jacobian of the transformation associated with each 
face. The measure that defines a seam (separation of 
an edge into two) is given by a monotonic function 
that is either 0 if the projection of an edge is 

coincident in both faces, or 1 if the distance between 
endpoints is different from zero. These measures are 
weighted over the area of the faces and length of the 
edges, respectively, and are then balanced by a λ 
value defined by the user. Autocuts use a homotopy 
optimization technique that uses a δ value to control 
the smoothness of the function. The initial smoothed 
function eliminates many local minima, making 
finding a global minimum easier. In each iteration, 
the function is sharpened back by reducing the value 
of δ, and a local minimum of the new smoothed 
function is found by using the previous minimum as 
a starting point. This way, this method quickly 
converges into an optimal solution. 

Besides the unassisted cutting and 
parameterization of the mesh, Autocuts also provides 
the user with the possibility to interact with how the 
UV mapping is done. This feature can be achieved by 
tuning the values of the parameters δ and λ, or by 
bounding the UV shape to a specific rectangle.  

The main limitation of Autocuts is that it does not 
guarantee that no global overlaps exist, delegating 
that process to the manual interaction by the user. 

2.4.3 OptCuts 

OptCuts (Li et al., 2018) is an effort to improve on the 
solution proposed by Autocuts. 

The method introduced by this paper removes the 
need for the user to set a λ value to balance face 
distortion and seam length, instead of needing a user-
provided distortion bound, for which it minimizes 
seam length. OptCuts also has the option to apply 
bijectivity constraints to the mapping, removing 
overlaps. 

OptCuts starts with a bijective UV map created by 
Tutte's method, cutting it enough to induce disk 
topology if necessary. OptCuts between minimizing 
distortion and seam length, updating the 
λ value iteratively until the function converges to the 
minimum seam length for the distortion bound. 

3 METHODOLOGY 

The process of having a CAD model as reference and 
recreating a similar 3D mesh is manually done by 3D 
artists, which is a consuming, costly process and 
difficult to achieve with good results when timelines 
are shorter. 3D modeling software provides the 
designer a finer control over how tessellation is done, 
like controlling polygon density in different parts of 
the mesh or removing unimportant features.  
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3.1 Simplification of Geometry 

The initial approach taken, regarding the 
simplification of geometry, was to select and 
implement a mesh decimation algorithm.  

Despite their good performance, timewise, the 
results obtained when using these algorithms were not 
visually satisfactory. Despite being slower, re-
tessellation obtained the best results, as new vertices 
are sampled along the surface, which allows the 
resulting mesh to better approximate the original 
surface, while also maintaining the workflow 
associated with it. 

3.2 Automatic UV Mapping 

The simultaneous optimization of cuts and distortion 
in UV mapping is a complex problem. What these 
algorithms try to achieve is to minimize objective 
metrics such as seam length and distortion. In 
practice, this approach often results in "ideal" seams 
that do not look as good as the seams defined by a 
human designer. Instead of handling the cutting and 
parameterization of the mesh at the same time, the 
developed method intended to emulate how designers 
map UVs: first determine where is the best place to 
introduce seams, then calculate the texture 
coordinates. 

The first step of the developed method is dividing 
the mesh into subdivisions, or patches. Since the 
CAD models represent parts that had to be 
manufactured and assembled, it is normal for there to 
be straight angles, in order for everything to fit 
together. These natural seams are a good starting 
point to begin the patching process, as the 
discontinuity of the mapping becomes less noticeable 
when the cuts are made alongside these seams. In the 
triangular mesh, this criteria for patching means 
dividing the surface alongside the edges whose 
vertices have multiple normals pointing in different 
directions (normal discontinuity). 

The patches obtained either have disk topology or 
close to it. This is especially useful as it allows the 
application of surface parameterization algorithms 
directly. The patches that are not homeomorphic to a 
disk can generally be categorized into three groups: 
surfaces with holes, open surfaces of revolution (e.g.  
cylinders and open cones), and the combination of the 
first two. The meshes associated with these patches 
must be prepared and turned into meshes with disk 
topology, to apply a parameterization algorithm. For 
the surfaces with holes, the approach is to create a 
vertex at the center of the boundary of each hole. This 
vertex is then connected to each of the vertices of the 

boundary, eliminating the hole. For surfaces of 
revolution, the solution is to cut the mesh from one 
boundary to the other. This is done by the following 
steps: 

1. One of the boundaries is identified as stack 
0.  

2. All the vertices adjacent to the vertices of 
stack 0 that are not in stack 0 constitute stack 
1.  

3. This is repeated until a stack is formed that 
has vertices on a boundary.  

4. A random vertex from stack 0 is selected and 
becomes the first vertex of the cut. 

5. The orientation of the mesh between stack 0 
and stack 1 is given by the difference 
between the centroid of both stacks. 

6. The next vertex of the cut is: contained in 
stack 1; adjacent to vertex 0; the vertex in 
which the edge that connects it to vertex 0 
makes the smallest angle with the 
orientation of the mesh. 

7. This is repeated until the final stack is 
reached. 

8. The vertices alongside the cut are duplicated 
and the faces on one side of the cut are edited 
to use these new vertices, this creating a 
mesh with disk topology. 

This method results in seams that closely follow 
the orientation of the mesh. 

It is important to notice that finding an edge flow 
on a triangular mesh is only possible if the mesh is 
tessellated in a regular way, equivalent to a quad 
mesh. For irregular meshes the method will produce 
sub-optimal results. 

Simultaneous cutting and hole-filling is not 
supported, which results in unsatisfactory results for 
surfaces of revolution with holes. This is because, 
even though it is easy to the determine if a vertex is 
on a boundary or not, there is no reliable, general way 
to determine if that boundary is a hole or the second 
outer boundary of the surface.  

The ambiguity between what is considered an 
outer boundary and what is considered a hole also 
affects the decision of how to categorize a surface. 

A practical example of this is given by the 
comparison between a flat circle with a circular hole 
in its center (first surface in Figure 1) and an open 
cone (third surface in Figure 1). If the axis of both 
surfaces is aligned with the Y axis, and the vertices of 
the topmost boundary of the open cone are translated 
to Y=0, two similar surfaces are obtained. Therefore, 
even though one is an open surface of revolution and 
the other is a surface with a hole, they are 
homeomorphic to each other. The problem with this 
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then becomes where alongside the transition, the 
surface change from one category to the other (second 
surface in Figure 1). 

 
Figure 1: Surface 1 gets hole-filled, surface 3 gets cut, what 
about surface 2? 

Solutions to this problem could include some 
heuristics involving the area of the boundaries, the 
number of vertices, or the direction of the normals 
alongside them. Instead, the approach taken was to 
consider both options as possible for every mesh. 
Thus, UV mappings are calculated for both 
approaches, as well as the distortion error, with the 
final mapping being the one that has the lowest error 
value. 

3.3 Parameterization 

The final step of the process it to parameterize the 
obtained patches. The chosen parameterization 
algorithm was Boundary First Flattening (Sawhney & 
Crane, 2017), because it is fast and generates a 
flattening with minimal area distortion and virtually 
zero angle distortion. Moreover, because the library 
that implements it was simple to integrate. The UV 
coordinates generated by the algorithm become the 
new UV coordinates of the component. 

4 IMPLEMENTATION 

The implemented solution is a desktop application 
developed using Electron (Electron, 2020). 

A Three.js (three.js, 2020) canvas is used inside 
of the application, which provides high-level 
abstractions for controlling cameras, lights and 
interacting with the scene. 

Python subprocesses handle the importing, re-
tessellation and exporting of the objects, by using 
OpenCascade to import and convert STEP files into 
meshes and using the FBX SDK to generate the 
output file that can be imported into a game engine.   

4.1 UV Coordinates Calculation 

The foundation of the developed method to calculate 
UVs automatically is the Boundary First Flattening 

algorithm implemented in the library geometry-
processing-js (geometry-processing-js, 2020).  
The focus of the work done was how to integrate this 
library into the project and adapt it, so non-disk 
topology objects could have their UVs mapped. The 
original mesh of the object is first divided by the 
points that have multiple normal vectors with 
different orientations. This process is done by starting 
a new subset with a random triangle and then 
iteratively adding adjacent triangles to it. If the 
vertices of the shared edge between a triangle of the 
subset and an un-visited triangle have different face 
normals, then this un-visited triangle is not added to 
the subset. New subsets are created until every 
polygon of the mesh belongs to a subset. When the 
user paints patches on the main canvas, what is done 
is a simple merge of the list of points of both subsets 
into a single subset.  

Calculating the UVs of a part entails iterating over 
every subset of the mesh creating a half-edge mesh 
structure for each of them, applying the BFF 
algorithm, and packing the obtained UVs into the 0 to 
1 range, without overlapping. The application of the 
BFF algorithm can be made directly if the subset has 
disk topology, or it requires extra preparation. The 
process of hole-filling consists of, first, calculating 
the longest boundary of the subset. This process is 
done by iterating over each of the edges of every 
boundary and summing up their length. For every 
boundary that is not the longest, a vertex is created in 
the polygon soup whose coordinates are the centroid 
of the polygon created by the boundary’s vertices. 
The half-edge geometry is also altered, with this new 
vertex being added and half-edges created between it 
and every vertex of the boundary, thereby creating 
new faces that eliminate the hole.  

The process of cutting the mesh requires finding 
its flow. All the vertices adjacent to one boundary are 
found, with these vertices constituting a stack. This 
process is repeated until a stack has at least one vertex 
on a boundary. For each of the stacks, its centroid is 
calculated, with the difference between one centroid 
and the next being the orientation of the mesh 
between those two stacks.  

Then, one of the vertices of the first boundary is 
selected randomly. The orientation of the plane 
created by this vertex, the centroid of the boundary 
and the centroid of the next stack, are given by the 
cross product of the vectors centroid2-centroid1 and 
vertex-centroid1. For every vertex adjacent to this 
one on the next stack the same is done, with the next 
vertex selected being the one whose cross vector 
makes the smallest angle to the previous cross vector. 
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Table 1: Comparison between import times using Datasmith and the developed application using linear deflection of 1. 

 Object1 Object2 
 Datasmith CADto3D Datasmith CADto3D 

Import 70s 75s 340s 
Export  5s 25s 

Import into Ureal  30s  160s 
Total import time 70s 110s failed 525s 

Re-tessellation 60s 30s  130s 
 

When a vertex is obtained in each of the stacks, the 
cutting process starts. This process is done by basically 
duplicating each of the vertices alongside the cut in the 
polygon soup, changing the faces on one side of the 
cut, on the half-edge mesh, to use these new vertices, 
and updating the connectivity of the half-edges, thus 
creating one continuous outer boundary. 

Both the hole-filling process and the cutting 
process are done for each non-disk topology subset, 
with the BFF algorithm being applied to the two sets 
of polygon soups and half-edge meshes. To decide 
what is the best method for the given part, the 
quasiconformal error is calculated for both mappings. 

The final process of the generation of the UV 
coordinates is packing the obtained UV coordinates 
into the 0 to 1 UV space, so a single texture file can 
be used when applying textures to the object.  

5 RESULTS 

The focus of the tests was to compare the proposed 
solution (CADto3D) with Datasmith to understand if 
the former was a viable alternative to the latter. To do 
this, the performance of the workflow of both 
applications was measured, and the 3D models 
created were evaluated for visual fidelity and 
geometry complexity. 

5.1 Results and Workflow Comparison 
with Datasmith 

The main workflow of CADto3D is the import of a 
STEP file and subsequent export of an FBX. To 
evaluate the performance of this process, the models 
in Figure 2 and  Figure 3 were used, and the time 
taken by this process was compared to the import time 
of Datasmith on Unreal Engine. The execution time 
on Object 1 and Object 2 are given in Table 1.  
For smaller files, Datasmith seems to perform well 
when importing, compared to the developed 
application. This is mainly because CADto3D 
requires two import processes (from the STEP file to 
the application and from the FBX to Unreal Engine). 

 
Figure 2: Object 1 (STEP file with approximately 230K 
entities). 

 
Figure 3: Object 2 (STEP file with approximately 810K 
entities). 

For larger files, Datasmith does not seem to be very 
optimized, and Unreal Engine stopped responding 
several times during import, and ultimately failed. 

Regarding re-tessellation, the proposed solution 
of using temporary files to store shape information 
proved to be successful, cutting the time used in fully 
re-tessellating a scene in more than half, as opposed 
to re-importing with a different linear deflection, 
which is what Datasmith does. 

Another advantage of CADto3D is that it creates 
an FBX file, which does not limit the created mesh to 
Unreal Engine, as it can be imported into multiple 
applications such as game engines and modeling 
software. 
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5.2 Re-tessellation 

Besides re-tessellating the object entirely, it is also 
possible to re-tessellate a single part or groups of parts 
individually, something that cannot be done using 
Datasmith.  

Tessellation speed is dependent on two factors. 
The size and complexity of the shape, that directly 
affects the size of the temporary file used to store the 
shape information and how much time it takes for the 
tessellation to be done. Tessellation quality also 
affects tessellation speed, as more vertices and 
polygons mean more time transferring the geometry 
from the Python process to Three.js and more time 
creating the scene. 

5.3 UV Calculation 

Unlike tessellation, where every part of every model 
should be able to be tessellated, not every part can 
have its UVs appropriately calculated by the proposed 
algorithm in its current state, if at all. 

Limitations of the algorithm include continuous 
closed surfaces (no normal discontinuities at all), 
meshes with complex geometry, surfaces of 
revolution with holes, and irregular surfaces of 
revolution.  

Even though the method proposed produces good 
results for many parts some problems were identified: 

- Surfaces of revolution that are not straight 
produce UVs that have curved boundaries, 
which causes grid textures to not line up. 

- Dividing by the discontinuities of the 
normals often produces good patches but can 
also produce too few or too many patches, 
limiting the assistance of the user or requiring 
them to do too much work joining them. 

- Irregularities in the tessellation can lead to 
the method not finding the flow of the mesh, 
producing bad seams. 

- Mapping cylinders with holes in them is 
impossible since the algorithm cannot 
recognize what is a hole and what is a main 
boundary. 

6 CONCLUSIONS AND FUTURE 
WORK 

The application developed can import STEP files, 
tessellate models and export FBX files, while 
providing a user-friendly interface with available 

options for the user to control the characteristics of 
the final mesh. 

The proposed method to calculate UV coordinates 
generates valid maps, with the main contribution in 
this step being the preparation process that allows the 
application of the BFF algorithm to meshes that do 
not have disk topology.  

Both the hole-filling method and the cutting 
method with detection of mesh flow allow the 
generation of UV maps for meshes that generally 
could not have BFF applied to them, while still 
having acceptable distortion. 

6.1 Future Work 

In the future, we would like to explore the ability to 
import more file types than just STEP. Also, there is 
more room for improvement in the developed 
application as in the automatic UV method. 

The division of the mesh in patches, occasionally 
sub or over divides the mesh, which prevents the user 
from interacting fully with the subdivisions or 
requires too much work to join adjacent patches, 
respectively. In situations that not enough patches are 
created, a better approach would be to divide the 
mesh where normals vary over a certain threshold, in 
groups of vertices, instead of just using single vertex 
discontinuities. For over-patching, the solution could 
be to limit the patch area, relative to object size, or 
limit the angle between adjacent patches. Another 
solution could be to allow the user to set where the 
mesh should be divided by selecting the seam edges 
directly. 

The other problem is that surfaces of revolution 
are cut in sub-optimal ways if they are not tessellated 
regularly or have holes in them. To handle irregularly 
tessellated meshes, the solution would be to rework 
how the flow of the mesh is obtained and develop a 
method that can detect edge loops in triangular 
meshes, or approximations of these loops since they 
not always exist. For surfaces of revolution with 
holes, the process would be to identify what is a hole 
and what is an outer boundary, applying the hole-
filling technique already defined, and cut the mesh 
accordingly. 

Finally, since the UV mapping method proposed 
often requires user interaction to obtain better results, 
an improvement could be the automatic merge of 
adjacent patches. This process could either be done 
using analytical methods like those in Autocuts and 
Optcuts. 
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