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The outbreak of the COVID-19 and the lack of pharmaceutical intervention increase the spread of COVID-19.
Since no vaccine or treatment are yet available, social distancing represents a good strategy to control the
propagation of this pandemic and learn to live with it. In this context, we introduce a new approach for crowd
behavior analysis from UAV-captured video sequences in order to monitor social distancing. The proposed
approach involves two methods: a macroscopic method and a microscopic method. The macroscopic method
aims to estimate the crowd density by classifying the aerial frame patches into four categories: Dense, Sparse,
Medium and None. However, the microscopic method allows to detect and track humans and then compute
the distance between them. The quantitative and qualitative results validate the performance of our methods

compared to the state-of-the-art references.

1 INTRODUCTION

In December 2019, Wuhan city which is the capital
of Hubei became the propagation source of a pneu-
monia outbreak, known as coronavirus disease 2019
(COVID-19) (Lewnard and Lo, 2020; Zhang et al.,
2020; Zhou et al., 2020). According to the num-
ber of confirmed cases and the number of caused
death, the COVID-19 has declared by the World
Health Organization (WHO) as though a pandemic
virus (WHO, 2020). Indeed, this pandemic was prop-
agated promptly (Punn et al., 2020) to more than 216
countries. In fact, about 26.121.999 confirmed cases
are noted along with 864.618 deaths in the world on
Septembre 4, 2020. The lack of active therapeutic
agents and the dearth of immunity raise the spread
of COVID-19 (Punn et al., 2020; Singh and Adhikari,
2020; Wilder-Smith and Freedman, 2020). As no vac-
cines are currently available, social distancing con-
stitutes an effective strategy allowing the standstill
of this pandemic spread (Punn et al., 2020; Singh
and Adhikari, 2020; Park et al., 2020; Cristani et al.,
2020). In fact, social distancing in pandemic time has
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internal as well as external benefits helping humans to
learn living with this virus (Zhou et al., 2020). The in-
ternal benefits consist of being less probably to catch
the virus in the case of socially distant. As for exter-
nal benefit, it helps reducing the propagation of the
virus to other people, precisely other strangers. In the
context of COVID-19, it is recommended to maintain
a distance of two meters from other humans (Repici
et al., 2020).

For this purpose, we introduce a new approach,
that tends to help the social inspection force by alert-
ing them in the case of non-compliance with social
distancing measures. The proposed approach aims to
analyze the crowd behavior from UAV-captured video
sequences in order to monitor social distancing. Our
approach consists of two methods: a macroscopic
method and a microscopic method. These methods
are based on the use of convolutional neural net-
works (CNN) and transfer learning. The macroscopic
method estimates the crowd density by classifying the
aerial frames patches within four categories: Dense,
Sparse, Medium and None. The microscopic method
detects and tracks humans, to compute the distance
between them. The main contributions of this paper
are outlined as follows:

e The proposed strategy of dividing the input frame
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into N-sub-frames and estimating their density in
parallel process allows to reduce the time com-
putation. Such contribution makes our approach
suitable for real-time applications.

e The complementary combination of macroscopic
and microscopic methods: The filtering level pro-
cess in the macroscopic method allows selecting
the suspicous crowd regions and focuses on the
most critical situation. In fact, the detection of
dense or medium crowd regions will trigger an
alert to the inspection forces (police). However,
the detection of a sparse crowd regions, will ac-
tivate the microscopic process to check the main-
tain of the social distancing within these regions.
This filtering process provides a particular focus
on the most suspicious crowd regions and reduces
the complexity cost and hence the time computa-
tion.

e Our approach stands out from the literature (Punn
et al., 2020) in the use of UAV sensor which di-
verts the fixed coverage areas problem and as-
sure open spaces surveillance (Hazar et al., 2019;
Mliki et al., 2020). In fact, the UAV provides
more flexibility enabling it to overcome the oc-
clusion problem and monitor open space areas.

The remaining sections of the paper are organized
as follows. Section 2 identified the related works on
macroscopic and microscopic crowd behavior analy-
sis. In section 3, the outlines of the proposed approach
are reported. The experimental results are discussed
in section 4. The last section reviews the proposed ap-
proach and offered some future research perspectives.

2 RELATED WORKS

The crowd behavior analysis is based on two types
of complementary analysis methods: macroscopic
method and microscopic method. In the following
sections, the related works of these two methods in
aerial views were explored.

2.1 Macroscopic Methods

The macroscopic methods handle visually indistin-
guishable crowded (VIC) aerial frames and analyze
the crowd as a global entity. In fact, these methods
neglect the local information and focus on the treat-
ment of global information such as crowd density,
crowd counting and crowd flow. In this state-of-the-
art study, we are interested in crowd density estima-
tion methods in aerial views. In this context, Meyn-
berg and Kuschk (Meynberg and Kuschk, 2013) pro-
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posed to encode crowd patches through the Gabor fil-
ter bank. Next, the resulted Gabor features are fed to
the support vector machine (SVM) classifier. Finally,
they classify crowd patches into two categories: dense
and none. For the purpose of improving their previous
work, the selfsame authors (Meynberg et al., 2016)
proposed to make use of an LBP descriptor instead
of the Gabor descriptor. They managed to estimate
the crowd density in a fixed ground sampling distance
(GSD) aerial images which ranges from 10 to 13 cm.
Within the same axis, Mliki et al. (Hazar et al., 2019),
extracted the points of interest from each crowd patch
trough the scale-invariant feature transform descrip-
tor (SIFT). Afterward, they extracted from each in-
terest centered region the texture features using the
multiblock local binary pattern (MB-LBP) descriptor.
Thereafter, they generated a global MB-LBP feature
vector through the concatenated of each centered re-
gion MB-LBP vector features. Finally, the obtained
global MB-LBP features are fed to the SVM classi-
fier.

2.2 Microscopic Methods

The microscopic methods analyze crowd behavior by
detecting each person in the crowd and analyzing its
behavior. These methods describe efficiently the un-
usual events in an aerial view. Nonetheless, they can
only handle the sparse crowds, as they are not able to
separate humans in dense or medium crowds. There-
fore, we analyzed person detection methods in aerial
videos. AlDahoul et al. (AlDahoul et al., 2018) pro-
posed a real-time human detection method from the
UAV-captured video sequences. As a pretreatment,
they used an optical flow technique to detect poten-
tial motion regions. Next, they classified these poten-
tial motion regions using a pretrained CNN AlexNet
(Krizhevsky et al., 2012). Nonetheless, this method
doesn’t deal with the close objects constraint. To han-
dle this constraint, Mliki et al. (Mliki et al., 2020)
proposed to integrate a module of regions of inter-
est generation and selection which helps adapting the
classical CNN, devoted to the classification problem,
to detect humans.

2.3 Discussion

In the literature, two types of complementary crowd
behavior analysis methods are identified: macro-
scopic method and microscopic method. Although
the good performance achieved by handcrafted meth-
ods (Hazar et al., 2019; Meynberg and Kuschk, 2013;
Meynberg et al., 2016), they overlook the semantic
information resulting from extremely abstract deep
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features. Furthermore, they depend on the choice
of descriptor (Mliki et al., 2020). Referring to this
state-of-the-art study, we propose a new macroscopic
method for crowd density estimation based on pre-
trained CNN. Regarding the microscopic methods,
we addopted the Mliki et al. (Mliki et al., 2020)
method since it deals with the close objects constraint
and adapts the classical CNN, devoted to the classi-
fication problem, to detect humans. Nonetheless, we
proposed to add the human tracking step, in order to
generate continous humans location and then comput-
ing distance between them.

3 PROPOSED APPROACH

In order to monitor COVID-19 social distancing, we
proposed a new approach for crowd behavior analysis
from UAV-captured video sequences. The proposed
approach consists of two methods as shown in Fig. 1:
a macroscopic method and a microscopic method.
The macroscopic method aims to estimate the crowd
density by classifying the aerial frame patches into
four categories: Dense, Sparse, Medium and None.
The microscopic method allows to detect and track
humans in order to compute the distance between
them. In the following sections, each of these meth-
ods was detailed.

3.1 Macroscopic Method

Since the proposed approach is designed for real time
applications, it’s important to improve the computa-
tion time and the algorithm complexity. Therefore,
we parallelize the crowd density estimation process
on multiple CPU to reduce time computation. In
fact, each aerial frame is divided into N equal sub-
frames depending on the number of the CPUs Cores.
The crowd density estimation proposed method is
based on a pretrained CNN. Various pretrained CNN
have been proposed such as: AlexNet (Krizhevsky
et al., 2012), ZFNet (Zeiler and Fergus, 2014), VG-
GNet (Simonyan and Zisserman, 2014), GoogLeNet
(Szegedy et al., 2015), ResNet (He et al., 2016). Bas-
ing on a comparative study performed by Kaiming et
al. (He et al., 2016) which assesses the pre-trained
CNN effectiveness in terms of the number of lay-
ers and classification error rate, we adopted the pre-
trained CNN ‘AlexNet’. AlexNet

Thereby, we substitute the classification layer by a
novel softmax layer to classify the crowd patches into
four categories: Dense, Sparse, Medium and None.

Thereafter, we fine-tuned the obtained model to
our context of study in order to generate an adequate
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Figure 1: Proposed approach for crowd behavior analysis to
monitor social distancing.
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crowd density model able to filter crowd regions and
focuses on the most critical ones. Hence, three sce-
narios can be addressed as illustrated in Fig. 2:

Crowd image patches

Crowd density
classification

HE & W

Dense Medium Sparse None

— |

Social distancing monitoring
(Microscopic method)

Alert Trigger
Figure 2: Filtering level process.

e Crowd patch is classified as ‘none’: this patch is
empty.

e Crowd patch is classified as ‘dense’ or ‘medium’:
this patch presents non-conformity with social
distancing problem. Therefore, an alert is trig-
gered to the social inspection forces with GPS lo-
cation information.

e Crowd patch is classified as ‘sparse’: this patch is
suspicious and needs more focus to check the con-
formity of social distancing using a microscopic
method.

3.2 Microscopic Method

This method aims to focus on the ‘sparse’ crowd re-
gion where people are distinguishable. The proposed
method consists of 3 steps: (1) Moving objects de-
tection, (2) Human detection and (3) Social distance
computation.

3.2.1 Moving Objects Detection

This step allows eliminating the acquisition sensor
ego-motion and detecting the potential motion re-
gions. In fact, the estimation of each pixel motion
provides a set of motion vectors resulting from both
of the potential motion regions and the UAV displace-
ment in the scene. To distinguish these motions, the
speed of the motion included from UAV is assumed
to be lower than the speed of the potential motion re-
gions (Mliki et al., 2020). Therefore, the motion re-
lated to the UAV displacement, which affects dynamic
as well as static objects in the scene, is not taken into
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consideration. As for the motion related to the ob-
jects, it is detected by computing the optical flow us-
ing the Lucas-Kande algorithm (Thota et al., 2013)
thanks to its speed, simplicity and accuracy (Mliki
et al., 2020).

3.2.2 Human Detection

The human detection required the generation of
human/non-human model to classify potential motion
regions. We generated the human/non-human model
using the pretrained CNN AlexNet (AlDahoul et al.,
2018). In order to adapt the classic CNN to handle
the detection problem, we integrated a module of re-
gions of interest generation and selection. The regions
of interest generation is performed using the Edge
boxes (Zitnick and Dollér, 2014). Since, the gener-
ated regions vary slightly in shape, scale or position,
we performed on these regions a selection step using
the Non-Maximum Suppression(NMS) (Zitnick and
Dollédr, 2014) algorithm. Such module allows han-
dling the close-up objects, which often appear in the
selfsame potential motion region and are usually clas-
sified as a single object. Afterward, the selected re-
gions are classified into human/non-human objects.
Next the detected humans are tracked using Kalman
filter (Welch and Bishop, 1995), in order to get con-
tinuous human location.

3.2.3 Social Distance Computation

We computed the distance between the detected hu-
mans on each frame. According to the computed dis-
tance, we used a green bounding box on the detected
human if he is away at least two meters from all hu-
mans. Otherwise, we used a red bounding box and
an alert is triggered. The compute of social distance
is based on the estimation of the ground sampling dis-
tance (GSD), which defines an image pixel size on the
ground. Fig. 3 describes the Ground Sampling Dis-
tance parameters.

The GSD is computed through the following equa-
tions:

GSDyJem/ px] = Altitude|cm] x Sensorheight[cm]

Focallength[cm] x Frameheight|px]
)]
Altitudelcm] x Sensorwidth[cm]

Focallength[cm] x Framewidth|px]
2
In the case when UAV have usually square pixels,
the GSD = GSD;, = GSD,,. However, when GSD), #
GSD,,, then GSD takes the maximum value. Then, we
extracted the centroid of each human bounding box
and we computed the Euclidean distance between the

GSDy[cm/px] =
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Figure 3: Ground sampling distance parameters.

obtained centroids, as follows:

D(pisp)lpa) =\ (exp, — exp P+ (cvp —cxp)? )

Where, (cxpi,cypi) and (cx,;,cyp;) are respectively
the coordinates of the centroid of the detected person
pi and p;. In order to convert the distance in centime-
ters, we multiply it by the GSD.

4 EXPERIMENTAL STUDY

In this section, we evaluated the performance of the
proposed approach for crowd behavior analysis from
UAV-captured video sequences in order to monitor
social distancing. In the following sections, we de-
scribed the used datasets and the experimental results.

4.1 Datasets Description

The assessment of the proposed macroscopic method
was achieved on Mayenberg’s dataset (Meynberg and
Kuschk, 2013; Meynberg et al., 2016) and MIiki’s
dataset (Hazar et al., 2019), while the evaluation of
the microscopic method was carried out on the UCF-
ARG dataset (Nagendran et al., 2010). These datasets
were captured by UAV in an controlled environment.

4.1.1 Mayenberg’s Dataset

The Mayenberg’s dataset (Meynberg and Kuschk,
2013; Meynberg et al., 2016), was captured, through
two flight campaigns, in open-air rock Germany fes-
tivals. This dataset includes 70.000 patches cor-
responding to one of the crowd classes: Dense,

Medium, Sparse and None. It shows minor variations
in the UAV-captured crowd images.

4.1.2 MiIiki’s Dataset

This dataset was collected over the net and it repre-
sents various contexts as: festival, marathon, mani-
festation and pilgrimage (Hazar et al., 2019). It is
composed of 12,000 UAV-captured patches belong to
the crowd classes: Dense, Medium, Sparse and None.
The Mliki’s dataset shows more complex variations
than Mayenberg’s dataset.

4.1.3 UCF-ARG Dataset

The UCF-ARG dataset (Nagendran et al., 2010), in-
cludes 482 video sequences of human activities and
it deals with several constraints such as: the variation
of the UAV altitude, the severe ego-motion, the varia-
tion in the point of view and the illumination variation
conditions.

4.2 Experimental Results

We carried out two series of experiments: The first se-
ries of experiments aimed to assess the macroscopic
method for crowd density estimation, and the sec-
ond series of experiments evaluated the microscopic
method for human detection and social distance com-
puting.

4.2.1 First Series of Experiments: Crowd
Density Estimation (Macroscopic Method)

Through this series of experiments, we assessed the
performance of the proposed macroscopic method for
crowd density classification with the state-of-the-art
reference methods (Hazar et al., 2019; Meynberg and
Kuschk, 2013; Meynberg et al., 2016). For the pur-
pose of assuring fair comparison with Mayenberg’s
(Meynberg and Kuschk, 2013; Meynberg et al., 2016)
and Mliki’s (Hazar et al., 2019) methods, we applied
the same experimental protocol. In fact, we used, for
each dataset, 110 training crowd patches and 500 test-
ing crowd patches per class. Table 1 reported this
evaluation study in terms of accuracy rate.

Referring to this study, we noted that our results
surpassed those obtained by (Meynberg and Kuschk,
2013; Meynberg et al., 2016) owing to the use of
CNN and transfer learning, which deal with the UAV
constraints like the variation in: the GSD, the resolu-
tion, the illumination and the view angle. Nonethe-
less, Mliki et al. (Hazar et al., 2019) slightly exceed
our method, this is justified by the fact of applying
a three-level classification strategy to deal with the
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Table 1: Comparison of our macroscopic method for crowd
density estimation with the state-of-the-art reference meth-
ods in terms of accuracy rate.

Datasets Methods Accuracy

Meynberg et al., 2013 62.3 %

Mayenberg

Mayenberg et al., 2016 | 74.67 %

Miliki et al., 2019 89.2 %

Our method 84.85 %

Mayenberg et al., 2016 71.8%

Mliki
Miliki et al., 2019 86.8 %
Our method 82.1 %

crowd density class confusion. Although this strategy
enhanced the performence results, it has significantly
increased the computational complexity making it not
suitable for real-time contexet.

Table 2 illustrates the run-time gain of our macro-
scopic method while using N parallel process. Such
gain is critical for real-time applications.

Table 2: Evaluation of the parallel process for crowd den-
sity estimation on Mliki’s dataset (Hazar et al., 2019) in
terms of sec/frame.

Material configuration | Execution | Sec/frame

i5 2.4 GHZ CPU (N=2) | Sequential 6.40

8 GB RAM Parallel 5.60

Figure 4 represents some samples results of our
macroscopic method on the Mliki’s dataset (Hazar
et al., 2019). More qualitative results of our macro-
scopic method are available on this link: videol.

4.2.2 Second Series of Experiments: Human
Detection and Distance Computation
(Microscopic Method)

Through this series of experiments, we evaluated
the performance of the proposed microscopic method
for human detection. For fair comparison with Al-
Dahoul et al. (AlDahoul et al., 2018), we used their
experimental protocol. Table 3 highlighted this com-
parative study performed on the UCF-ARG dataset
(Nagendran et al., 2010).
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Table 3: Comparison of our microscopic method for human
detection with (AlDahoul et al., 2018) method in terms of
accuracy rate.

Methods Accuracy
Al-Dahoul et al., 2018 98.0907%
Our method 99.5873 %

Through this experimental study, we underline
that our method outperformed the obtained results of
the AlDahoul et al. (AlDahoul et al., 2018) in terms of
accuracy rate. Such results highlighted the contribu-
tion of using the regions of interest generation and se-
lection module, which overcame the problem of close
objects classification. Figure 5 shows some results
of our social distance computing on the UCF-ARG
dataset (Nagendran et al., 2010), where the red boxes
indicate the non-conformity of people to the social
distancing rule and green boxes refer to the respect
of the social distancing rule.

Further qualitative results of our microscopic
method are available on this link: video2.

S CONCLUSION

The social distancing represents is the most recom-
manded strategy that allows the mitigating of the
COVID-19 pandemic propagation. In this context, we
have proposed a new approach that aims to analyze
crowd behavior from UAV-captured video sequences
to monitor social distancing. Our approach involves
two methods: a macroscopic method and a micro-
scopic method. The macroscopic method allows es-
timating the crowd density by classifying the aerial
frames patches into four categories: Dense, Sparse,
Medium and None. The microscopic method aims to
detect and track humans so as to compute the distance
between them. Through the quantitative and qualita-
tive evaluations of the proposed methods, we prove
the performance of our approach compared to the ex-
isting ones.

As future perspectives, we aim to improve the pro-
posed crowd behavior analysis approach by adding
a person re-identification step in order to re-identify
persons who are non-compliance with social distanc-
ing measures. Furthermore, we are planning to inte-
grate the person temperature measurement by using
thermal UAV.
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Figure 4: Crowd density estimation samples using the proposed macroscopic method on the Mliki’s dataset (Hazar et al.,
2019).

Figure 5: Humans detection, tracking and social distance monitoring samples using the proposed macroscopic method on the
UCF-ARG dataset (Nagendran et al., 2010).
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