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Abstract: Account recovery is ubiquitous across web applications but circumvents the username/password-based login
step. Therefore, it deserves the same level of security as the user authentication process. A common simplistic
procedure for account recovery requires that a user enters the same email used during registration, to which
a password recovery link or a new username could be sent. Therefore, an impostor with access to a user’s
registration email and other credentials can trigger an account recovery session to take over the user’s account.
To prevent such attacks, beyond validating the email and other credentials entered by the user, our proposed
recovery method utilizes keystroke dynamics to further secure the account recovery mechanism. Keystroke
dynamics is a type of behavioral biometrics that uses the analysis of typing rhythm for user authentication.
Using a new dataset with over 500,000 keystrokes collected from 44 students and university staff when they
fill out an account recovery web form of multiple fields, we have evaluated the performance of five scoring
algorithms on individual fields as well as feature-level fusion and weighted-score fusion. We achieve the best
EER of 5.47% when keystroke dynamics from individual fields are used, 0% for a feature-level fusion of
five fields, and 0% for a weighted-score fusion of seven fields. Our work represents a new kind of keystroke
dynamics that we would like to call it ‘medium fixed-text’ as it sits between the conventional (short) fixed text
and (long) free text research.

1 INTRODUCTION

The username and password have been the dominant
means of verifying a user’s digital identity over the
years, but also fraught with many security problems.
For example, in the first half of 2018 alone, it was esti-
mated that about 4.5 billion online user accounts were
exposed, a majority of which as a result of password
breaches (Gemalto Inc, 2018). Because of the dif-
ficulty in remembering passwords, many users have
been known to use a single password across multi-
ple websites, making it easier for an impostor to take
over their accounts. To increase security, a com-
mon practice has been adopted by many sites to re-
quire users to regularly change their passwords and to
use long unique passwords, for example, as a com-
bination of uppercase and lowercase alphabets, num-
bers, and symbols. Consequently, many users find
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it even harder to remember passwords. These chal-
lenges with username and password necessarily pop-
ularize the account recovery mechanism on the web.
Figure 1 shows a common recovery method that sim-
ply sends a recovery link to a user’s verified email.
While this is appropriate for sites with low security
requirements, to increase the level of security, many
sites also require the user to perform additional veri-
fication, such as answering security questions or pro-
viding personal credentials (Figure 2). However, it is
also well known that security questions and personal
information can be stolen through social engineering
or brute-force attacks.

Perhaps the most dangerous vulnerability that
the account recovery mechanism can lead to is the
fact that any impostor with access to a user’s re-
covery email (which can be taken over by attacks
such as credential stuffing (owasp.org, 2020)) can
easily trigger an account recovery session and take
over the user’s account. Given that account recov-
ery is ubiquitous across the web and being widely
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Figure 1: Github password recovery requires a user’s veri-
fied email address to send the password reset link.

Figure 2: As additional protection, United State Postal Ser-
vice (USPS) account recovery also requires a user to answer
security questions.

used by enterprise information systems, it deserves
the same level of security as the user authentica-
tion process. To that end, we propose to ver-
ify a user’s identity through behavioral biometrics
using the keystroke dynamics collected during the
password/username recovery session. Research has
demonstrated that keystroke dynamics can be a use-
ful behavioral biometrics for authentication (Rybnik
et al., 2009)(Choraś and Mroczkowski, 2007)(Revett
et al., 2006) but does not require additional hardware.
Our research goal is to further strengthen the security
of the account recovery mechanism using keystroke
dynamics. We envision that this modality can be
fused with other modalities to form a more robust
risk-based scoring system to ensure that the person re-
questing account recovery is indeed the claimed user.

Figure 3: Characterizing keystroke dynamics based on three
traits: Length of text (long or short), typing behaviour (re-
stricted or unrestricted) and typed content (fixed or free).
Our study is between fixed-text and free-text in a laboratory
setting (somewhat restricted).

In this paper we focus on sites that have imple-
mented additional verification during account recov-
ery by requesting more information from the user.
Using an account recovery form with multiple fields,
we have collected a new dataset with over 500,000
keystrokes from 44 students and staff of our univer-
sity. We investigate the authentication performance
of keystroke dynamics from both individual fields and
their various combinations. We implement five state-
of-the-art scoring algorithms for both fixed-text and
free-text keystroke dynamics to measure the similar-
ity between the test samples and the established user
profile. These algorithms either accept or reject the
user based on the returned score and a threshold on
the score. We achieve the best EER of 5.47% when
using individual fields, and 0% for both a feature-level
fusion and a weighted-score fusion.

As shown in Figure 3, work on keystroke dynam-
ics can be characterized by length (short or long), typ-
ing behavior (restricted or unrestricted contexts) and
typed content (fixed or free/varied across sessions).
When unrestricted, users type anything on their own
regular device at any time and anywhere of their
choice. Fixed text (also known as static text) refers
to cases when the text needed to perform keystroke
analysis is constant during enrollment and testing.
An example of a short length fixed-text in keystroke
dynamics is password, where users are required to
type a password with fixed and unchanging charac-
ters. Free text (also known as dynamic text) refers
to cases when users are allowed to type freely with
no constraint on when/where/what to type. An exam-
ple of a long length free-text is when a user writes
an article on a topic of their own interest. When
keystrokes from each field in our dataset is used in-
dividually for authentication, this work can be con-
sidered as short length, fixed-text keystroke dynam-
ics; but when fields in the dataset are combined into
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a long text, then our work can be consider as free-
text. Therefore, this study sits somewhere in the mid-
dle of fixed-text and free-text, and we would like to
call it ‘medium length, fixed-text.’ Note also that the
medium fixed-text keystroke dynamics has put little to
none restrictions on our users’ typing behavior other
than the fact that they type in our laboratory.

The remaining of this paper is organized as fol-
lows. Section 2 presents related work in both fixed-
text and free-text keystroke dynamics. Section 3 de-
scribes our methodology: the dataset, feature extrac-
tion, algorithms and implementation procedure. Re-
sults and findings are presented in Section 4. Lastly,
Section 5 concludes the paper.

2 LITERATURE REVIEW

Keystroke dynamics is the analysis of typing rhythm
which can be used for authentication. It involves
inspecting timing features of an individual’s typing
and latency between keys to identify patterns in the
keystroke data. In the eighties, Gaines et al. (Gaines
et al., 1980) investigated whether individuals could
be distinguished in the ways they type, by exam-
ining the probability distributions of the times each
typist typed pairs of successive letters (digraphs)
while typing a paragraph of prose. Since then, re-
searchers have come up with many more applications
and techniques for keystroke dynamics (Banerjee and
Woodard, 2012), (Teh et al., 2013), (Alsultan and
Warwick, 2013).

Gunetti and Picardi (Gunetti and Picardi, 2005) is
among the first exploring free text keystroke dynam-
ics using digraphs, the latencies between two succes-
sive keystrokes, which have been commonly used in
short (fixed) text research. Their work on free-text
shows that relatively long text samples with about
800 characters are required to accurately differenti-
ate between a genuine user and impostors. Huang et
al. (Huang et al., 2015) finds that in free-text, larger
reference profiles with more digraphs will drive down
both impostor pass rate (IPR) and false alarm rate
(FAR), provided that the test samples have sufficient
digraphs, but more digraphs in test samples beyond
1000 seem to have no obvious effect on IPR, regard-
less of the size of the reference profile. Generally, test
samples of 500 to 1000 digraph instances have been
used in free-text literature (Figure 3). In this regard,
our work is unique because it is not completely free-
text or fixed-text, but somewhere in between. Our
work has achieved better accuracy with fewer digraph
instances than Gunetti and Picardi (Gunetti and Pi-
cardi, 2005) and Huang et al. (Huang et al., 2015).

Figure 4: Keystroke dynamics features (dwell/hold time
and digraph latency defined in terms of key press/release
events).

Keystroke dynamic features are extracted by us-
ing the timing information of keys pressed, which
includes latency between consecutive keys and
dwell/hold time of a single key. As shown in Fig-
ure 4, the latency between keys may include the time
interval between the press of a key and the press of
the next key (down-down), the interval between the
release of a key and the press of the next key (up-
down) or interval between the release of a key and the
release of the next key (up-up). The dwell/hold time
is the interval between the press and the release of a
single key (down-up). Many studies have been done
on fixed-text keystroke dynamics for password (Pisani
and Lorena, 2013), (Revett et al., 2006), (Monrose
et al., 2002), (Bartlow and Cukic, 2006), (de Magal-
haes et al., 2005) and free-text (Gunetti and Picardi,
2005), (Huang et al., 2017), but ours is the first study
on the use of keystroke dynamics to further protect
account recovery mechanism.

Many keystroke dynamics datasets for password
impose the same fixed password string for all users
such as Killourhy and Maxion (Killourhy and Max-
ion, 2009), Loy, Lai and Lim (Loy et al., 2007),
and Michael and Missah (Michael and Missah, 2016).
Killourhy and Maxion have a dataset of 20,400 sam-
ples, collected from 51 subjects and each subject
contributed 400 typing samples of the same string
“.tie5Roanl”. Out of the 14 recognition algorithms
used in their work, they report Scaled Manhattan,
Nearest Neighbor (Mahalanobis) and Outlier Count
as the best three performing recognition algorithms
with EER of 9.6%, 10% and 10.2% respectively.
However, an imposed password is unrealistic, because
when users use their actual passwords, performance
may vary. To investigate this possible difference in
performance, Giot, El-Abed and Rosenberger (Giot
et al., 2012) create a dataset with samples collected
from 83 users (Table 1), a total of 5,185 genuine sam-
ples (pair of chosen username and password typed by
its owner), 5,754 impostor samples (pair of username
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Table 1: Password datasets for keystroke dynamics.
Dataset #Users #Samples User Specific Password?

Killourhy and
Maxion (Killourhy and Maxion, 2009) 51 20,400 No

Giot, El-Abed and 5,185+
Rosenberger (Giot et al., 2012) 83 5,754/5,439 Yes

BioChaves (Montalvao et al., 2006) 47 1,400 No
Allen (Allen, 2010) 104 2,736 No

Keystroke100 (Loy et al., 2007) 100 1,000 No
GREYC-NISLAB (Idrus et al., 2013) 110 2,201 No

and password typed by a user different of its owner),
and 5,439 imposed samples (pair of imposed user-
name and password). Although their work seems to
be realistic to real user scenario of different password
selection, they find a surprising result that there is
no significant difference in performance between the
chosen and the imposed datasets. They had claimed
that a possible explanation is, even though users were
asked to choose a password of their own, they did
not choose their real password and would have cho-
sen a password they are less familiar with. They have
also reported an issue with quality measure during
data collection which could have been the cause for
their underlined surprising observation. In contrast,
our work in account recovery is based on a practical
and realistic scenario.

3 EXPERIMENTAL DESIGN

The account recovery mechanisms implemented on
many public and business websites collect either a
single field (a registration email address) or multiple
fields of information (e.g., email, phone number, ad-
dress, and full name) from users. The required num-
ber of fields to trigger an account recovery session is
related to the level of security of the platform and the
value placed on the account. For example, while the
Github website requires just a single email address
(Figure 1), an online banking platform, which is more
security-sensitive, would request multiple fields of in-
formation for added security (Figure 5). For improved
security, we have collected multiple fields of informa-
tion from users during our data collection.

3.1 Account-Recovery Keystroke
Dataset

We have created a new Account-Recovery dataset
with a total of over 500,000 keystrokes. The data was
collected from 44 university students and staff using
a data collection web app (Figure 6). Each user visits
us twice. In the first visit, each user fills an enrollment
form on the web app ten times. The keystrokes col-
lected from the enrollment form are used to build the

Figure 5: Bank of America forget password session requires
a user to enter multiple fields of information.

user’s profile. In the second visit one or two weeks
later, each user fills the form again five times, which
is used as the user’s genuine keystrokes. The same
user also attacks five other users each twice, which
serves as impostor keystrokes. As a result, our new
dataset contains data for when users attack each other.
Figure 7 depicts such an example where user (ID:
W0037-81456) attacks another user W0092-17843.

The enrollment form consists of the following
fields: Full name, Address, City, Zip, Phone, Email,
Declaration, and Password. Users are asked to type
the following text as declaration: “I declare that I
am (Full name) and everything I type here is true”
(also see Figure 6). The dataset holds the record of
key-down and key-up timing information of every key
pressed and released, and our users are allowed to
make and correct typing errors.

Overall, 42 users complete the enrollment process
ten times as requested (the other two complete less
than ten times). 28 users return in a second visit to fill
the enrollment form for five more times, but only 16
of the 28 have acted as imposters.

3.2 Data Preprocessing and Cleaning

Since our dataset allows for typing errors, we pre-
process the raw data to remove backspaces and the
keystrokes deleted by the backspaces, which may
have been used for correcting misspellings. Table 2
and 3 show a summary of keys contributed per user
and per field, respectively, after data cleaning and pre-
processing.
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Figure 6: Account Recovery dataset: User interfaces of the
data collection web app.

Figure 7: Account Recovery dataset: User W0037-81456
attacks the profile of user W0092-17843.

We observe some inaccuracies and inconsistencies
in the password field as many users did not use their
true passwords or used them inconsistently across ses-
sions. Such password data would not give meaningful
information about the user’s typing patterns. As a re-
sult, we do not use the password field. Similar user
behavior has been noted elsewhere (Giot et al., 2012).

Table 2: Keystrokes per user after data pre-processing.

Avg / Min / Max keys per User #User
Profile 2,048 / 1,282 / 3,510 42

Genuine 1,210 / 614 / 3,219 28
Impostor 2,351 / 88 / 7,615 16

Table 3: Keystrokes per field after data pre-processing.

Fields Avg / Min / Max keys per Field
Full name 13 / 4 / 20
Address 17 / 8 / 38

City 9 / 5 / 17
Zip 6 / 5 / 10

Phone 12 / 10 / 26
Email 21 / 15 / 37

Declare Text 68 / 53 / 135

Figure 8: Scoring procedure for sample text ‘mississippi’
where si represents the timing difference between the ith
digraph in the test sample and the profile.

3.3 Scoring Algorithms

We have implemented five state-of-the-art scoring al-
gorithms from both fixed text and free text keystroke
dynamics (Gunetti and Picardi, 2005), (Huang et al.,
2017), (Killourhy and Maxion, 2010), (Killourhy and
Maxion, 2009): Euclidean Distance, Manhattan Dis-
tance, Scaled Manhattan Distance, Mahalanobis Dis-
tance, and the ‘A and R’ Measures of Gunetti and Pi-
cardi (Gunetti and Picardi, 2005).

Figure 8 illustrates how the scoring algorithms
work. Note that in the sample text ‘mississippi’, the
digraph ‘is’, ‘ss’ and ‘si’ are repeated twice, while
digraph ’mi’, ’ip’, ’pp’ and ’pi’ occur only once,
making a total of seven unique digraphs. We cal-
culate the average timing of the digraphs that have
two instances (repeated twice) in the profile sample
as shown in Figure 8. For each digraph instance in
the test sample, our scoring algorithms compute the
difference (d1,d2, ...,dN) between its timing and the
timing of the same digraph in the profile. The overall
distance score is the average of all individual differ-
ences, which measure how dissimilar the test sample
is to the user profile. The higher the distance score,
the less likely the test sample keystrokes belong to
the user and vice-versa. In our implementation, we
discard all digraphs that are longer than 1

2 of a sec-
ond. Such digraphs are typically the results of a user
taking a break after making a typing error or pausing
to attend to other tasks, and are less likely to be in-
formative; the resulting time information would be an
outlier and would negatively affect performance.

3.3.1 Euclidean Distance

Euclidean distance is the straight-line distance be-
tween two points in Euclidean space, which is cal-
culated as follows:

D =

√
N

∑
i=1

(µgi − xi)2, (1)
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where N is the number of digraphs shared between
the test sample and the profile, xi is the individual test
graph duration for the ith shared graph in the test sam-
ple, and µgi is the mean of the ith graph in the profile.

3.3.2 Manhattan Distance

The scaled Manhattan and Manhattan distance met-
rics were used by Kilhourhy and Maxion for fixed-
text keystroke dynamics (Killourhy and Maxion,
2009). The scaled Manhattan distance is calculated
as follows:

D =
N

∑
i=1

|µgi − xi|
σgi

, (2)

where N is the number of digraphs shared between
the test sample and the profile, xi is the individual test
graph duration for the ith shared graph in the test sam-
ple, and µgi and σgi are the mean and standard de-
viation of the ith graph in the profile (Killourhy and
Maxion, 2009). The Manhattan and scaled Manhat-
tan distances are identical, except the Manhattan dis-
tance is not divided by the standard deviation (Black,
2019).

3.3.3 Mahalanobis Distance

The Mahalanobis distance is similar to the scaled
Manhattan distance and is given by:

D =

√
N

∑
i=1

(µgi − xi)2

σ2
gi

, (3)

where N is the number of digraphs shared between
the test sample and the profile, xi is the individual test
graph duration for the ith shared graph in the test sam-
ple, and µgi and σgi are the mean and standard de-
viation of the ith graph in the profile (Killourhy and
Maxion, 2009) and (Mahalanobis, 1936).

3.3.4 Gunetti and Picardi’s Metric

Gunetti and Picardi’s free-text algorithm (Gunetti and
Picardi, 2005) combines typing speed (A-measure)
and the degree of disorder (R-measure) to measure
similarity (Huang et al., 2017). The ‘A’ measure
represents the distance between typing samples S1
and S2 in terms of n-graphs (that is, n consecutive
keystrokes; n=2 in our case), as follows:

At,n(S1,S2) = 1− #similar
#shared

where t is a constant for determining n-graph sim-
ilarity. For example, let GS1,L1 and GS2,L2 be the
same n-graph occurring in typing samples S1 and

Figure 9: Receiver Operating Characteristics (ROC) curve
for all five algorithms based on the Declare field, with
Scaled Manhattan Distance being the best (EER of 5.47%).

S2, with latencies L1 and L2, respectively. We say
that GS1,L1 and GS2,L2 are similar if and only if 1 ≤
max(L1,L2)/min(L1,L2) ≤ t. The ‘R’ measure on the
other hand quantifies the degree of disorder between
two sequences M and M′, as the sum of the differ-
ences between the respective ranks of each element in
M and M′.

3.4 Experiments

Consistent with the state-of-the-art in fixed-text
keystroke dynamics (Killourhy and Maxion, 2009), as
shown in Figure 9, Scaled Manhattan Distance out-
performs the other four algorithms on the Declare
field. Table 4 shows further evidence that this is also
true for most of the remaining six fields. Therefore,
further experiments in this paper are done in terms of
the Scaled Manhattan Distance.

To identify fields and their combinations that pro-
duce the best authentication performance, we have
performed several experiments to evaluate both indi-
vidual fields and their fusions at both the feature and
score levels. The result of each experiment is pre-
sented and discussed in Section 4.

Our data collection has allowed for some flexibil-
ity in the degree of content matching between data in
the user profile and the test samples. This gives us
the freedom to deploy a quality control mechanism K,
which is the percentage of exact content matching be-
tween the profile and the test sample. We use K as
a threshold to determine if a test sample will be in-
cluded in our experiments or not. We have used three
values for K (70%, 80% and 90%) in each experiment
and recorded the K that produces the lowest EER.

3.4.1 Feature-level Fusion

This experiment evaluates the fusion of fields at the
feature level. Our goal is to find the combination
of fields that gives the highest accuracy (the lowest
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Table 4: Performance of scoring algorithms on individual fields. Scaled Manhattan Distance is the overall best.

Euclidean Manhattan Scaled Manhattan Mahalanobis Gunetti & Picardi
Field Distance EER (%) Distance EER (%) Distance EER (%) Distance EER (%) Distance EER (%)
Zip 25.33 25.20 22.80 21.84 28.69
City 19.51 19.52 20.36 20.85 26.88

Phone 22.41 18.25 18.02 22.50 39.59
Fullname 17.29 16.31 14.16 16.04 20.67
Address 15.41 13.63 10.81 10.96 18.17
Email 12.59 9.62 8.10 12.45 15.75

Declare 15.73 15.74 5.47 9.88 17.07

EER). Specifically, we merge all the keystrokes from
multiple fields and apply the Scaled Manhattan Dis-
tance scoring algorithm. We have carried out six ma-
jor combinations which we named Duet (combina-
tion of two fields), Trio (combination of three fields),
Quartet (combination of four fields), Quintet (combi-
nation of five fields), Sextet (combination of six fields)
and Septet (combination of seven fields).

3.4.2 Weighted-Score Fusion

This experiment evaluates the weighted score fusion,
where the final score D is defined as a weighted sum
of individual field scores di (D = w1 × d1 + w2 ×
d2 + ...+wN × dN), and all weights sum up to one
(w1 +w2 + ...+wN = 1). We use the grid-search ap-
proach to find the optimum weights for each combina-
tion. The grid-search approach is known to perform
well for finding optimum weights in behavioral bio-
metrics (Sitová et al., 2015).

3.4.3 Minimum Number of Enrollment Samples

In keystroke dynamics, enough enrollment samples
are required to build the user’s profile. The more the
enrollment samples included in a user’s profile, the
more accurate the algorithm will perform. Although
there is not a definite number of enrollment samples
required to build a good profile, we have monitored
performance as we reduce the number of enrollment
samples. During our data collection, users have com-
pleted the enrollment process ten times and we have
used all ten enrollment samples to build their profile.
However, to further investigate the minimum number
of enrollment samples, we experiment with varying
the number of enrollment samples from 10 to 5 us-
ing both feature-level and weighted score fusion tech-
niques.

4 RESULTS

This section presents the result for each experiment,
including individual fields, feature level fusion and
score level fusion.

Table 5: Authentication based on individual fields.
Field #Avg shared digraph K #Comparison EER (%)
Zip 4 90% 175 22.80
City 7 70% 343 20.36

Phone 8 70% 191 18.02
Fullname 12 70% 311 14.16
Address 16 70% 277 10.81
Email 20 70% 333 8.10

Declare 51 70% 304 5.47

Table 6: Feature level fusion of multiple fields.
Field #Shared digraph K #Comparison EER (%)

DUET
Email+Fullname 29 90% 165 4.88

TRIO
Declare+Email 78 70% 254 3.13

+Address
QUARTET

Declare+Email+ 82 70% 224 2.36
Address+Fullname

QUINTET
Declare+Email

+Address+ 90 90% 52 0.00
Fullname+City

SEXTET
Declare+Email

+Address+Fullname+ 95 90% 48 0.00
City+Zip

SEPTET
Declare+Email

+Address+Fullname+ 102 70% 227 2.18
City+Zip+Phone

4.1 Result for Individual Fields

Table 5 shows the performance of the Scaled Man-
hattan Distance over the seven fields on our account
recovery web form. ‘Declare’, ‘Email’, and ‘Ad-
dress’ are the three best performing fields with EER of
5.47%, 8.1%, and 10.81%, and an average of 51, 20,
and 16 digraphs, respectively. The ‘Zip’ field has the
lowest accuracy with EER of 22.8%, with a very short
average of only 4 digraphs. As shown, field lengths
seem to greatly influence performance and likely to be
the main reason why the ‘Declare’ field has the best
performance. On the other hand, familiarity with text
may also have a relatively strong influence on perfor-
mance. This is because more familiar content, such as
email, are more likely to reveal a user’s typing pattern.
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Table 7: Weighted-Score fusion of multiple fields.
Field #Comparison K EER (%)

PAIR
Email(w=0.75)+Declare(w=0.25) 293 70% 4.3

TRIO
Email(w=0.55)+Declare(w=0.25) 257 70% 2.7

+Fullname(w=0.2)
QUARTET

Email(w=0.45)+Declare(w=0.25)+ 231 70% 2.27
Fullname(w=0.15)+Address(w=0.15)

QUINTET
Email(w=0.45)+Declare(w=0.25)

+Fullname(w=0.1)+ 201 70% 2.21
Address(w=0.15)+Zip(w=0.05)

SEXTET
Email(w=0.4)+Declare(w=0.25)

+Fullname(w=0.1)+Address(w=0.1)+ 141 70% 1.4
Zip(w=0.1)+Phone(w=0.05)

SEPT
Email(w=0.35)+Declare(w=0.25)

+Fullname(w=0.15)+Address(w=0.05)+ 83 80% 0.00
Zip(w=0.05)+Phone(w=0.05)+City(w=0.01)

4.2 Result for Feature-level Fusion

Out of the seven fields in our account recovery form,
there are 21 combinations for Duet (two fields), 35
combinations for Trio (three fields), 35 combinations
for Quartet (four fields), 21 combinations for Quintet
(five fields), 7 combinations of Sextet (six fields) and
1 for Septet (seven fields). Table 6 depicts the best
performance for each of the above field combinations.

Consistent with the observed impact of the length
of text on accuracy, an overall trend in the table is that
as the number of shared digraph increases, EER de-
creases. We achieve 0% EER at the combination of
five fields (Quintet) with an average of 90 shared di-
graphs and a K of 90%. Therefore, we do not need
to fuse all seven fields to achieve perfect accuracy.
Furthermore, we observe that the best field combina-
tions in Table 6, from Trio down to Sextet, are mostly
made of the set of best individual fields from Table 5.
For example, the best combination of fields in Quar-
tet is Declare+Email+Address+Fullname, which are
the four best fields. However, we notice a perfor-
mance drop at Septet (a combination of seven fields)
despite an increase in the average shared digraph. Fu-
ture work needs investigate the cause of this.

4.3 Result for Weighted-score Fusion

As recorded in Table 7, the global best result for
weighted-score fusion is achieved at the combina-
tion of seven fields with EER of 0% and 83 compar-
isons. Consistent with the observed positive impact
of the length of text on accuracy, an overall trend is
that as the number of shared digraph increases, EER
decreases. Furthermore, compared with the feature-

Table 8: Number of enrollment samples and their corre-
sponding EER values using feature-level fusion.

Field Number of enrollment samples
10 9 8 7 6 5

DUET
Email+Fullname 4.88 8.86 9.19 9.47 11.89 10.64

TRIO
Declare+Email 3.13 3.96 5.55 7.72 6.46 7.09

+Address
QUARTET

Declare+Email+ 2.36 3.17 4.74 5.37 8.39 10.44
Address+Fullname

QUINTET
Declare+Email

+Address+ 0.00 0.00 2.00 1.85 5.38 8.31
Fullname+City

SEXTET
Declare+Email

+Address+Fullname+ 0.00 0.00 0.00 0.00 5.65 7.98
City+Zip

SEPTET
Declare+Email

+Address+Fullname+ 2.18 3.58 3.22 3.36 4.04 6.91
City+Zip+Phone

Table 9: Number of enrollment samples and their corre-
sponding EER values using weighted-score fusion.

Field Number of enrollment samples
10 9 8 7 6 5

DUET
Email+Declare 4.3 4.37 4.46 5.8 5.83 6.04

TRIO
Email+Declare 2.7 3.87 3.47 4.26 5.29 5.3

+Fullname
QUARTET

Email+Declare+ 2.27 3.09 2.61 3.88 4.97 4.92
Fullname+Address

QUINTET
Email+Declare

+Fullname+ 2.21 3.49 3.04 3.97 4.85 4.81
Address+Zip

SEXTET
Email+Declare

+Fullname+Address+ 1.4 0.90 1.78 3.52 3.83 4.55
Zip+City

SEPTET
Email+Declare

+Fullname+Address+ 0.00 0.00 1.88 3.54 3.85 3.58
Zip+City+Phone

level fusion, the weighted-score fusion performs bet-
ter for Duet, Trio and Quartet, with lower EERs and
higher number of comparisons. Overall, we believe
the weighted score-level fusion is a better choice for
our application because it uses more data (number of
comparisons) and produces better performances when
a less restrict content matching is applied (K is 70%;
K is 80% for the combination of seven fields (Septet)).
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These results outperform the state-of-the-art in
both fixed-text and free-text keystroke dynamics. The
best EER performance recorded in fixed-text papers
like Killourhy and Maxion (Killourhy and Maxion,
2009), and Giot, EL-Abed and Rosenberger (Giot
et al., 2012) are 9.6%, and 8.87% EER respectively,
but we have achieved the lowest EER of 5.47% for in-
dividual fields. Likewise, we have achieved a global
best EER of 0% for both feature-level fusion and
weighted-score fusion, which outperform the results
recorded in free-text papers like Gunetti and Picardi
(Gunetti and Picardi, 2005) and Huang et al. (Huang
et al., 2017) (Huang et al., 2015).

4.4 Result for Number of Enrollment
Samples

Table 8 and Table 9 show the results of our experi-
ment on the minimum number of enrollment samples
using the feature-level fusion and weighted score fu-
sion respectively. In general performance drops (i.e
EER increases) as we reduce the number of enroll-
ment samples. Furthermore, as the combination of
fields increases, the reduction in the number of en-
rollment samples has a lesser effect on performance.
For example, in Table 8, for the combination of five
fields (Quintet), when the enrollment sample is re-
duced from 10 to 9, the performance stays the same
(0%) but degrades when the enrollment sample is fur-
ther reduced to 8. Meanwhile, for the combination
of six fields (Sextet), performance stays the same as
0% when enrollment samples reduce gradually from
10 till 7. A possible explanation is, as fields are com-
bined, the total number of digraphs increases, which
counters the negative effect from the reduction in en-
rollment samples. Hence, short test samples would
require more enrollment samples to build a user pro-
file than long text in order to accomplish the same
level of accuracy.

5 CONCLUSIONS

We propose to utilize keystroke dynamics as an addi-
tional security measure to further protect the account
recovery mechanism. To that end, we have evaluated
five scoring algorithms on our new account recovery
dataset and find Scaled Manhattan Distance to be the
best. We achieve the best EER of 5.47% when using
individual fields, a global best EER of 0% with five
fields combined using feature-level fusion and 0%
for weighted-score fusion with all seven fields com-
bined. In deciding the number of enrollment samples
needed to build a user’s profile, we find that a short

test sample would require more enrollment samples
than a long test sample. Overall, our results outper-
form the state-of-the-art in both fixed-text and free-
text keystroke dynamics.

Keystroke dynamics provides an opportunity to
reduce friction during Multi-factor Authentication
(MFA) and ultimately improves users experience
while providing additional security. Although there
are possibilities of inconsistent keystrokes due to
cramped muscles or sweaty hands, in such cases,
keystroke dynamics would rightfully reject the users.
Furthermore, the problem could be solved by request-
ing the user to present other Multi-factor Authentica-
tion (MFA) for authentication. It is important to stress
that other MFA such as one-time password (OTP) in-
conveniences users and increases authentication fric-
tion. Keystroke dynamics can be used to significantly
reduce such friction by requesting other MFA only
when the user is rightfully rejected, such as in the
cases of cramped muscles or sweaty hands.

Future work includes replicating this work on
larger datasets with more keystrokes per user and
more users, performing usability testing with real
users, and the fusion with other modalities to form a
more robust risk-based scoring system to ensure that
the person requesting account recovery is indeed the
claimed user. Also, typing patterns may vary on dif-
ferent keyboards. we are currently collecting data to
study the variation of keystroke dynamics on different
keyboards.
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