
Accurate Real-time Physics Simulation for Large Worlds

Lorenzo Schwertner Kaufmann, Flavio Paulus Franzin, Roberto Menegais and Cesar Tadeu Pozzer
Universidade Federal de Santa Maria, Santa Maria, Brazil

Keywords: Real-time Physics Simulation, Physics Engines, Large-scale Simulations, Floating-point Imprecision.

Abstract: Physics simulation provides a means to simulate and animate entities in graphics applications. For large envi-
ronments, physics simulation poses significant challenges due to the inherent known limitations and problems
of real number arithmetic operations. Most real-time physics engines use single-precision floating-point for
performance reasons, limiting simulation with a lack of precision that causes collision artifacts and positioning
errors on large-scale scenarios. Double-precision floating-point physics engines can be used as an alternative,
but few exist, and fewer are supported in game engines. In this paper, we propose an efficient solution capable
of delivering precise real-time physics simulation in large-scale worlds, regardless of the underlying numeric
representation. It implements a layer between high-level applications and physics engines. This layer subdi-
vides the world into dynamically allocated sectors which are simulated independently. Objects are grouped
into sectors based on their positions. Redundant copies are created for objects crossing sectors’ boundaries,
providing seamless simulation across sector edges. We compare the proposed technique performance and
precision with standard simulations, demonstrating that our approach can achieve precision for arbitrary scale
worlds while maintaining the computational costs compatible with real-time applications.

1 INTRODUCTION

Physics simulation plays a fundamental part in many
virtual scenarios across a broad range of applications,
including games, films, and simulations. Physics are
simulated using physics engines —low-level middle-
ware that provides support to physical behaviors, such
as fluids, soft and rigid bodies simulation. Games and
simulations rely on real-time physics engines to pro-
vide dynamic, immersive scenarios. For performance
reasons, most of these engines operate with single
floating-point precision, enough to cover a wide range
of applications. However, for large-scale scenarios,
these engines present a limitation due to the low ac-
curacy of the floating-point numbers, especially when
representing big numbers. Simulations for objects far
from origin might use imprecise values, causing fail-
ure in the collision detection algorithms, varying from
small intersections that do not compromise the over-
all simulation to big intersections that spoil the simu-
lation (e.g., vehicles falling off a terrain). Moreover,
nowadays, it is noticeable that 3D games and graph-
ical simulations, used for training or amusement, are
dealing with constantly expanding scenarios, thus re-
quiring solutions to enable proper visualization and
simulation of moving entities.

Floating-point imprecision occurs because com-

pressing infinite real numbers into a limited amount of
bytes requires an approximate representation (Gold-
berg, 1991). IEEE-754 floating-point represents real
numbers as δ× βε, where δ is a significand, β is
a base, and ε is an exponent, thus rounding error
increases proportionally to value magnitude. Most
arithmetic operations using values represented with
floating-point precision produce results that cannot be
represented using a fixed amount of bits, thus requir-
ing rounding.

In physics simulations, the rounding error in-
creases proportionally to objects’ distance from the
origin on which the simulation is continuously per-
formed, and error accumulates over error. Empiri-
cal experiments suggest that single-precision floating-
point limit is 104 units (Unity Community, 2018);
while others define it at 5×103 units (Unity Commu-
nity, 2017), or within the range of 4× 103 to 8× 103

units (Burk et al., 2016). Thus, applications with sce-
narios larger than these dimensions are susceptible
to numerical inaccuracy and may present problems
throughout the physics simulation.

In terms of accuracy, some physics engines are
designed to support double (e.g., Bullet and New-
ton Dynamics) instead of single-precision to repre-
sent the physics components and provide more accu-
racy in calculations. Double-precision math (and thus

Kaufmann, L., Franzin, F., Menegais, R. and Pozzer, C.
Accurate Real-time Physics Simulation for Large Worlds.
DOI: 10.5220/0010194501350142
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 1: GRAPP, pages
135-142
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

135



double-precision matrix and vector APIs) cannot take
as much advantage of SIMD instruction sets (Ericson,
2005), which are generally sized to support and vec-
tors that have 32-bit wide components. Few physics
engines support double floating-point precision and
game engines, such as Unity, Unreal Engine 4, Cry
Engine 3 and Godot do not natively support them.

An alternative to increase numerical precision is
the origin shifting approach. This approach estab-
lishes a real-time center point (e.g., the observer po-
sition), and 1) physics simulation considers the cen-
ter point as the Cartesian origin or 2) the objects are
shifted to the Cartesian origin, having a center point
as a reference, maintaining the same layouts of ob-
jects’ position. In an efficient and precise way, this
approach guarantees the physical simulation for any
dimension of the scenario. However, physics objects
must be close to an arbitrary center point. Otherwise,
inaccuracy errors remain. For sparsely distributed
simulations, e.g., multiplayer games, origin shifting
does not work.

We present a solution compatible with real-time
simulations that expands state-of-the-art physics en-
gines, ensuring physics simulations enough precision,
regardless of the world scale and underlying numeric
representation. Our solution is implemented as a layer
between high-level applications and physics engines.
This layer split the world in sectors and adds re-
dundancy to each sector, ensuring each part has all
the required information to, independently, be sim-
ulated without inconsistencies close to the Cartesian
origin. Furthermore, our solution benefits from how
large-scale worlds application must implement world
streaming due to memory and processing limitations,
amortizing space partitioning cost. The main con-
tribution of our work is a novel solution that pro-
vides arbitrariness in sparse simulations precision,
enabling floating-point engines to increase precision
and/or scale.

This paper is organized as follows: Section 2 pro-
vides background and related works on the subject.
Section 3 discusses all the steps of the proposed so-
lution in-depth. Section 4 discusses the effects of
the sector size choice. Results are evaluated and dis-
cussed in Section 5. Finally, Section 6 presents con-
clusion and directions for future work.

2 RELATED WORK

Many works explored the distribution and paral-
lelization of simulations to provide simulation at
an individual level, i.e., without relying on group-
generalized properties. Each agent must have the re-

quired information for its correct simulation —this
requirement is termed awareness. Different tech-
niques focus on partitioning their agents into groups
while keeping a low number of overlapping between
regions of interest of objects in different partitions
—this problem is termed communication level. Be-
sides it, the distribution of simulations introduces
other problems, such as well-balancing the simulation
load across the available processing nodes and how
to operate efficiently since the partitioning algorithms
themselves might not scale well.

(Lozano et al., 2007) explores a complete frame-
work for scalable large-scale crowd simulations.
Their solution successfully provides scalability while
providing awareness and time-space consistency.
This is achieved using rectangular grids and dividing
the agents according to their position in the grid.

(Vigueras et al., 2010) improves efficiency of pre-
vious methods by employing the use of irregular
shapes regions (convex hulls). Their results show that
irregular shapes outperform techniques with regular
ones, regardless of the crowd simulation.

(Wang et al., 2009) proposes a technique for parti-
tioning crowds into clusters, minimizing communica-
tion overhead. Their work achieves great scalability
through the application of an adapted K-means clus-
tering to efficiently partition agent-based crowd sim-
ulations.

Newer techniques explore further performance
improvement, either minimizing communication
costs, equalizing balancing, or both, while efficiently
doing so. For example, (Petkova et al., 2016)
uses community structures to group related agents
among processors, reducing communication over-
head. (Wang et al., 2018) explores parallelizing
the simulation per agent using the Power Law in
CUDA architecture to ensure behavior synchroniza-
tion across threads. Their solution explores minute
model details while improving efficiency.
(Brown et al., 2019) propose a solution applying a
partitioning solution for physics servers with horizon-
tal scalability. In their work, the scenario is parti-
tioned in regions using Distributed Virtual Environ-
ments modeling, and each partition is assigned to
a server for physics simulation. Objects interacting
across partition boundaries are handled by projecting
objects in overlapping regions to guarantee a seamless
simulation.

These solutions propose and improve the simula-
tion of a massive number of elements through par-
titioning and parallelization techniques while solv-
ing problems such as communications between agents
in different partitions. (Brown et al., 2019) apply
said methods showing that physics simulations per-

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

136



formance could benefit from partitioning.
However, none of the solutions consider scalabil-

ity in terms of virtual world size. In fact, to the best of
our knowledge, no paper explores the physics simula-
tion of large-scale environments - prone to error be-
cause the inherited physics simulation floating-point
precision issues increased by the types of arithmetic a
physics engine must calculate.

It must be noted that when we mention large scale
physics simulations, we are not referring to a ‘large
number of objects’ simulation, but rather to the sim-
ulation of an arbitrary number of objects with large
scale positions.

Several commercial examples managed to address
the physics simulation precision limitations. Kerbal
Space Program is a space flight exploration and sim-
ulation game praised for accurate orbital mechanics.
Internally it uses Unity-PhysX (single floating-point
precision) and an origin shifting approach for near
player simulations combined with numerical models
for distant orbit calculations. This solution is sim-
ple and efficient but is not capable of simulating far
objects using the physics engine. Therefore, the so-
lution works for applications centered in one entity,
and which objects far from this entity does not require
simulation. For sparse simulations, e.g., multiplayer
games and military simulators, the solution is insuffi-
cient.

Outerra (Outerra, 2012) is a 3D planetary engine
which uses the JSBSim Flight Dynamics Model li-
brary for high fidelity simulation of aircraft, and Bul-
let physics engine for simulation of vehicle physics.
The Bullet physics engine supports single or double-
precision floating-point arithmetic (Guo, 2013). With
the double precision option, simulation calculations
are more precise and can be performed in a larger sim-
ulated volume.

Star Citizen is an upcoming multiplayer space
trading and combat simulator with explorable star
systems. It has been developed in an extended ver-
sion of CryEngine 3 (Star Engine) with 64-bit arith-
metic (Burk et al., 2016) to support a vast playable
volume of 200×109Km3 (Burk et al., 2016).

These solutions are limited to specific use cases.
Origin shifting only supports large-scale simulations
if the physics simulation is concentrated around a
unique center point (e.g., camera position). Also,
physics simulations far from this center point must
tolerate low precision simulations or be disabled.
Double precision requires physics engine support
while few engines support it and fewer game engines.
Furthermore, except for Outerra-Bullet, these solu-
tions are proprietary, and the used techniques are not
described in scientific papers.

We use a partitioning system, along with ob-
jects’ relocation relative to their partition center (ori-
gin shifting), and a cloning system similar to Brown’s
Aura projection to achieve large-scale precise real-
time physics simulations for sparsely distributed ob-
jects.

3 ACCURATE PHYSICS
SIMULATION

This section describes the Large Physics Sectoriza-
tion System (LPSS), our layer-based proposal to per-
form physics simulation on large-scale scenarios with
sparse objects, ensuring numerical accuracy (Figure
1). Our solution can be used with any physics engine
that supports distinct concurrent simulations, such as
PhysX, Bullet and, Open Dynamics Engine.

Application

LPSS

Physics Engine

Invokes simulation

Collision Callbacks

Sector Size

Environment 
Boundaries

Invokes individual 
simulations per sector

Figure 1: Overview of the architecture. Sector size is de-
fined by the application prior to the simulation start. The
physics engine runs the sector simulations concurrently.

The world is subdivided into regular partitions,
similarly to (Wang et al., 2009). During the execu-
tion, before each physics simulation, the Sectoriza-
tion process (Sec. 3.1) assigns each physics object
to one sector based on its center position. Each ob-
ject is relocated relative to its sector. In the sequence,
the Cloning Manager (Sec. 3.2) filters potential col-
lisions between objects in distinct sectors and creates
Clones with redundant physics information only for
these objects, similarly to (Brown et al., 2019). Fi-
nally, the Simulation process invokes one physics sim-
ulation instance per sector.

3.1 Sectorization

Any system can be employed to partition objects.
Using an adapted K-Means algorithm, for instance,
would partition objects more efficiently than a grid

Accurate Real-time Physics Simulation for Large Worlds

137



partitioning one. Using K-Means, however, would
not allow a satisfactory implementation of partition
size constraint, and the simulation would suffer from
the floating-point arithmetic issues.

The reason above was key in our decision to use
a grid partitioning system. Although its performance
is far from sophisticated partitioning techniques, it al-
lows us to define hard-boundaries which ensure ob-
jects’ coordinates are inside a pre-defined volume
and, thus, coordinate errors are inside an acceptable
range. Specifically, our partitioning system works as
follows.

The world is logically subdivided into three-
dimensional partitions. Each partition might have a
sector assigned to it depending on the existence of ob-
jects inside that partition. A sector is an abstract struc-
ture in which objects can be assigned and revoked.
Since the solution aims for an arbitrary scale, we map
each sector into an auto-resizing hash table. Thus,
sectors are created when an object is placed within its
volume and destroyed when no object is inside. Sec-
tors that contain at least one dynamic object are sim-
ulated per physics step. Each sector has an index to
localize them in space. During sectorization, physics
objects are assigned to one sector based on their posi-
tion as:

(i, j,k) =
⌊
(x,y,z)

L

⌋
(1)

where (i, j,k) is the sector hash index, (x,y,z) is the
object position, and L is the sector’s edge size.

After sectorization, object position is the sum of
its sector center and the displacement to it:

(x,y,z) = ds +(si,s j,sk)∗L (2)

where (x,y,z) is the object position, (i, j,k) is the sec-
tor hash index, ds is the object’s displacement to its
sector center and L is the sector’s edge size.

Representing the position in this format guaran-
tees that the object’s coordinate is within the sector
boundaries, and the associated error has a stipulated
limit.

3.2 Cloning Manager

During the Sectorization process, each object gets as-
signed to one sector based on its position. Further-
more, each sector is simulated independently, and ob-
jects from different sectors do not interact in the Sim-
ulation step. Consequently, this can cause inconsis-
tency in the simulation when objects intersect adja-
cent sectors. As an example, in Figure 2, object
B only collides with C when its position is within
the sector Sa boundaries. To handle these cases, the

Cloning Manager identifies probable interactions that
would cause inconsistency and creates Clones to en-
sure a correct simulation.

B

A
C

E
D

F

G H

SbSa

A
C

E
D

F

G H

Sa

B

D

F

H

Sb

C

E

G

Figure 2: Simulation situations and how cloning manager
handles them. Dynamic objects are represented by vehicles,
static objects by walls, and Clones are transparent.

A Clone is a copy of the physical components of a
physics object created to other objects react correctly
when assigned to different sectors. The procedure to
create a clone is:

1. Create a deep copy of the original object. Game
engines already provide methods for this (e.g.,
Unity’s Instantiate and Unreal Engine’s Duplica-
teObject).

2. Remove all non-physics components related to
physics.

Static clones send physics callbacks to their origi-
nal objects. Dynamic objects physics properties, such
as velocity and position, are copied from the original
object to their Clones before each physics simulation
step (Figure 3).

The Cloning Manager considers pairs of objects
from different sectors that might collide, using Axis-
Aligned Bounding Box (AABB) intersection algo-
rithms. For those pairs, three cases are possible:

• Static: static object intersecting with two or more
sectors;

• Dynamic-Static: a probable collision between
static and dynamic objects in different sectors;

• Dynamic-Dynamic: a probable collision between
dynamic objects in different sectors.

Figure 2 illustrates the cases handled by the
Cloning Manager. Static overlapping cases (e.g., wall
F) are solved when the object is created. For each sec-
tor intersected by the object, a clone is created and as-
signed to it. It remains active during the object’s life-
time. For Dynamic-Static cases (e.g., B-C), a clone

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

138



Physics Properties 
Sync

Rigid Body

Renderer

. . .

Movement Behavior

Collider A Collider B

Rigid Body

Collider A Collider B

Dynamic Clone

Dynamic Object

Physical Components Other Components

Before Physics 
Simulation

During Physics 
Simulation

Rigid Body

Renderer

. . .

Collider A Collider B

Rigid Body

Collider A Collider B

Static Clone Static Object

Physics Callbacks 
Sync

Position, 
Rotation,
Velocity

OnCollide, 
OnTrigger

Figure 3: Original objects have miscellaneous components, e.g., renderer and movement behavior, while clones have only
physics related ones. Both share a component to sync state (physics properties and collision events).

of the static object is created and assigned to the dy-
namic object’s sector. For Dynamic-Dynamic cases
(e.g., D-E and G-H), both objects should be cloned.
In the D-E case, both objects overlap the adjacent sec-
tors; and, in the G-H case, vehicle G does not overlap
sector Sb, but is in imminent collision with vehicle
H. Vehicle A is far from the sectors’ border and the
Cloning Manager ignores it.

For every physics step, the Cloning Manager con-
siders all pairs of objects and generates a collection
with required clones. For performance and memory
segmentation reasons, each object manages a pool of
clones to avoid continuous object creation.

4 SECTOR SIZE

The sector size is an arbitrary value, but if it is too big,
the simulation might be imprecise. In this section, we
define the sector size’s limit to ensure precision. Our
solution has the following design choices:

• The solution does not offer support for objects
with AABB larger than the sector size;

• Clones share their original object position while
being placed in another sector. Consequently their
position is outside their assigned sector.

Consider Figure 4. The pink sector might contain
clones from adjacent sectors. To guarantee clones are
simulated inside the precision range, sector size must
be such that all neighbor sectors stay inside it. The
sector edge L must be L ≤ 2r

3
√

3
, where r is the preci-

sion limit.

r

Original
Clone

Figure 4: Sector and its neighbors inscribed in precision
range (sphere with radius r. For better viewing drawn as a
circle).

5 RESULTS

Physics are sensitive to initial conditions, i.e., small
changes in one state can result in more significant dif-
ferences in later ones. As discussed before, floating-
point physics simulations are also susceptible to ac-
cumulating rounding error, varying the error in many
degrees of magnitude with slightly different distances
from the Cartesian origin, which increases the sam-
pling error. Thus, computing a physics simulation er-
ror is not trivial, and results might differ significantly
under slightly different conditions.

We compare the PhysX physics engine and our
solution running on top of PhysX, both in the Unity
game engine. Our tests run in a Quad-Core i3-9100F,
GTX 1050 Ti, and 8GB of DDR4 RAM clocked at
2400 MHz.

Our precision test consists of two spheres, im-

Accurate Real-time Physics Simulation for Large Worlds

139



pulsed towards each other to collide. The spheres’
radii are 0.5 units, and in the best conditions, a col-
lision is expected when spheres are one unit apart.
Running the test at origin (ground truth) results in a
collision detection when spheres are 0.479 units apart
due to simulation discrete time steps. All tests execute
using the same time step value, thus canceling any
disturbance on the results. We calculate the error for
each object as the Euclidean distance between its final
position after the simulation and its final position after
the ground-truth simulation. The simulation error is
the aggregation of all objects errors using a Least Ab-
solute Deviations loss function. Figure 5 compares
collision detection error over origin distance. Since
our implementation uses a sector grid centralized at
the origin, it offers the same precision until half sector
size (with minor differences). After half sector size,
PhysX error increases until 8×106 distance from the
Cartesian origin. After this distance, spheres would
not collide due to imprecision even when using so-
phisticated and expensive collision detection methods
available in Unity-PhysX, e.g., Speculative Continu-
ous Collision Detection (Unity, 2020). In contrast,
our solution maintains the error in an acceptable range
since objects are kept near the origin. When objects
are assigned to the next sector, their position becomes
local to the new sector, approximating and distancing
from the Cartesian origin, configuring an error peri-
odic wave pattern.

Origin distance

 E
rr

or

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10 1000 100000 10000000

LPSS 128 LPSS 1024 PhysX

Figure 5: Collision detection error over simulation distance
to the Cartesian origin using PhysX and our solution (LPSS)
with 128 and 1024 sector size.

The sparse positioning of objects generates more
sectors and, consequently, more instances of physics
simulation are demanded. As the number of instances
increases, more physics invocations are needed, di-
rectly impacting the application’s performance. Fig-
ure 6 demonstrates the time consumption relative to
the number of physical instances. The test starts
with 128 objects assigned to one sector, and these
objects are progressively distributed in more physics
instances until reaching one object per sector (end-

ing with 128 sectors). As an example of the impact
caused by the number of physics instances, simulat-
ing 128 instances with one object is ≈ 80 times more
expensive than one instance with 128 objects. Since
simulations are independent, the problem can be miti-
gated by splitting simulations across processing cores.

Simulation Instances

0 ms

5 ms

10 ms

15 ms

20 ms

0 25 50 75 100 125

Figure 6: Processing times to simulate 128 physics objects
over physics simulations instances.

The third experiments focus on the sectorization
and cloning management overhead for each physics
simulation step. As seen in Figure 7, objects sec-
torization cost is proportional to the number of ob-
jects and is negligible compared to simulation cost.
Cloning management, however, has a considerable
cost over object count, which can be minimized us-
ing faster broad-phase collision detection algorithms.
Clones must be simulated as physics objects, which
translates in increasing simulation time.

Objects

0.0ms

0.5ms

1.0ms

1.5ms

2.0ms

25 50 75 100 125

Clones Checking Simulation Sectoring

Figure 7: LPSS overhead per physics simulation.

Furthermore, we visually explored the difference
between using our proposal and not. Figure 8 demon-
strates how our solution scales well with large envi-
ronments. Right stacks use LPSS while left stacks do
not.

Top stacks are simulated at origin and bottom are
displaced 224 units from origin. This tests shows that
simulation works as expected at the origin regardless
if the simulation uses or not or solution, but at high
coordinates using PhysX is so inaccurate that the sim-
ulation fall apart while our solution remain stable and

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

140



Figure 8: Visual comparison between physics simulations
of stacks.

correct. In this test, LPSS sectors are 1000 units in
length. A minor difference can be perceive between
using or not our solution without displacement from
the world origin. This discrepancy is due to a physics
frame gap in our system initialization. While the
PhysX test is completely disrupted when simulating
with big coordinates, LPSS error is kept acceptable.

6 CONCLUSION

In this paper, we present a low computational cost
system to increase simulation precision in physics en-
gines, supporting larger or infinity scenarios regard-
less of the utilized physics engine and its numeric rep-
resentation. This is achieved by dividing the world
into logical sectors and simulating objects with sector
local coordinate systems. Coordinates are restricted
to half sector size. Ergo, floating-point values have a
well-defined max error. Objects redundant copies are
created to handle correctly interactions across sector’s
edges.

Smaller sectors guarantee more precision but
cover a small volume, which may require more sec-
tors and physics simulation, compromising the appli-
cation performance. Hence, a trade-off can be defined
between precision and performance without depend-
ing on physics engines’ implementations.

Our research focuses on achieving arbitrary pre-
cision with simulation consistency and low process-
ing cost per simulation step. As future work, we will
explore acceleration structures to minimize overhead,
especially in cloning management. Furthermore, we
will look to merge our solution with (Brown et al.,
2019), to provide an efficient cloning system and

we will explore more complex partitioning systems
to minimize communication overhead while maxi-
mizing load balancing, supporting large-scale virtual
worlds with horizontally scalable parallelism.

ACKNOWLEDGEMENTS

We thank the Brazilian Army and its Prg EE AS-
TROS 2020 for the financial support through the SIS-
ASTROS project.

REFERENCES

AdoredTV (2015). Citizen spotlight - Star Cit-
izen - Roberts Space Industries. https:
//robertsspaceindustries.com/community/
citizen-spotlight/1599-Star-Citizen-How-Big.

Baraff, D. (1989). Analytical methods for dynamic simula-
tion of non-penetrating rigid bodies. In Proceedings
of the 16th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH 1989, vol-
ume 23, pages 223–232.

Boeing, A. and Bräunl, T. (2007). Evaluation of real-time
physics simulation systems. Elsevier.

Brown, A., Ushaw, G., and Morgan, G. (2019). Aura pro-
jection for scalable real-time physics. In Proceedings
- I3D 2019: ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games.

Burk, S., Coleman, A., and Tracy, S. (2016). Sean Tracy
on 64-bit Engine Tech & Procedural Edge Blending.
https://www.youtube.com/watch?v=OB AI9ukSp8.

Ericson, C. (2005). Real-Time Collision Detection, vol-
ume 1. Morgan Kaufmann.

Goldberg, D. (1991). What every computer scientist should
know about floating-point arithmetic. ACM Comput-
ing Surveys (CSUR), 23(1):5–48.

Guo, S. (2013). Double & Single Precision in Bullet. http:
//guoshihui.net/double-single-precision-in-bullet.

Kavan, L. (2003). Rigid body collision response.
https://www.cs.utah.edu/∼ladislav/kavan03rigid/
kavan03rigid.html.

Liu, H., Bowman, M., Adams, R., Hurliman, J., and Lake,
D. (2010). Scaling virtual worlds: Simulation require-
ments and challenges. In Proceedings - Winter Simu-
lation Conference, pages 778–790.

Lozano, M., Morillo, P., Lewis, D., Reiners, D., and Cruz-
Neira, C. (2007). A distributed framework for scal-
able large-scale crowd simulation. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 4563 LNCS(May 2014):111–121.

Lui, J. C. and Chan, M. F. (2002). An efficient partitioning
algorithm for distributed virtual environment systems.
IEEE Transactions on Parallel and Distributed Sys-
tems, 13(3):193–211.

Accurate Real-time Physics Simulation for Large Worlds

141



Outerra (2012). Outerra: Outerra Tech Demo re-
leased! https://outerra.blogspot.com/2012/02/
outerra-tech-demo-released.html.

Petkova, A., Hughes, C., Deo, N., and Dimitrov, M.
(2016). Accelerating the distributed simulations of
agent-based models using community detection. In
2016 IEEE RIVF International Conference on Com-
puting Communication Technologies, Research, Inno-
vation, and Vision for the Future (RIVF), pages 25–30.

Seugling, A. and Rolin, M. (2006). Evaluation of physics
engines and implementation of a physics module in a
3d-authoring tool. Umea University, page 89.

Tracy, D. J., Buss, S. R., and Woods, B. M. (2009). Efficient
Large-Scale Sweep and Prune Methods with AABB
Insertion and Removal. Technical report, University
of California San Diego.

Unity (2020). Manual: Continuous collision de-
tection (CCD). https://docs.unity3d.com/Manual/
ContinuousCollisionDetection.html.

Unity Community (2017). Making an open
world map. Could use some input. - Unity
Forum. https://forum.unity.com/threads/
making-an-open-world-map-could-use-some-input.
484643.

Unity Community (2018). Floating Point Errors and Large
Scale Worlds - Unity Forum. https://forum.unity.com/
threads/floating-point-errors-and-large-scale-worlds.
526807/.

Vigueras, G., Lozano, M., Orduña, J. M., and Grimaldo, F.
(2010). A comparative study of partitioning methods
for crowd simulations. Applied Soft Computing Jour-
nal, 10(1):225–235.

Wang, J., Mao, T., Song, X., Liu, S., Jiang, H., and Wang, Z.
(2018). Parallel crowd simulation based on power law.
In 2018 International Conference on Virtual Reality
and Visualization (ICVRV), pages 78–81.

Wang, Y., Lees, M., Cai, W., Zhou, S., and Low, M. Y. H.
(2009). Cluster based partitioning for agent-based
crowd simulations. In Winter Simulation Conference,
WSC ’09, page 1047–1058. Winter Simulation Con-
ference.

GRAPP 2021 - 16th International Conference on Computer Graphics Theory and Applications

142


