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Abstract: The ability to perform autonomous exploration is essential for unmanned aerial vehicles (UAV) operating in 
unknown environments where it is difficult to describe the environment beforehand. Algorithms for 
autonomous exploration often focus on optimizing time and full coverage in a greedy fashion. These 
algorithms can collect irrelevant data and wastes time navigating areas with no important information. In this 
paper, we aim to improve the efficiency of exploration by maximizing the probability of detecting valuable 
information. The proposed approach relies on a theory of robustness based on Probabilistic Metric Temporal 
Logic (P-MTL) which is traditionally applied to offline verification and online control of hybrid systems. The 
robustness values would guide the UAV towards areas with more significant information by maximizing the 
satisfaction of the predefined P-MTL specifications. Markov Chain Monte Carlo (MCMC) is utilized to solve 
the P-MTL constraints. We tested our approach over Amazonian rainforest to detect areas occupied by illegal 
Artisanal Small-scale Gold Mining (ASGM) activities. The results show that our approach outperforms a 
greedy exploration approach from the literature by 38% in terms of ASGM coverage. 

1 INTRODUCTION 

Exploration is often an important first step in tasks of 
robotics and autonomous vehicles, such as mapping, 
rescue missions, or path planning in unknown 
environments. Techniques that tackle this problem 
typically focus on exploration time and coverage, i.e. 
how fast and how much of an unexplored area can be 
explored (Bircher et al., 2016; Yamauchi, 1997; Selin 
et al., 2019). Although optimizing coverage and time 
for exploration problems is crucial, it is important in 
some problem domains to consider exploiting the 
detected information about the environment while 
exploring it to prioritizing the exploration of 
interesting areas encountered during flight. Adding 
such spatial and temporal considerations into 
exploration enhances the decision robustness about 
the navigation behaviour of the UAV and introduces 
some predictability on where the vehicle could move 
next. Moreover, it is usually more desirable to gather 
knowledge and information about certain areas than 
wasting the vehicle’s resources such as flight time or 
its local storage exploring the whole environment. 

In this paper, we address the problem of mapping 
mercury-based Small-scale Gold Mining (ASGM) in 

Amazonian Forest (Koymans, 1990). Mercury‐based 
ASGM causes more mercury pollution than any other 
human activity on Earth, leading to major effects on 
the environment, health, and local economies. It is a 
global issue affecting 10 to 19 million people in over 
70 countries (Adler et al., 2014). Though satellite 
remote sensing would be ideal for monitoring ASGM 
sites (e.g. (Heng et al., 2015)), satellites do not 
currently produce images of sufficient resolution to 
accurately detect ASGM and differentiate, for 
example, between active and inactive mining sites 
(e.g. (González-Baños and Latombe, 2002)). 
Moreover, satellite monitoring is not possible in 
cloudy and rainy weather which is very common in 
areas like the Amazon forest. UAVs can overcome 
those issues. They are affordable, easy to use, 
versatile, and even suitable in barely accessible areas. 
They also deliver high resolution data, mostly 
independent of cloud cover condition. However, the 
UAV field of view is significantly smaller than that 
of a satellite. To use UAVs to collect information in 
Amazon, its acquisition of image data needs to reduce 
the flight time, the required storage, and classification 
burden of the collected images. According to 
researchers who collect images using a small UAV in 
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Amazon Forest for their ASGM research (Karaman 
and Frazzoli, 2019), a full exploration of a small area 
as of 8x8 km2 requires almost 8 separate flights; each 
flight has been done in 4 hours; acquiring 7200 
images.  

In this specific instance of exploration problem, 
the UAV would explore the given simulated map 
looking for ASGM. The environment is unknown and 
the only input to the system is the onboard recognition 
system for materials and machinery used in ASGM. 
The goal is to improve the efficiency of exploration: 
i.e. to maximize the probability of detecting ASGM 
relative to the exploration effort that has been 
expended. To achieve that, we develop a novel 
robustness-driven exploration (RDE) approach to 
constrain a UAV movement according to user-
defined spatial and temporal constraints expressed in 
P-MTL. These constraints guide the exploration into 
ASGM areas in the environment which we call Areas 
of Interest (AoI) based on the online detection of 
ASGM features. The first contribution of our work is 
the proposal of a method to explore unknown 
environment according to a robustness function that 
considers the degree of satisfaction of P-MTL 
specifications of AoI. By utilizing the notion of 
robustness for Metric Temporal Logic (MTL) 
(Karaman and Frazzoli, 2011), we can quantify how 
robustly a UAV’s exploration decision satisfies a P-
MTL specification.  

The second contribution is adopting MCMC to 
solve the P-MTL constraints. The MCMC technique 
is used as a local exploration strategy and is combined 
with a simplified version of Frontier Exploration 
(Yamauchi, 1997) for global exploration. When a 
new AoI is available close to the UAV, the local 
exploration strategy is used, but when it is far away 
from any AoI, previously seen but not-visited-yet 
positions with potential high robustness are explored 
instead. This simple technique helps the MCMC 
avoid getting stuck locally when exploring large areas 
with small or zero robustness values (i.e. no ASGM).  

The performance of RDE is evaluated by 
simulating UAV exploration over five different 
regions of the Amazon Forest in Peru to detect areas 
occupied by illegal mining activities. We test RDE 
against the Autonomous Exploration Planner (AEP) 
proposed in (Selin et al., 2019). The results show that 
our proposed approach outperforms AEP in terms of 
AoI coverage by 38%. 

The remainder of this paper is organized as 
follows. The next section further discusses the related 
work of the autonomous exploration and the temporal 
logic robustness and its application to exploration and 
navigation problems. In section 3, we introduce the 

problem definition and briefly review MTL 
robustness and P-MTL. Section 4 discusses the 
proposed approach, and Section 5 presents the results 
and discusses future work. 

2 RELATED WORK 

Early autonomous exploration methods explored 
simple environments, for example, by following walls 
or similar obstacles. Frontier exploration (Yamauchi, 
1997) was the first exploration method that could 
explore a generic 2D environment. It defines frontier 
regions as the borders between free and unexplored 
areas. Exploration is done by sequentially navigating 
close frontiers. Repetition of this process leads to 
exploring the whole space. Advanced variants of this 
algorithm were presented in (Alqahtani et al., 2018; 
Ayala et al., 2013; Vasile et al., 2017) also improving 
the coverage of unknown space along the path to the 
frontier.  

Next-best-view (NBV) exploration is a common 
alternative to frontier-based exploration. A Receding 
Horizon NBV planner is developed in (Bircher et al., 
2016), for online autonomous exploration of 
unknown 3D spaces. The proposed planner employed 
the rapidly exploring random tree RRT with a cost 
function that considers the information gain at each 
node of the tree. A path to the best node was extracted 
and the algorithm was repeated after each time the 
vehicle moved along the first edge of the best path. 
An extension of this work is proposed in (Selin et al., 
2019) to resolve the problem of getting stuck in local 
minima by extending it with frontier-based planner 
for global exploration. Our approach also samples 
NBV according to the current vision of the UAV. In 
contrast to previously mentioned research, the views 
are randomly sampled as potential targets in our 
approach via MCMC and evaluated by their 
robustness values of the P-MTL constraints. In most 
cases, very few sampled positions suffice to 
determine a reasonably good next target. 

Recently, temporal logics have been used in the 
context of robotic motion and path planning in 
unknown environments. For instance, deterministic 
μ-calculus was used to define specifications for 
sampling-based algorithms (Barbosa et al., 2019), 
Linear Temporal Logic (LTL) was coupled with 
RRT* (Caballero et al., 2018), robustness of Metric 
Temporal Logic (MTL) has been embedded in A* 
(Esdaile and Chalker, 2018) to increase the safety of 
UAVs navigating adversarial environments. Ayala et 
al. assumed that some properties of unknown 
environments can be identified earlier and used in 
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Linear Temporal Logic (LTL) formulas, such that the 
exploration terminates once the formula is satisfied 
(Swenson et al., 2011). In (Asner, 2013), the 
researchers use co-safe LTL (cs-LTL) in their motion 
planning algorithm to compromise between 
satisfaction of customer demands and violation of 
road rules). 

3 PRELIMINARIES 

In this section, we provide the syntax and semantics 
for MTL and P-MTL specifications and how we use 
them to formally define our exploration problem. 

3.1 MTL Robustness 

Definition 1: (MTL Syntax). Let AP be the set of 
atomic propositions and 𝐼 be a time interval of ℝ. The 
MTL 𝜑 formula is recursively defined using the 
following grammar (Karaman and Frazzoli, 2011): 
 

   𝜑 ≔ 𝑇|𝑝|¬𝜑| 𝜑ଵ⋁𝜑ଶ|𝜑ଵ⋀𝜑ଶ| 𝜑ଵ𝒰ூ𝜑ଶ (1)
 

T is the Boolean True, 𝑝 ∈  𝐴𝑃, ¬ is the Boolean 
negation, ⋁ and ⋀ are the logical OR and AND 
operators, respectively. 𝒰ூ is the timed until operator 
and the interval I imposes timing constraints on the 
operator. Informally, 𝜑ଵ𝒰ூ𝜑ଶ means that 𝜑ଵ must hold 
until 𝜑ଶ holds, which must happen within the interval 
I. The implication (⟹), Always (□), Next (○), and 
Eventually (◊) operators can be derived using the 
above operators. 

To formally measure the robustness degree of 𝜑 at 
the trajectory position 𝑠 at time 𝑡, the robustness 
semantics of 𝜑 is recursively defined as taken directly 
from (Dokhanchi et al., 2014): 
 

 
 

where ⊔ stands for maximum, ⊓ stands for minimum, 𝑝 ∈ 𝐴𝑃,and 𝑙, 𝑢 ∈  𝑁. The robustness is a real-valued 
function of the trajectory position s with the following 
important property stated in Theorem 1.  

Theorem 1 (Dokhanchi et al., 2014): For any 𝑠 ∈ 𝑆 and MTL formula 𝜑, if ⟦ 𝜑 ⟧(𝑠, 𝑖) is negative, then 

𝑠 does not satisfy the specification 𝜑 at time 𝑖. If it is 
positive, then 𝑠 satisfies 𝜑 at 𝑖. If the result is zero, 
then the satisfaction is undefined. 

MTL robustness is adopted in this research to 
measure how robust the exploration decision of the 
UAV at any point of time with respect to its 
specification expressed in MTL (Dokhanchi et al., 
2014). If an MTL specification 𝜑 valuates to positive 
robustness 𝜀, then the decision is right and, moreover, 
can tolerate perturbations up to 𝜀 and still satisfy the 
specification. Similarly, if 𝜀 is negative, then the 
decision does not satisfy 𝜑 with a violation equal to - 𝜀. 

3.2 P-MTL 

Probabilistic-MTL (P-MTL) (Fainekos and Pappas, 
2006) is an extension of MTL supporting reasoning 
over both stochastic states and stochastic predictions 
of states. The predictive operator • (𝑡 ́|𝑡) is used to 
refer to observed, estimated, and predicted states. The 
predictive operator is informally defined as follows: 
 

Observed state value: •௧ 𝑠 
Estimated state value: •௧|௧ 𝑠 
Predicted state value: •௧ሖ|௧ 𝑠 
 

where 𝑡 is the observation time, 𝑡 ́ is the prediction 
time, and 𝑠 is the stochastic state under investigation. 
The value of •௧ 𝑠 is the observed value of state 𝑠 at 
time  . On the other hand, •௧|௧ 𝑠 is the estimated value 
of state s at time 𝑡 which is the prediction made at 
time 𝑡 about the value of s at time 𝑡. This operator is 
useful when the detection results are in form of 
probability distribution. The value of •௧ሖ|௧ 𝑠 is a 
prediction made at time 𝑡 about the value of state s at 
time 𝑡′. 𝑡′may be larger than 𝑡 (prediction about 
the future) or smaller than 𝑡 (prediction about the 
past). 

4 AUTONOMOUS 
EXPLORATION WITH P-MTL 
ROBUSTNESS 

The question we address in this work is: starting with 
partially known map, which decisions should the 
UAV perform to explore 𝐸஺௢ூ completely and as fast 
as possible guided by the detection results of ASGM? 

Problem (P-MTL Satisfaction). For an P-MTL 
specification 𝜑, the P-MTL satisfaction problem 
consists of finding an output state 𝑦 of the system 
starting from some initial state 𝑠଴  ∈ 𝑆 under a control 
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input signal 𝑢 ∈  𝑈 such that 𝑦 does satisfy the 
specification 𝜑 with the required robustness 𝜌.  

An overview of our proposed approach to resolve 
Problem (P-MTL Satisfaction) is shown in Fig.1. At 
every time step, the object recognition module would 
generate probabilities for the detected AoI inside the 
UAV’s vision. Then, based on the detection results, 
MCMC sampler would select a position 𝑠 from the set 
of neighbors and a vector of parameters that 
characterize the control input signal 𝑢 (i.e. speed and 
altitude). The selected position is then analyzed by the 
P-MTL robustness analyzer which would return a 
robustness score 𝜀. In turn, if 𝜀 is less than a 
predefined threshold 𝜌 then the stochastic sampler 
would be called again to select another position for 
analysis. If in this process, a position with 𝜀 greater 
than 𝜌 is found, it is used by the path planner RA* 
(Esdaile and Chalker, 2018) to move the UAV to that 
position. RA* has been originally implemented to 
embed MTL robustness into A* to avoid mobile 
obstacles in hostile environments. We change its 
MTL constraints to allow the UAV to explore the AoI 
available around the path while still be target 
oriented.  

Using the MTL syntax (Definition 1) and the 
informal definition of P-MTL, we define the P-MTL 
specification of our problem of RDE as follows: 
         𝜑 = 𝐵 > B௠௜௡ ∧ ◊ p    > β ∧   ◊ p ቀinside൫•௧ି௩|௧ AoI൯ቁ < λ⟹ ○ p ቀinside ൫•௧|௧  𝐴𝑜𝐼൯ቁ> λ 

(2)

 
The first property of the formula □(𝐵 > B௠௜௡) 

represents a safety constraint requiring the UAV to 
keep its battery level above a certain threshold B௠௜௡ 
to get back to homebase. The threshold B௠௜௡ would 
be updated dynamically based on the current position 
of the UAV in the map. ◊ P ቀinside൫•௧|௧ 𝐴𝑜𝐼൯ቁ > β 
specifies that the UAV should stay inside areas with 
a likelihood of being AoI above β. This property is 
classified as a liveness (i.e. preferred) property.  

To decrease the possibility that the UAV wastes 
time exploring non-AoI, the conditional liveness 
property ◊ P ቀinside൫•௧ି௩|௧ AoI൯ቁ < λ ⟹ ○ p ቀinside ൫•௧|௧  𝐴𝑜𝐼൯ቁ > λ asks the UAV to stay a 
maximum of 𝑣 time steps inside areas with likelihood 
of being 𝐴𝑜𝐼 less than 𝜆 and when that happened the 
UAV must immediately (i.e. ○ next decision) find 
another area with higher estimation of AoI or 
terminate the mission and go back to homebase.  
 

 
Figure 1: Proposed approach for RDE problem. 

In order to compute the P-MTL robustness for our 
exploration problem, we must define the Signed 
Distance, 𝐷𝑖𝑠𝑡ௗ to reflect the domain properties 
(Dokhanchi et al., 2014). In this paper, we define two 
functions to measure the distance from the 
propositions of the AoI and the minimum battery 
level Bmin (Fig.2). The location pins symbol 
represents AoI and the quadrotor drone symbol is the 
exploring UAV. The proposed approach analyzes the 𝑛 neighbor positions of the current position 𝑠 of the 
UAV and makes a decision about the next target 
based on the distance and depth functions given in 
Definition 2 and 3 next. 

Definition 2 (AoI 𝑑𝑖𝑠𝑡 function): Given that 𝑠௜ is 
the position that is under robustness analysis, 𝑝 is the 
probability of 𝑠௜ being inside an AoI given by the 
object recognition system, and β is the minimum 
threshold for the detection results, the 𝑑𝑖𝑠𝑡஺௢ூ 
between 𝑠௜ and the closest AoI is defined as: 

   𝑑𝑖𝑠𝑡஺௢ூ(𝑠௜) =ቄ(𝑝 − β) ∗ 100      𝑖𝑓 𝑠௜ ∈ 𝒪(β)0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

Then, we define a depth function to measure the 
distance between the position 𝑠௜ that is under 
robustness analysis and the UAV resource limit.  
We assume that the UAV starts its mission with full 
battery (B=100%) to explore the assigned 
environment. Given that the UAV moves with 
velocity 𝑣, we define a region centered at 𝑠 with 
radius 𝑣 ൈ B௠௜௡ to find the farthest positions that the 
UAV could travel while still being able to go back 
home.  

With this region defined (Fig. 2), we can define 
the function 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬. 
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Figure 2: The structure of the Signed Distance in RDE 
domain. 

Definition 3 (Battery Life 𝑑𝑒𝑝𝑡ℎ function): Given 
that B is the current level of the battery life and B௠௜௡ 
is the battery minimum threshold, 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬ function for the UAV at position 𝑠௜ is 
defined as: 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬(𝑠௜)) = =ቊ(B − B௠௜௡) − ௗ(௦೔,ு௢௠௘)௩  𝑖𝑓 𝑠௜ ∉ 𝒪(B௠௜௡) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (4)

The function 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬ measures the distance 
to the closest edge of the region defined by a 
constraint centered on the position 𝑠௜. It should be 
noted that the defined regions include a third 
dimension for time. Therefore, the outer edges of the 
structure shown in Fig.2 would shrink over time. 

Given a position 𝑠௜, we have defined a robustness 
metric Rఝ(𝑠௜) =  ⟦(𝜑, 𝒪)⟧ (𝑠௜, t) that denotes how 
robustly 𝑠௜ satisfies (or falsifies) 𝜑 at time t. The 
robustness metric Rఝ maps each position 𝑠௜ to a real 
number 𝜀. The sign of 𝜀 indicates whether 𝑠௜ satisfies 𝜑 and its magnitude |𝜀| measures its robustness value. 
More generally, given a robustness threshold 𝜌 > 0 
and a neighboring function 𝜁 to return a set of 
positions which are in neighboring distance (i.e. 
within the range of the UAV) from the UAV’s current 
location, we need to find:  

 
            𝑠௜ ∈ 𝜁 (𝑠௜ିଵ) 𝑠. 𝑡. Rఝ(𝑠௜) ≥ 𝜌  (5)
 
Using the dist and depth functions, the P-MTL 

robustness degree of 𝜑 in equation 2 can be point-
wise computed for each position 𝑠௜ under robustness 
analysis to solve the RDE problem in equation 5. 

The robustness of the safety property in equation 
2 measured at each neighbor position since it must 
hold during the whole trajectory. To measure the 
robustness of the safety constraint for position s, we 

use the MTL robustness semantic with duration of [1, 
1] to guarantee the constraint satisfaction during all 
time steps. In order to apply the robustness semantic, 
the always, eventually, and next operators are 
converted into the Until operator using the conversion 
rules in (Barbosa et al., 2019). Then, the robustness 
becomes a minimum function of the robustness of True 
value and the 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬ function as illustrated in 
equation 6. Since the robustness of True by semantic is 
positive infinity, the robustness function becomes 
about the value of 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬. Equation 6 measures 
how far away the UAV is from being out of battery if 
it chooses to explore position 𝑠௜.  

 𝐵(𝑆௜) > 𝐵௠௜௡ =  ¬(𝑇 𝒰 𝐵(𝑆௜) > 𝐵௠௜௡ ) ሾଵ,ଵሿሳልሰ = ¬ ቌᇙ⟦𝑇⟧(𝑆௜, 𝑗) ⨅ ᇘ⟦𝐵⟧(𝑆௞, 𝑘)௝
௞ୀଵ

ଵ
௝ୀଵ ቍ 

= min ቀ∞, 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬(𝑆௜)ቁ = 𝑑𝑒𝑝𝑡ℎ௕௔௧௧௘௥௬(𝑆௜) 

(6)

 
The robustness of the liveness property evaluates 

the reachability of AoI from position 𝑠௜ in equation 7. 
The robustness becomes about the distance from 𝑠௜ to 
the closest AoI. 

 ◊ p ቀinside൫•௧|௧ 𝐴𝑜𝐼൯ቁ > β = (𝑇 𝒰 𝐴𝑜𝐼(𝑆௜) > β) ሾ௧,௧ሿሳልሰ = ቌᇙ⟦𝑇⟧(𝑆௜, 𝑗) ⨅ ᇘ⟦𝐴𝑜𝐼⟧(𝑆௜, 𝑘)௝
௞ୀ௧

௧
௝ୀ௧ ቍ 

= min൫∞, 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜)൯ = 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜) 

(7)

 
On the other hand, the robustness of the conditional 
liveness property evaluates the ability of the UAV to 
avoid being stuck in non-AoI for longer than 𝑣 time 
steps in equation 8. This property forces the UAV to 
find another position closer to an AoI or to go to 
homebase and terminate the mission indicating that it 
has successfully explored the AoI of the given 
environment. The robustness of the P-MTL semantic 
for this property selects the closest position to an AoI. 
In order to be able to explore another AoI even when 
the neighbor positions are all classified as non-AoI, we 
develop a simple technique to allow the UAV to 
memorize the locations of previously seen but not-
explored-yet areas that can be potentially classified as 
AoI inspired by the developed behavior of Frontier 
Exploration in (Selin et al., 2019). We call those 
locations cached points. Hence, the UAV would keep 
a local list of cached points while exploring other areas 
with higher likelihood of being AoI in order to use 
them to satisfy its conditional liveness property.  

The robustness function in equation 2 becomes 
about finding the minimum values of the results of 
equations 6-8. 
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p ቀinside൫•௧ି௩|௧ AoI൯ቁ < λ ⟹ ○ P ቀinside ൫•௧|௧  𝐴𝑜𝐼൯ቁ 

> λ =  ¬ ቀ൫𝑇 𝒰ሾ௧ି௩,௧ሿ 𝐴𝑜𝐼(𝑆௜)  < λ൯ ∧ ൫𝑇 𝒰ሾ௧,௧ሿ 𝐴𝑜𝐼(𝑆௜ାଵ) > λ൯ቁ 

ሾ௧ି௩,௧ሿሳልልሰ = ¬
⎝⎜
⎜⎜⎛ ቌ ᇙ ⟦𝑇⟧(𝑆௜, 𝑗) ⨅ ᇘ ⟦𝐴𝑜𝐼⟧(𝑆௜, 𝑘)௝

௞ୀ௧ି௩
௧

௝ୀ௧ି௩ − λቍ
ᇘ ቌᇙ⟦𝑇⟧(𝑆௜ାଵ, 𝑗) ⨅ ᇘ⟦𝐴𝑜𝐼⟧(𝑆௜ାଵ, 𝑘)௝

௞ୀ௧
௧

௝ୀ௧ − λቍ⎠⎟
⎟⎟⎞ 

=  max൫min൫∞, 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜)൯, min൫∞, 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜ାଵ)൯  ൯ 

=  max( 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜), 𝑑𝑖𝑠𝑡஺௢ூ(𝑆௜ାଵ) ) 

(8)

4.1 MCMC Sampling 

In this section, we explain our sampling method using 
Markov Chain Monte Carlo to solve equation 5 based 
on the computed robustness in equations 6-8. The 
MCMC technique presented here is based on 
acceptance-rejection sampling (Tiger and Heintz, 
2016). Typically, Monte-Carlo based techniques are 
widely used for solving global optimization problems 
(Chib and Greenberg, 1995). In this paper, we adopt 
a class of MCMC sampling techniques called the 
Metropolis-Hastings (Tiger and Heintz, 2016) to 
stochastically walk the UAV over a Markov chain 
that is defined by the P-MTL robustness.  

Our sample space consists of the neighbors of the 
UAV’s current position such that the next generated 
position for the UAV to explore is randomly selected 
satisfying the problem specification in equation 5. 
Algorithm 1 maximizes the robustness of equation 5 
to find a position that has higher estimation of AoI. 
First, the function 𝜁 is used to find the neighbors of 
the input position 𝑠௜. Then, the algorithm uniformly 
chooses one random neighbor 𝑠ᇱ and sample the 
robustness function at the neighbor 𝑓(𝑠ᇱ). If 𝑓(𝑠ᇱ) >𝑓(𝑠௜), then the neighbor position is returned as the 
next target. Otherwise, the ratio 𝜎 = exp ൬− ቀ𝜏൫𝑓(𝑠ᇱ) −𝑓(𝑠௜)൯ቁ൰ is computed as the acceptance probability for 
the new proposal. Note that if 𝜎 ≥ 1 (i.e, 𝑓(𝑠ᇱ) ≥𝑓(𝑠௜)), then the proposed neighbor is accepted with 
certainty. Even if 𝑓(𝑠ᇱ) < 𝑓(𝑠௜), the proposal may 
still be accepted with some non-zero probability. If 
the proposal is accepted, then 𝑠ᇱ is returned as the next 
target position. Failing this, 𝑠௜ remains as the next 
target. In general, MCMC techniques require the 
design of a proposal scheme for choosing a proposal 𝑠ᇱ given the current position 𝑠௜. The convergence of 
the sampling to the underlying distribution defined by 
f depends critically on the choice of this proposal 
distribution. In this paper, we choose the Gibbs-
Boltzmann function following the Metropolis-
Hastings algorithm (Tiger and Heintz, 2016) because 
of its relatively fast convergence. In Gibbs-
Boltzmann distribution, 𝜏 is a constant 1/kT, which is 

the inverse of the product of Boltzmann's constant k 
and thermodynamic temperature T. 

Our sample space consists of the neighbors of the 
UAV’s current position such that the next generated 
position for the UAV to explore is randomly selected 
satisfying the problem specification in equation 5. 
Algorithm 1 maximizes the robustness of equation 5 to 
find a position that has higher estimation of AoI. First, 
the function 𝜁 is used to find the neighbors of the input 
position 𝑠௜. Then, the algorithm uniformly chooses one 
random neighbor 𝑠ᇱ and sample the robustness function 
at the neighbor 𝑓(𝑠ᇱ). If 𝑓(𝑠ᇱ) > 𝑓(𝑠௜), then the neighbor 
position is returned as the next target. Otherwise, the 
ratio 𝜎 = exp ൬− ቀ𝜏൫𝑓(𝑠ᇱ) − 𝑓(𝑠௜)൯ቁ൰ is  computed as the 
acceptance probability for the new proposal. Note that 
if 𝜎 ≥ 1 (i.e, 𝑓(𝑠ᇱ) ≥ 𝑓(𝑠௜)), then the proposed neighbor is 
accepted with certainty. Even if 𝑓(𝑠ᇱ) < 𝑓(𝑠௜), the 
proposal may still be accepted with some non-zero 
probability. If the proposal is accepted, then 𝑠ᇱ is 
returned as the next target position. Failing this, 𝑠௜ 
remains as the next target. In general, MCMC 
techniques require the design of a proposal scheme for 
choosing a proposal 𝑠ᇱ given the current position 𝑠௜. 
The convergence of the sampling to the underlying 
distribution defined by f depends critically on the 
choice of this proposal distribution. In this paper, we 
choose the Gibbs-Boltzmann function following the 
Metropolis-Hastings algorithm (Tiger and Heintz, 
2016) because of its relatively fast convergence. In 
Gibbs-Boltzmann distribution, 𝜏 is a constant 1/kT, 
which is the inverse of the product of Boltzmann's 
constant k and thermodynamic temperature T.  

Algorithm 1: MCMC Sampling Algorithm. 

Input: 𝑠௜: current position, f(𝑠௜)= Rఝ(𝑠௜) Robustness Function, 𝜌: 
Robustness threshold  
Output: 𝑠௜ାଵ∈ 𝜁(𝑠௜) ∪ 𝑠௜  
begin 
 Uniformly choose one random neighbor 𝑠ᇱ∈ 𝜁(𝑠௜) 
if f(𝒔ᇱ) > 𝜌 && f(𝒔ᇱ) >f(𝒔𝒊) 
 return 𝑠ᇱ 
else 𝜎 = 𝑒ି൬ఛቀ௙൫௦ᇲ൯ି௙(௦೔)ቁ൰ 
r ← UniformRandomReal(0, 1) ; 
  if (r ≤  𝜎) then  
 return 𝑠ᇱ 
 else 
 return 𝑠௜ 

end  

4.2 RDE Algorithm 

Algorithm 2 implements a local-search technique in 
an unknown environment to compute a trajectory that 
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Figure 3: (a) Satellite image from Amazon Forest in Peru, (b) Flight trajectory generated by RDE, and (c) robustness value of 
the exploration decision at each time step. 

would lead the UAV to navigate more AoI while 
maintaining its battery constraint. The algorithm 
starts by picking a random position to begin the flight. 
The algorithm would move the UAV at each time step 
to a position with a robustness larger than 𝜌 generated 
via the MCMC algorithm (Algorithm1). However, 
MCMC is a stochastic algorithm by nature and it 
could take many iterations to converge from the 
current position to the target position with an 
acceptable robustness. Moreover, MCMC runs the 
risk of getting stuck in local maxima; areas where the 
robustness is higher for the current position than for 
its close neighbors, but lower than for locations that 
are further away. This could potentially happen when 
the UAV explores a large area with little to zero 
significant interest. This is remedied by setting a 
threshold α to stop the MCMC from generating the 
same results and enforce the algorithm to use one of 
the cached points, which in this case, represent further 
away locations with more robustness values. After 
making a decision about the next target, we use RA*, 
a path planner algorithm that has been developed 
using MTL robustness and A* (Esdaile and Chalker, 
2018) to find the path from the current to the next 
positions that would give the UAV exposure to more 
AoI if there is any around the path. 

Back to our ASGM problem, Fig.3(a) shows a 
simulated map of the likelihood of finding ASGM for 
an area in Amazon forest in Peru. The darker the color 
the higher the likelihood is for the area to have 
ASGM. Such likelihood values would be provided by 
the object detection system onboard the UAV for 
small areas within its range of vision. The red circle 
represents the starting point of the flight. Fig. 3(b) 
shows the flight trajectory that satisfies our RDE 
specification in equation 2 and generated by 
Algorithm 2 such that AoI is defined as areas of 
ASGM. Fig.3(c) plots the robustness of the 
exploration decision at each time step. Clearly, the 
selected positions for the UAV’s trajectory in the 
given map are concentrated in the more promising 

regions with higher robustness values above 𝜌 = 38. 
However, the resulting trajectory directly depends on 
the starting point and the number of steps which 
simulates the battery life of the UAV. More details 
about this experiment are shown in next section. 

Algorithm 2: RDE Algorithm. 

Input: 𝜑 (2): Mission specification , f(.)= Rఝ(. ): Robustness 
Function , 𝜌: Robustness threshold, 𝜁(. ): neighboring function. 

begin 
 Randomly pick a starting point 𝑠଴ 
While (𝑩 > 𝐁𝒎𝒊𝒏) 
 count=0 
 While 𝒔𝒊==𝒔𝒊ି𝟏 && count< 𝜶 
 𝑠௜ =MCMC(𝑠௜ିଵ, f(𝑠௜ିଵ), 𝜌) 
 count++ 
 end  
 if count>𝛼 && cachedPoints!=𝜙 
 𝑠௜ = getCachedPoint(); 
 else  
 𝑠௜ = home; 
 RA*(𝑠௜ିଵ, 𝑠௜) 

End 

5 EXPERIMENT 

 
Figure 4: Satellite images for (a) Delta, (b) Colorado, (c) 
Madre de Dios, (d) Inambari, (e) La Pampa.
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(b) (c) 

Figure 5: (a) Distributed ASGM in Colorado region(Figure 4.b), (b) Distribution of most frequent explored locations using 
RDE, and (c) Distribution of most frequent explored locations using AEP. 

(a)

 

(b) (c)

Figure 6: (a) Distributed ASGM in La Pampa (Figure 4.e), (b) Distribution of most frequent explored locations using RDE, 
and (c) Distribution of most frequent explored locations using AEP. 

(a) (b) 

Figure 7: (a) ASGM coverage with RDE (b) ASGM coverage with AE. 

The main motivation for this paper is to increase the 
UAV’s exploration percentage of ASGM in the 
Amazon forest in Peru with limited resources (i.e. 
battery and onboard storage). As part of this research, 
we have developed an object recognition module 
using YOLO (Rubinstein, 1981). Our object 
recognition has been trained to detect different 

components that are usually found around ASGM 
areas such as dredges, floats, sluices, shacks/rooftops, 
sand, water, and plantations. The results from the 
object recognition have been simulated in this paper 
to test the proposed RDE approach.  

To help guide the UAV flights to areas with real 
information, we implemented our RDE approach over 
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actual five 8x8 km2 regions in Peru (.a.Delta, 
b.Colorado, c.Madre de Dios, d.Inambari, e. La 
Pampa) (Fig.4). We simulate motion of the UAV (as 
well as the onboard object detection system) and keep 
its altitude fixed by setting the field of view to 200x200 
m2. We test our RDE approach against the AEP 
approach developed in (Selin et al., 2019). However, 
due to the space limitation, we only showed the heat 
maps for two regions b and e (Colorado, La Pampa).  

Fig.5 (a) shows the likelihood of ASGM areas in 
the regions b and e shown in (Fig. 4), the color scale 
is between yellow and green such that dark yellow 
areas have higher probability of having ASGM. Fig. 
5 (b) shows the most frequent explored positions in 
region b using the proposed RDE approach. We 
collected those points by running RDE on 100 trials 
with 2000 time steps per each trail starting from 
random positions in each run. The green and yellow 
colors represent the most visited areas such that areas 
in yellow are visited more than areas with green color. 
We then explored the same region b using the AEP 
(Fig. 4 (c)). The testing results for region e are 
illustrated in Fig. 5. For both regions, our approach 
was clearly able to navigate the majority of ASGM 
areas in comparison to AEP while spending less time 
inside vegetation areas. However, AEP was faster in 
making decisions than RDE by average of 29% when 
exploring the areas shown in Fig.4. AEP uses a 
greedy algorithm which guaranteed faster execution 
but not necessarily good coverage for ASGM while 
RDE needs to compute the robustness of P-MTL 
constraints before each exploration decision and use 
the MCMC sampler to select the next target with 
higher robustness. 

Fig.7 illustrates the average coverage of ASGM in 
all regions shown in Fig.4 using our RDE and AEP 
with different numbers of time steps respectively. The 
time steps here represent the battery life for the UAV. 
The percentage of coverage grows linearly with the 
allotted time for both approaches, but the RDE covers 
more ASGM areas by approximately 38% over AEP.  

6 CONCLUSIONS 

In this paper, we presented a new exploration 
approach RDE that incorporates the online discovered 
knowledge into the exploration decisions for UAVs. 
RDE uses the robustness of P-MTL specifications to 
guide the stochastic process of MCMC to make the 
exploration decisions in completely unknown 
environment. We have tested our approach on four 
simulated areas in Amazon forest in Peru to look for 
mining areas (e.g. ASGM). In comparison to a greedy 

approach called AEP (Selin et al., 2019), our 
approach leads the UAV into more areas classified as 
ASGM than AEP without getting stuck or spending 
long time in vegetation areas. In future work, we 
intend to test our approach on real UAVs in Amazon 
forest. In order to do that, we have to incorporate the 
dynamics of the UAV and the control information 
(i.e. speed, altitude) into the P-MTL specifications of 
the problem. 
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