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Abstract: Many natural language processing applications rely on the availability of domain-specific terminologies con-
taining synonyms. To that end, semi-automatic methods for extracting additional synonyms of a given concept
from corpora are useful, especially in low-resource domains and noisy genres such as clinical text, where non-
standard language use and misspellings are prevalent. In this study, prototype embeddings based on seed
words were used to create representations for (i) specific urinary tract infection (UTI) symptoms and (ii) UTI
symptoms in general. Four word embedding methods and two phrase detection methods were evaluated using
clinical data from Karolinska University Hospital. It is shown that prototype embeddings can effectively cap-
ture semantic information related to UTI symptoms. Using prototype embeddings for specific UTI symptoms
led to the extraction of more symptom terms compared to using prototype embeddings for UTI symptoms in
general. Overall, 142 additional UTI symptom terms were identified, yielding a more than 100% increment
compared to the initial seed set. The mean average precision across all UTI symptoms was 0.51, and as high as
0.86 for one specific UTI symptom. This study provides an effective and cost-effective solution to terminology
expansion with small amounts of labeled data.

1 INTRODUCTION

In many applications of natural language processing
(NLP), there is a need for ready access to domain-
specific terminologies. However, for low-resource
languages and domains, wide-coverage terminologi-
cal resources tend to be scarce, and are often pro-
hibitively expensive to create manually. In the con-
text of noisy genres such as clinical text, where non-
standard language use, creative shorthand and mis-
spellings are prevalent (Dalianis, 2018), it is espe-
cially important to have access to domain-specific
knowledge about the meaning of terms and their se-
mantic relationships. To that end, semi-automatic and
data-driven methods for extracting additional syn-
onyms of a given concept from corpora are useful for
expanding an existing but limited terminology. Such
efforts are not only cost-efficient, but are also com-
pelling due to their ability to capture real, domain-
specific language use, including common spelling
variants. This allows for the recall (sensitivity) of in-
formation extraction systems to be vastly improved.

Several different approaches to terminology ex-
pansion and synonym extraction have been proposed,
including the use of lexico-syntactic patterns and
graph-based models. More recent efforts have tended
to leverage models of distributional semantics, espe-
cially in the form of word embeddings. These mod-
els are based on the distributional hypothesis (Harris,
1954), which states that words with similar distribu-
tions in a corpus – i.e. words that appear in simi-
lar contexts and co-occur with similar sets of words
– often have similar meanings. They have become
popular also in clinical NLP as data from electronic
health records (EHRs) has become more readily ac-
cessible for research (Khattak et al., 2019). By cre-
ating vector-based representations of word meaning
in semantic space, estimates of semantic similarity to
other words in a corpus can be computed, forming the
basis for many synonym extraction efforts in the clin-
ical domain (Henriksson et al., 2014b; Zhang et al.,
2017; Fan et al., 2019).

In this study, we explore and further investigate
the notion of prototype embeddings for terminology
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expansion. Prototype embeddings can be derived us-
ing any model of distributional semantics and are vec-
tor representations that aim to capture the meaning of
higher-level concepts based on lexical instantiations
of (some of) its members (Henriksson et al., 2014a).
Prototype embeddings have been shown to be effec-
tive in generating semantic features that improve clin-
ical named entity recognition systems; here, we build
on the idea of prototype embeddings for expanding a
terminology for urinary tract infection (UTI) symp-
toms by extracting candidate terms from clinical text
corpora.

A UTI is an infection in any part of the urinary
system, including kidneys, ureters, bladder and ure-
thra. It is primarily caused by bacteria and is among
the most common bacterial infections in the human
body (Foxman, 2010). UTIs result in suffering and
can also be lethal when they lead to sepsis (Herzog
et al., 2014). Diagnosis of UTI is based on a com-
bination of urinary symptoms and urine culture in-
formation (Rubin et al., 1992). There are a number
of UTI symptoms, which can categorized as follows:
painful urination (dysuria), frequent urination (fre-
quency), constant urge of urination (urgency), tender-
ness in the lower abdomen (suprapubic tenderness),
tenderness or pain elicited by percussion1 from the
kidney overlaying area in the back (costovertebral
angle2 pain or tenderness), as well as some other,
less specific symptoms (non-specific) (ECDC, 2016;
NHSN, 2017). Using only urine culture information
for the diagnosis of UTI will lead to the overestima-
tion of the incidence of UTI (Landers et al., 2010). As
a result, the detection of UTI symptoms is critical for
accurately identifying cases of UTI in EHRs.

While data-driven techniques that can be used to
support terminology development are important for
many domains, the specific motivation behind this
study – from an application perspective – is to extract
an extensive set of UTI symptom terms as they ap-
pear in real clinical text. The developed terminology
of UTI symptoms is intended to be used for develop-
ing a system for automatically detecting UTIs based
on structured and unstructured data from EHRs. The
main contributions of this study are as follows:

• Two statistical phrase detection methods, with dif-
ferent thresholds, are explored to study the impact
of the trade-off between the number and quality of
the identified phrases on the downstream task of
terminology expansion. Phrase detection is a nec-

1’percussion’ refers to the clinical examination process of
tapping on the surface area of thorax or abdomen to deter-
mine the inner formation.

2’costovertebral angle’ refers to the angle created by the
vertebral column and the lower ending of the thorax.

essary component in the data processing pipeline
as many symptoms are multi-word expressions.

• Four word embedding methods are used for
deriving prototype embeddings: Word2Vec,
Phrase2Vec, GloVe and FastText. More impor-
tantly, we evaluate the use of prototype embed-
dings for terminology expansion and explore pro-
totype embeddings at two levels of abstraction: (i)
for specific UTI symptoms and (ii) for UTI symp-
toms in general.

• Two different corpora are used for training the
prototype embeddings and we explore the trade-
off between data volume and quality: one corpus
is smaller but contains only positive UTI cases,
whereas the other is larger but somewhat less rel-
evant to the target domain.

• Using a small set of seed terms in the form of
UTI symptoms, we are able to extract another 142
new terms for inclusion in the terminology using a
data-driven and semi-automatic method based on
prototype embeddings.

2 METHODS & MATERIALS

In this study, we investigate the use of prototype em-
beddings for the extraction of UTI symptom terms
from clinical text. In order to create prototype em-
beddings for this task, we need: (i) to detect phrases in
the unannotated corpus (in order to be able to capture
symptoms that are not only expressed as single words
but also as multiword expressions), and (ii) base em-
beddings from which to derive the prototype embed-
dings. We conduct a number of experiments with dif-
ferent underlying corpora, different methods for auto-
matic detection of phrases, different methods for cre-
ating the base word embeddings, as well as prototype
embeddings constructed at different levels of abstrac-
tion. Real-word clinical data is extracted from a major
university hospital in Sweden. A domain expert anno-
tates a portion of the data to create seed terms and also
evaluates the candidate UTI symptom terms identified
by the various models.

2.1 Methods

Below follows a description of the methods used
in the study: (i) methods for phrase detection, (ii)
methods for creating base word embeddings, and (iii)
methods for creating prototype embeddings.
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2.1.1 Phrase Detection

For this task, phrase detection is necessary as symp-
tom expressions can either be in the form of unigram
words (e.g. headache) or multiword expressions (e.g.
sore throat). Embeddings for terms of varying length
therefore need to be created, and this is achieved by
automatically identifying (and, in some cases, con-
catenating) phrases in the underlying corpus, which
is later used for constructing the word embeddings.

Two common and simple data-driven phrase de-
tection methods are used to this end. Both are based
on the notion of identifying words that often co-occur
together, but rarely in other contexts. The first one
is presented in (Mikolov et al., 2013) and identifies
phrases based on unigram and bigram counts accord-
ing to the following scoring function:

score(wi,w j) =
count(wiw j)−δ

count(wi)× count(w j)
,

where δ is a discounting coefficient that helps
to avoid identifying too many phrases made up of
very rare words. Bigrams that score above a cer-
tain set threshold are treated as phrases; this process
is repeated in several passes over the data such that
longer phrases than bigrams can also be identified.
Here, this method is referred to as IM (for iterative
merging). The second phrase detection method is
based on the normalized (pointwise) mutual informa-
tion among collocated words (Bouma, 2009). Here,
we refer to this method as nPMI.

2.1.2 Word Embeddings

The distributional hypothesis (Harris, 1954) states
that words that frequently co-occur in similar con-
texts tend to be semantically similar. Many meth-
ods have exploited this observation to automatically
derive, from large text corpora, vector representa-
tions of word meaning. Word embeddings are lexical
semantic representations in the form of dense, low-
dimensional vectors in a continuous vector space, in
which embeddings of semantically similar words are
also expected to be in relatively close proximity in se-
mantic (vector) space. Word embeddings can be de-
rived using a number of different methods; as it has
been shown that there is no single method that consis-
tently outperforms others for all types of biomedical
NLP tasks (Wang et al., 2018), we investigate the use
of four common word embedding methods:

Word2Vec (Mikolov et al., 2013) derives, in an
efficient manner, word embeddings using a shallow
neural network that is trained to carry out a supervised
learning task without the need for labeled data. There

are two variants of the learning task: continuous bag
of words (CBOW) and skip-gram. In CBOW, the task
is to learn to predict the target word based on its con-
text (i.e. the adjacent words in a fixed-size window),
while, in the skip-gram model, the task is instead to
predict the context based on the target word.

Phrase2Vec (Artetxe et al., 2018) is an exten-
sion of the former, designed to derive embeddings
for phrases. This method requires one to provide a
list of phrases separately, for which it learns phrase
embeddings, along with regular unigram-based word
embeddings.

GloVe (Pennington et al., 2014) combines global
matrix factorization and local context window meth-
ods to derive word embeddings. The idea is to take
into account the frequency of word co-occurrences in
the entire corpus when deriving the word embeddings.

FastText (Bojanowski et al., 2017) treats words as
a combination of n-gram characters. These n-gram
characters can be mapped to dense vectors, and the
overall aggregation of these lower-level embeddings
can be used to represent a word or a phrase. This
allows for deriving embeddings for unknown words
and also requires less training data in comparison to
the aforementioned methods.

2.1.3 Prototype Embeddings

Prototype embeddings (Henriksson et al., 2014a) are
intended to capture the semantics of a (higher-level)
concept or a group based on the embeddings of the
members. A prototype embedding for a group can, for
instance, simply be created through mean or median
pooling of the members’ embeddings. Here, we take
the column-wise mean value of a set of embeddings
to derive a prototype embedding. It has been shown
that prototype embeddings can be used for creating
semantic features that help to improve named en-
tity recognition systems, while further improvements
can be obtained by creating ensembles of prototype
embeddings, where each member is derived from a
model built with different underlying data and/or hy-
perparameters (Henriksson, 2015).

In this study, we investigate the use of prototype
embeddings for a different task, namely terminology
expansion, and, in particular, to extract terms – as
they appear in real, clinical text – of UTI symptoms.
We also investigate and compare the use of prototype
embeddings constructed at different levels of abstrac-
tion: (i) one prototype embedding for each specific
UTI symptom, and (ii) another, high-level prototype
embedding for UTI symptoms in general. With the
former, we aim to extract terms that express a specific
UTI symptom and only use seed terms within that
group to derive the prototype embedding. In the latter
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case, we aim to extract any form of UTI symptom and
use all seed terms to derive a single prototype embed-
ding. We specifically investigate which abstraction
level is the most productive for terminology expan-
sion. Here, we refer to the former as symptom-specific
and the latter as symptom-general.

2.2 Data

In this study, data in the form of text corpora are
needed for constructing the word embeddings. In ad-
dition, the proposed method relies on access to seed
terms for constructing prototype embeddings, both
symptom-specific and symptom-general.

2.2.1 Corpora

The underlying corpora are extracted from a database
of electronic health records from Karolinska Univer-
sity Hospital in Stockholm, Sweden. The data used in
this study can be obtained (upon request) from the re-
search infrastructure The Swedish Health Record Re-
search Bank (Health Bank3), at Stockholm University
(Dalianis et al., 2015). The infrastructure contains
more than two million patient records from the years
2007-2014 obtained from Karolinska University Hos-
pital.

We extracted clinical notes with the following in-
clusion criteria: (i) patients who are 18 years or older,
(ii) admitted to the hospital between July, 2010 and
March, 2013, and (iii) one urine culture taken during
the hospitalization period. In total, there were 10,335
urine cultures found in 7,256 hospitalizations of 5,659
patients. A urine culture was considered positive if
there was a significant growth (having more than or
equal to 105 colony forming units per milliliter of
urine) of no more than two pathogens. In total, there
were 7,972 positive urine cultures found in 6,943 hos-
pitalizations of 5,653 patients.

Table 1: Number of types and tokens in the two corpora.

Corpus Types Tokens

Case Group 156,695 13,475,706
Control Group 181,331 19,357,294

Two corpora are extracted for the experiments de-
scribed later in section 2.3. One contains only clin-
ical notes for hospitalizations that contain a positive
urine culture, i.e. the Case Group. Another corpus is
created with clinical notes for hospitalizations with-
out a positive urine culture, i.e. the Control Group.
The total number of types and tokens in the respective

3http://dsv.su.se/healthbank

corpora are shown in Table 1. The corpora are prepro-
cessed by removing punctuation marks and lowercas-
ing all characters.

2.2.2 Seed Terms

In order to create a prototype embedding for a higher-
level concept or group, access is needed to a sample of
terms that represent members of that group. A physi-
cian and expert in infectious diseases, with exten-
sive experience of treating patients with UTI, there-
fore manually annotated one month’s (April, 2012)
worth of data according to the aforementioned inclu-
sion criteria. In total, 120 UTI symptom terms were
annotated according to the six UTI symptoms men-
tioned in the introduction: dysuria, frequency, ur-
gency, suprapubic tenderness, costovertebral angle
pain or tenderness, and non-specific. In this anno-
tation set, a total of 240 positive urine cultures were
identified in 201 hospitalizations of 195 patients. The
annotator marked the symptom terms with the exact
form and spelling as found in the clinical text. Ta-
ble 2 provides some examples of the annotated symp-
tom terms. As can be seen, some symptom terms are
misspelt (trägnningar should be trängningar); these
need to be captured in order for the terminology to
be effective for information extraction purposes. It is
worth mentioning that the sixth UTI symptom (non-
specific) was used to group the symptom terms which
are not included in ECDC (European centre for dis-
ease prevention and control) or CDC (Centers for Dis-
ease Control and Prevention). We used it to group
the terms which could still be relevant to detect UTI;
for example, miktionsbesvär (micturition problems)
could indicate some forms of disturbance related to
micturition. The seed terms are also used for ini-
tial evaluation and hyper-parameter tuning, see sec-
tion 2.3.4. Table 3 provides the number of manually
annotated seed terms for each UTI symptom and their
frequency in the two corpora.

2.3 Experimental Setup

In this paper, we investigate several research ques-
tions in the following sets of experiments:

2.3.1 Experiment 1: Underlying Data

One of the most fundamental aspects that affects the
makeup of a word embedding space is the data which
is used for training the model. Here, we investigate
two aspects of the underlying data: (1) phrase detec-
tion and (2) data volume vs. quality.

Phrase detection is a necessary step in order to
be able to identify UTI symptoms in the form of
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Table 2: Examples of annotated UTI symptom terms.

UTI Symptom Example Term Translation

Dysuria sveda burning
sensation

Frequency kissar ofta urinating
often

Urgency trägnningar urgency
(misspelt)

Suprapubic
tenderness ont i blåsa bladder pain

Costovertebral
angle pain or
tenderness

flanksmärta flank pain

Non-specific miktionsbesvär micturition
problems

Table 3: Frequency of seed terms in the two corpora.

UTI
Symptom

Case Group Control Group

Types Tokens Types Tokens

Dysuria 26 3,902 26 4,674
Frequency 9 337 9 395
Urgency 8 4,838 8 5,913
Suprapubic
tenderness 14 49 14 55

Costo-
vertebral
angle pain /
tenderness

35 1,254 35 1,495

Non-specific 28 1,701 28 2,067

multiword expressions. In data-driven approaches to
phrase detection, there is a trade off between the num-
ber and quality of identified phrases. In addition to
comparing the two data-driven phrase detection meth-
ods described in section 2.1.1, we explore the down-
stream impact of using a small, medium, or large list
of automatically identified phrases. The phrase lists
are generated using three different thresholds for each
of the two phrase detection methods: 100 (small),
5 (medium), 1 (large) for IM and 0.57 (small), 0.34
(medium) and 0.23 (large) for nPMI. In order to en-
sure that the manually annotated UTI symptom terms
are treated as phrases, they are concatenated using
the underscore character (“ ”). For example, all in-
stances of “kissar ofta” (urinating often) are replaced
by “kissar ofta”.

It is well-known that large corpora lead to higher-
quality word embeddings, as it is necessary to have a
large number of observations of language use – i.e.
the contexts in which terms are used – in order to
capture the variety and nuances of word meaning.
However, the “quality” of word embeddings – here,
defined according to their performance in the down-

stream task of terminology expansion – is also deter-
mined by the “quality” of the underlying data. In this
context, we define data quality according to how spe-
cific the corpus is to the application domain of UTI.
We investigate the use of two different underlying cor-
pora: the Case Group corpus is relatively smaller but
assumed to be of higher quality compared to the Con-
trol Group corpus, which is relatively larger but less
specific to the application domain and hence assumed
to be of lower quality. See Table 4 for the number
of phrases identified with each setting and underlying
corpus.

Table 4: The number of identified phrases in each corpus us-
ing different phrase lists (Small, Medium, Large) generated
using two different phrase detection methods (IM, nPMI)
and three different thresholds.

Phrase
List

Case Group Control Group

IM nPMI IM nPMI

Small 7,780 7,145 11,149 10,233
Medium 29,918 28,626 41,896 40,728
Large 47,406 46,866 67,859 67,972

2.3.2 Experiment 2: Underlying Embeddings
Method

Another important aspect that affects the makeup of a
word embedding space is the method used for train-
ing the model. Different methods perform well in
different domains and on different downstream tasks:
here, we evaluate the following four word embedding
methods to generate base models from which to de-
rive prototype embeddings: Word2Vec, Phrase2Vec,
GloVe and FastText (see section 2.1.2 for details).

The word embedding methods have many hyper-
parameters that need to be tuned. Instead of doing a
grid search in some restricted hyperparameter space,
points are chosen at random in order to more effec-
tively search the space. For each word embedding
method, 50 points are randomly selected, thus yield-
ing 50 different models for each method. See Table 10
in the appendix section, which provides details con-
cerning the hyperparameter space within which points
are randomly sampled.

2.3.3 Experiment 3: Prototype Abstraction
Level

One of the key research questions that we investigate
in this study – building on previous work on the use
of prototype embeddings – is on what level of ab-
straction prototype embeddings are best used for ter-
minology expansion. In this study, we compare two

Terminology Expansion with Prototype Embeddings: Extracting Symptoms of Urinary Tract Infection from Clinical Text

51



prototype abstraction levels: (1) at the specific UTI
symptom level (symptom-specific), and (2) at the gen-
eral UTI symptom level (symptom-general). All base
word embedding models are used for deriving the best
prototype embeddings within each abstraction level.
The two levels are finally compared and evaluated for
their ability to identify new UTI terms. The candidate
terms produced by the prototype embedding models
at each level are manually assessed by a domain ex-
pert, see section 2.3.4 for further details.

2.3.4 Evaluation

In this study, mean average precision (MAP) is used
as the primary evaluation metric (Schütze et al.,
2008). MAP is the simple average of average preci-
sion (AP) scores over all examples in a validation set.
AP is a metric that describes to what extent relevant
items are concentrated in the highest-ranked predic-
tions. For each threshold level (k), AP can be calcu-
lated by first taking the difference between the recall
at the current level in the ranked predictions and the
recall at the previous threshold level (k− 1), multi-
plied by the precision at that level (k) in the ranked
prediction. The sum of the contributions at each level
is the AP. Precision is the fraction of predictions that
are relevant and correct, and recall is the fraction of
all relevant values that are predicted.

For model selection, leave-one-out cross-
validation is carried out. In this context, this entails
that, in each iteration, all but one of the seed terms
are used for deriving the prototype embedding;
the ranking of the left-out seed term in the list of
nearest neighbors – based on cosine similarity – is
used for calculating the AP score. This process is
repeated for all seed terms in order to estimate a MAP
score for a given model. For symptom-specific, this
process is carried out using seed terms for a specific
UTI symptom, whereas for symptom-general, it is
done using all seed terms. For symptom-specific,
MAP scores are macro-averaged across the six UTI
symptoms. For each abstraction level, the model with
the highest macro-averaged MAP score is selected as
the best model.

The best models within each level of abstraction
and corpus are then compared and evaluated in the
following manner. For both abstraction levels, all
seed terms – for a specific UTI symptom or for all
UTI symptoms, respectively – are used for construct-
ing the prototype embeddings, i.e. there is no longer
a need to leave out an instance. In total, 14 lists
of candidate terms for inclusion in the terminology
are generated. For each symptom-specific prototype
embedding, the candidate list contains the terms
corresponding to the 100 nearest neighbors. For

each symptom-general, the candidate list contains
the terms corresponding to the 600 nearest neighbors
(6×100). A domain expert reviewed the union of the
sets of candidate terms for relevance with respect to
a certain UTI symptom. This allowed for counting
the number of relevant UTI symptom terms that were
extracted for each UTI symptom and abstraction
level, as well as to calculate AP scores.

3 RESULTS

The first set of experiments were conducted using the
initial set of seed terms for carrying out leave-one-out
cross-validation. This allowed us to efficiently eval-
uate a number of potentially important factors in the
creation of prototype embeddings for terminology ex-
pansion: (i) four different base embedding methods,
(ii) two different phrase detection methods, each with
three different thresholds controlling the number of
phrases generated, and (iii) two different underlying
corpora – one smaller but more relevant in scope, the
other larger but less precise in terms of relevant scope.
In Table 5 and 6, we present the results for symptom-
specific prototype embeddings and symptom-general
prototype embeddings, respectively. For each base
embedding method and phrase detection method, we
present results with the phrase list and corpus that
yielded the best results.

For the symptom-specific prototype embeddings,
as can be seen in Table 5, better results were obtained
with FastText compared to the other base embedding
methods, regardless of the phrase detection method
used. The overall best result – a MAP score of 0.15 –
was obtained with a medium phrase list obtained using
the IM phrase detection method and the Case Group
corpus. In these experiments, no clear difference was
observed between the Case Group and Control Group
corpora. With respect to the number of phrases identi-
fied, the results seem to speak in slight favor of using
a small- or medium-sized phrase list.

For the symptom-general prototype embeddings,
as can be seen in Table 6, the best results were
again obtained using FastText as the base embed-
ding method. Like in the case of symptom-specific,
the overall best result – a MAP score of 0.14 – was
obtained with a medium phrase list obtained using
the IM phrase detection method and the Case Group
corpus. Observations with respect to the choice of
underlying corpus and phrase list are similar to the
ones observed for symptom-specific prototype em-
beddings. The best-performing protototype em-
bedding models at two different levels of abstrac-
tion (symptom-specific and symptom-general) and for
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Table 5: Symptom-Specific prototype embeddings: macro-averaged MAP scores for different base embedding methods,
phrase detection methods, the best phrase list and the best corpus. The highest scores for each phrase detection method are in
bold.

Base Embedding Phrase Detection Phrase List Corpus MAP

Word2Vec

IM

Medium Control 0.11
Phrase2Vec Large Control 0.10
GloVe Large Case 0.04
FastText Medium Case 0.15

Word2Vec

nPMI

Medium Case 0.10
Phrase2Vec Large Control 0.11
GloVe Small Case 0.12
FastText Small Control 0.12

Table 6: Symptom-General prototype embeddings: macro-averaged MAP scores for different base embedding methods,
phrase detection methods, the best phrase list and the best corpus. The highest scores for each phrase detection method are in
bold.

Base Embedding Phrase Detection Phrase List Corpus MAP

Word2Vec

IM

Medium Control 0.12
Phrase2Vec Large Control 0.10
GloVe Medium Case 0.07
FastText Medium Case 0.14

Word2Vec

nPMI

Medium Case 0.12
Phrase2Vec Large Control 0.11
GloVe Small Case 0.13
FastText Small Control 0.13

two underlying corpora (Case Group and Control
Group) were selected to participate in the final eval-
uation, wherein 100 candidate terms were extracted
from each symptom-specific prototype embedding and
600 terms were extracted from each symptom-general
prototype embedding. The candidate terms were re-
viewed by a domain expert for relevance and the
results, in terms of AP scores, are shown in Table
7. All symptom-specific prototype embeddings per-
form well, with the exception of suprapubic tender-
ness. The symptom-general prototype embedding
also performed well, but slightly worse compared
to the macro-averaged MAP score for the symptom-
specific prototype embeddings. Notably, using the
Case Group corpus generally yielded better results
with symptom-specific prototype embeddings (MAP:
0.51 vs. 0.48), whereas the Control Group corpus
yielded better results with symptom-general prototype
embeddings (MAP: 0.48 vs. 0.30).

Table 8 shows the number of extracted UTI terms
(types) that were deemed relevant by the domain ex-
pert for each of the symptom-specific and symptom-
general prototype embeddings, as well as the sum of
their frequencies (tokens) in the two corpora. First, it

Table 7: Final evaluation: AP scores in the case and con-
trol corpora for each symptom-specific prototype embed-
ding and the symptom-general prototype embedding.

Prototype
Embedding

Case
Group

Control
Group

Dysuria 0.61 0.56
Frequency 0.64 0.47
Urgency 0.82 0.76
Suprapubic
tenderness 0.00 0.06

Costovertebral
angle pain or
tenderness

0.86 0.83

Non-specific 0.13 0.24

Macro-averaged
MAP 0.51 0.48

UTI Symptoms 0.30 0.48

should be noted that there were some terms that ap-
peared in several of the candidate lists; the total num-
ber of unique candidate terms was 1,504. Of these,
142 terms were deemed relevant by the domain ex-
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pert. The observant reader will notice that the sum of
the types for the symptom-specific prototype embed-
dings is larger than 142 and this is because, in some
cases, the domain expert classified a term as relevant
for more than one specific UTI symptom. Neverthe-
less, more UTI symptom terms were extracted with
the symptom-specific prototype embeddings than with
the symptom-general counterparts (167 vs. 121). As
expected, the terms are more frequent in the Control
Group corpus, owing to its larger size.

Table 8: Frequency of the extracted and relevant UTI symp-
tom terms in the two corpora.

Prototype
Embedding

Case
Group

Control
Group

Types Tokens Types Tokens

Dysuria 31 415 31 755
Frequency 43 367 43 527
Urgency 21 506 21 709
Suprapubic
tenderness 27 98 27 131

Costo-
vertebral
angle pain /
tenderness

9 510 9 759

Non-specific 36 765 36 1,081

UTI
Symptoms 121 1,857 121 2,838

Table 9 provides an example of terms automati-
cally extracted from a corpus of clinical text using
a prototype embedding (and calculating its nearest
neighbors), in this case for the UTI symptom urgency.
As can be seen, many relevant terms are among the
nearest neighbors of the prototype embedding. It is
also notable that phrases of varying length are iden-
tified. There are also several misspellings, and the
frequencies show that these are relatively common.

4 DISCUSSION

In this study, experiments were conducted concerning
(i) the data and (ii) embedding methods used for con-
structing the semantic spaces, as well as (iii) the level
of abstraction for the prototype embeddings. The re-
sults of these will be discussed below, in relation to
the target application, namely terminology expansion
and extracting UTI symptoms from clinical text.

The underlying data and embedding method used
are naturally the two most important aspects that im-
pact the structure of the resulting semantic space. Al-

though these do perhaps not represent the primary fo-
cus of the paper, they were too important to ignore
and we therefore studied their impact on the prototype
embeddings that were, in turn, used for the down-
stream task of terminology expansion. Concerning
the underlying data, this can be broken down into two
parts: (i) phrase detection and (ii) corpus construc-
tion, in particular how the data is sampled and the
trade-off between data volume vs. quality. In terms of
the performance of the two phrase detection methods,
there was little difference between them, with IM used
in the best-performing models. When using statistical
phrase detection methods, there is a clear trade-off be-
tween the number and quality of identified phrases; in
this case, we could observe that using a large phrase
list resulted in worse performance. As can be seen
in Table 9, some of the identified phrases (e.g. ur-
inträngningar urinsticka) are not phrases in a linguis-
tic sense and, while deemed relevant by the domain
expert, probably should not be included as terms in a
terminology. While using linguistic information from
a syntactic parser to generate phrases would likely
yield better results, good syntactic parsers for low-
resource languages and domains can be difficult to ob-
tain, and the simpler methods used in this study gen-
erally produced satisfactory results. Moreover, using
a vocabulary of standard phrases would be limiting
since it would fail with the misspellings and the type
of creative language use found in clinical text.

Regarding corpus construction, the results were
mixed, making it difficult to draw any clear conclu-
sions. However, in the final evaluation, it was ob-
served that the Control Group corpus gave better re-
sults for symptom-general prototype embeddings and
the non-specific symptom-specific prototype embed-
ding, while the Case Group corpus gave better results
for the other symptom-specific prototype embeddings
(with the exception of suprapubic tenderness, which
performed badly with both corpora). One possible
explanation is that more data – even at the expense
of being slightly less specific to the target domain –
is helpful when the prototype embeddings are meant
to capture concepts that are wider in scope, such as
UTI symptoms in general or other, non-specific UTI
symptoms. This would, however, need to be inves-
tigated further. A limitation with this experiment is
also that the corpora are not all that different; in fu-
ture work, it would be interesting to study this aspect
in more detail and with greater differences between
corpora, both in terms of volume and domain speci-
ficity.

Prototype embeddings are based on a notion that
works with any vector-based model of distributional
semantics. Our experiments showed that the choice
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Table 9: Extracted symptom terms, along with English translations, for the prototype embedding for urgency. The ranks and
the frequency in the Case Group corpus of relevant terms are shown. Misspelled terms are in bold.

Rank Extracted Term English Translation Freq

1 trängningar vid miktion urgency during micturation 15
2 besväras av täta trängningar bothered by frequent urges 13
3 urinträngning urinary incontinence 16
4 trängningarna the urges 18
5 täta trängningar och sveda vid miktion frequent urges and burning during micturition 11
6 täta urinträngningar frequent urination 64
8 sveda och trängningar burning and urges 30
9 täta trängningar till miktion frequent urges for micturition 26
10 miktionsträngningar micturition efforts 29
11 sveda vid miktion täta trängningar burning during mictation frequent urges 16
12 miktionssveda och täta trängningar micturition burns and frequent urges 13
13 upplever trängningar experiencing urges 31
15 trängningar till vattenkastning urge to urinate 11
16 trängningar till miktion urges for micturition 46
18 täta miktionsträngningar frequent micturition efforts 16
19 urinträngningar urinsticka urinary incontinence urine stick 11
25 sveda eller trängningar burning or urges 13
27 trägningar urges 27
28 besvär med trängningar discomfort with urges 11
37 form av trängningar form of urges 12
38 trängningsbesvär urgency 21
42 täta trägningar frequent urges 15
63 täta trängingar frequent urges 17

of base embedding method does have an impact on
the downstream performance of the prototype em-
beddings. Among the ones included in this study,
FastText consistently outperformed the others. There
could be several explanations for this: one such ex-
planation is that using subword embeddings allows it
to generalize faster, and the corpora used in these ex-
periments are both relatively small.

One of the key aspects we set out to investigate
in this study, in addition to applying the notion of
prototype embeddings to the task of terminology ex-
pansion, was to study if prototype embeddings could
capture, not only synonymy, but something as wide
in scope as UTI symptoms in general. While the per-
formance was good with both symptom-specific and
symptom-general prototype embeddings, with many
new and relevant terms successfully identified, the
former outperformed the latter in our experiments. In
future work, it would be interesting to study this in
more detail using a variety of concepts at different
levels of abstraction, as well as to investigate the im-
pact of the size and nature of the seed set used for
deriving a prototype embedding. For example, us-
ing only one UTI symptom as seed terms, would it
be possible to extract other types of UTI symptoms?
One can also imagine more sophisticated ways of de-
riving prototype embeddings than mean pooling, even
if simpler methods have certain advantages.

As can be seen in Table 7, the prototype em-

beddings indeed produced good results. Except for
suprapubic tenderness, the performance was good
in all cases, especially considering the frequency of
these terms in the corpora. We looked for explana-
tions for the poor performance of the suprapubic ten-
derness prototype embeddings and discovered that it
was largely due to the low frequency of the associated
symptom terms. The minimum frequency when creat-
ing word embeddings was set to ten and only two seed
terms for this UTI symptom exceeded this threshold
in the Control Group corpus, yielding an AP score of
0.06. In the Case Group corpus, only one seed term
was present, resulting in an AP score of zero. In this
case, it hence functioned like a regular word embed-
ding to generate the candidate list, which, in turn, il-
lustrates the advantage of prototype embeddings.

In future work, transfer learning will be explored,
which involves fine-tuning a pre-trained model –
trained with a large amount of data, not necessarily
in-domain – to perform another task. In BERT (De-
vlin et al., 2018), multi-head attention is used to gen-
erate word embeddings. Due to its complexity and
amount of data required, BERT-based models are typ-
ically used in transfer learning approaches, and we
plan to explore this for terminology expansion. In fu-
ture work, the terminology will be matched with the
standard medical terminology available in Swedish,
such as ICD-10 (international statistical classification
of diseases and related health problems-10), Snomed
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CT (systematized nomenclature of medicine – clinical
terms), and MeSH (medical subject headings).

5 CONCLUSIONS

In this study, we investigated the use of prototype em-
beddings for terminology expansion, specifically for
extracting symptoms of urinary tract infections from
clinical text corpora. Four word embedding methods
were used for deriving the higher-level prototype em-
beddings; it was observed that FastText yielded the
best results. We also explored two statistical phrase
detection methods and, while there was little differ-
ence between them, we also studied the trade-off be-
tween the number and quality of identified phrases
and its impact on the downstream terminology expan-
sion task. We also observed that using a somewhat
smaller but high-quality, relevant corpus generally
gave better results than using a larger yet less precise
corpus; however, this seems to depend on the target
concept’s abstraction level. Indeed, two levels of ab-
straction were compared and contrasted: both yielded
good results, but using prototype embeddings for spe-
cific symptoms overall outperformed the use of pro-
totype embeddings for urinary tract infection symp-
toms in general. Ultimately, we were able to identify
an additional 142 symptoms for inclusion in the ter-
minology with very little manual effort required.
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APPENDIX

Table 10: Hyperparameter values for different word embed-
ding methods.

Hyperparameter Values

Corpus Case, Control
Phrase detection method IM, nPMI
Phrase list Small, Medium, Large
Context window size 5, 10, 15
Vector dimension 50, 100
Iterations, GloVe 15, 20, 25, 30
Iterations, other methods 2, 5, 10
Hierarchical softmax value 1, 0
Skipgram value 1, 0
Negative value, Phrase2Vec 3, 5, 10
Negative value, other methods 5, 10, 15, 20
cbow mean value for FastText 1, 0
Minimum term frequency 10
x max, GloVe 10
CBOW value, Phrase2Vec 0
min n, FastText 2
max n, FastText 10
Word ngrams, FastText 1
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