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Abstract: When persons are mentioned in texts with their first name, last name and/or middle names, there can be a high
variation which of their names are used, how their names are ordered and if their names are abbreviated. If
multiple persons are mentioned consecutively in very different ways, especially short texts can be perceived
as “messy”. Once ambiguous names occur, associations to persons may not be inferred correctly. Despite
these eventualities, in this paper we ask how well an unsupervised algorithm can build a person index from
short texts. We define a person index as a structured table that distinctly catalogs individuals by their names.
First, we give a formal definition of the problem and describe a procedure to generate ground truth data for
future evaluations. To give a first solution to this challenge, a baseline approach is implemented. By using our
proposed evaluation strategy, we test the performance of the baseline and suggest further improvements. For
future research the source code is publicly available.

1 INTRODUCTION

In the Western world, it is common that persons have
a first name (forename, given name), last name (sur-
name, family name) and optionally additional names
like middle names. When individuals are mentioned
in texts, there can be a high variation which of their
names are used, how their names are ordered and
if their names are abbreviated. For example, “John
Fitzgerald Kennedy”, “John”, “Kennedy, J F” and “J.
Kennedy” are variations that refer to the same person.

Once people share equal names, references can
easily become ambiguous even in smaller groups. In
these cases, readers try to disambiguate them with ad-
ditional context information given in texts. However,
especially short texts (or text snippets) often lack a
regular grammar, have only few statistical signals and
are rather ambiguous (Hua et al., 2015). Thus, in a
worst-case scenario, correct associations to individu-
als are impossible to infer. Nevertheless, eligible per-
sons could be suggested.

Often, we encounter unstructured (short) texts
where several persons are mentioned but we do not
have an index which lists them clearly. We define
such a person index as a structured table that distinctly
catalogs individuals by their names. Such a structured
database can be utilized in various knowledge ser-

vices, for example, in a ontology-based recognition of
named entities (Jilek et al., 2019). However, arrang-
ing this index becomes a challenging task for humans
and especially for machines, when we consider the
previously mentioned eventualities: optional (middle)
names, name variations, ambiguities and short texts.
In particular, the messiness of texts makes this chal-
lenge more difficult. We classify such texts as kind
of “messy” if mentioned person names do not follow
a particular pattern (or structure), i.e. the data qual-
ity is rather low. Still, an initial suggestion for an
index could be calculated by an unsupervised algo-
rithm to reduce the manual effort considerably. Be-
cause such a method’s performance is still unclear in
our described scenario, we ask the following research
question: How well can an unsupervised algorithm
build a person index from a set of messy, short texts?

In order to answer this question, we will design a
procedure that generates ground truth data to conduct
evaluations with proposed solutions. The generator is
able to produce a list of short texts referring to per-
sons in various forms and generates an index of per-
sons that has to be discovered. To acquire first perfor-
mance results, we propose a baseline algorithm. This
work does not intend to provide a novel procedure to
solve the person index challenge in the best way pos-
sible. Instead, the contributions of this paper are the
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following:

• a formal definition of the problem,

• a procedure that generates ground truth data for
this specific challenge,

• an evaluation strategy to assess the quality of al-
gorithms that try to solve it

For future research the source code of the generator,
the baseline algorithm and the evaluator is publicly
available at GitHub1. This paper is structured as fol-
lows: The next section will formally define the prob-
lem of building a person index from texts. After the
discussion of related work (Section 2), we suggest a
data generator that produces ground truth for future
evaluations (Section 3). Section 4 describes a baseline
approach for the given problem. Our evaluation strat-
egy in Section 5 shows first performance results. Sec-
tion 6 concludes the paper and describes future work.

1.1 Problem Definition

The problem is a specific form of named entity recog-
nition (NER) and disambiguation (NED), also known
as Entity Linking, but without having a knowledge
base containing persons in advance. At first, per-
sons with their names have to be recognized in text
snippets as usual. However, it is important to decide
which name is first name, last name and middle name
to fill the person index correctly. Although we are
aware that there are persons having more than one
middle name, like for example “J. R. R. Tolkien”, we
simplified our problem to correspond more to famil-
iar industrial scenarios. This is also the reason why
we currently focus on Western names only.

The disambiguation of persons cannot be done
with a preexisting person knowledge base in our sce-
nario since there is no such source in advance. In-
stead, disambiguation has to be done by examining
collected entries in the person index. Because of a
particular uncertainty in this process, there can be am-
biguous person references. What follows is a formal
specification of the described problem:

A person is a tuple p j :� p f n,mn, lnq containing
a first name ( f n), a last name (ln) and an optional
middle name (mn). Given a set of short texts ti P T ,
the challenge is to extract all distinct persons p j P P
from their texts mentions such that (as far as possible)
their names are at full length. In order to know
which person was mentioned in which text, a relation
pti, p jq P R � T �P has to be provided. If references
are ambiguous and there is no way to disambiguate
them, the relation pti,r,PAq P A with PA � P shall

1https://github.com/mschroeder-github/person-index

capture that in a short text ti – due to a substring r
(reason) – a set of persons PA are possibly mentioned.
We distinguish between R and A to ease the later
evaluation of correctly found unambiguous persons
versus ambiguous ones.

Example. Given the texts t1 �“BakerêThompson
LS-Z-U”, t2 �“mail to Chief Morgan (Wilson),
[remove Baker, Robert]” and t3 �“Wilson,
M.; Susan Lea Baker”, the following persons
can be discovered: p1 � pRobert,H,Bakerq,
p2 � pWilson,H,Morganq, p3 � pH,H,T hompsonq
and p4 � pSusan,Lea,Bakerq. This leads to the re-
lation R � tpt1, p3q,pt2, p2q,pt2, p1q,pt3, p2q,pt3, p4qu.
Because “Baker” is ambiguous in t1, we state
A � tpt1,Baker,tp1, p4uqu.

2 RELATED WORK

In the area of natural language processing (NLP), in-
formation extraction (IE) (Martı́nez-Rodrı́guez et al.,
2020) and its subfield named-entity recognition
(NER) (Nadeau and Sekine, 2007) are well known
disciplines. Usually, NER models are trained to rec-
ognize certain entity types in texts such as locations,
organizations or persons. They can be divided into
two categories whether they know all possible entities
upfront, such as in (Song et al., 2011), or they have to
detect them blindly. Our scenario belongs to the sec-
ond category with focus on the recognition of person
entities in texts. Besides the recognition, we also link
found entities to a person index which is a task known
as Entity Linking, for example investigated in (Rizzo
et al., 2017) for tweets. Similar to tweets, we limit the
corpus to be only short texts (Hua et al., 2015).

NER for SMS (Ek et al., 2011) can also be consid-
ered as short texts since they do not necessarily follow
a regular grammar. The authors’ supervised algorithm
is pre-trained with an annotated SMS corpus and ad-
ditionally supported with gazetteer lists.

There are many similar works which try to rec-
ognize entities in short texts. However, they usually
do not form an index of canonical forms as stated in
the problem definition. More similar to our scenario
is named-entity normalization (NEN). Besides usual
recognition, it integrates a normalization process to
assign unique identifiers to entities.

A person normalization problem is solved in (Jijk-
oun et al., 2008) by using within-document reference
resolution in user generated contents. If the person
cannot be disambiguated with a Wikipedia lookup –
which is a typical case in our scenario – the person’s
surface form is used instead. In their appendix, a per-
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son name matching algorithm is described which uses
heuristics and fuzzy matching. Another normaliza-
tion strategy in tweets (Liu et al., 2012) finds over-
lapping tokens in the entities’ names. The canonical
form of an entity is the one with the maximum words.

Instead of persons, gene mentions were recog-
nized and normalized (Cohen, 2005). For normaliza-
tion, a dictionary is generated that contains many or-
thographic variants how genes could be mentioned. In
a similar way, sCooL (Jacob et al., 2014) normalizes
academic institution names. Normalization is also uti-
lized to improve question answering (Khalid et al.,
2008).

To the best of our knowledge, there is no work that
proposed the problem of building a person index (or a
similar index) as we did.

3 GROUND TRUTH GENERATOR

In order to be able to evaluate our and future ap-
proaches, we propose a generator that produces
ground truth data. Considering the problem definition
in Section 1.1, the generator produces four comma-
separated values (CSV) files: a set of short texts men-
tioning persons in various ways (T ), a person index
that lists all mentioned persons (P), a list of relations
that relate short texts to persons (R) and a disambigua-
tion list (A). As input, our procedure expects a cata-
log of first names and last names. Additionally, sev-
eral parameter settings can be passed to customize the
generation behavior such as a random seed to control
randomness and quantities to adjust how many per-
sons and short texts should be generated.

In order to control the degree of ambiguity, the
user can decide how many groups of persons share ei-
ther first name or last name. Also, the size of these
groups can be specified. For example, if the degree
of ambiguity is set to two, two groups of two peo-
ple each share a last name while other two groups of
two persons each share a first name. Our generator
starts with the creation of persons having ambiguous
names. To avoid producing more ambiguity later, the
selected ambiguous first names and last names are not
used again. As an example, Robert Baker and Susan
Lea Baker were generated in the ambiguous last name
group “Baker”. The rest of the persons are generated
straight forward without using any name twice. Per-
sons with middle names are generated as well. Their
number can be adjusted in the generator’s settings. In
these cases, another first name is randomly picked as
a middle name. This way, “Susan Lea Baker” was
produced in our example.

After the person index is completed, the short texts

are generated. The generation procedure is heavily in-
spired by concrete data observed in an industrial sce-
nario where spreadsheets were completed by individ-
uals over years. Since copy&paste was often used
to transfer names from several information systems
and files, various name variations can be found in the
data. That is why each generated short text (repre-
senting a spreadsheet cell) mentions a single person
or a group of people at random. To ensure that the
data is messy in a similar way to the observed data,
every person is mentioned using a different variation.
Table 1 lists fourteen patterns the generator uses to
refer to a person. In the patterns the variables for
first name ( f n), middle name (mn) and last name (ln)
are used. The function letterpnameq returns the first
letter of a name while lcpnameq converts a name to
lower case. Following procedures generate random
strings: departmentpq returns a string that looks like
a description of a department while rndpnq generates
a random n-length alphabetic string. notepq randomly
selects a short note from a list like “old”, “TODO”
and “remember”. The same way, rolepq randomly
picks a role description from a list like “Executive”,
“CEO” and “Chief”. The ‘ê’ symbol indicates a new
line. To demonstrate how they would look like, the
full name “John Fitzgerald Kennedy” is used as an
example. Note that not all patterns mention all names
completely which is captured with the FN (first name
mentioned), MN (middle name mentioned) and LN
(last name mentioned) columns. This information is
vital to foresee ambiguity later. Moreover, some pat-
terns contain additional information like department
names, mails or notes to make texts more realistic and
to potentially distract detection algorithms. If the per-
son has a middle name, the generator makes sure to
use patterns 11 to 14. The 11th pattern is always used
first to ensure that the person’s middle name was men-
tioned at least once.

If multiple persons are mentioned in a short text,
they are separated by a random delimiter. Addition-
ally, their names can be surrounded by all kinds of
brackets and quotes. By this, we avoid that algorithms
can simply split texts in a trivial way. To give a short
example, some short texts produced by our generator
are listed below (separated by empty lines).

[Sullivan, Arthur <sullivan@wnpql.to>];
HR-X-C-N-G Brooks Alonso

[Watson, L.];Campbell, Mikaela;Cooper VG-Z
Isabella Adams - [Lee Zoey]

{Chloe}; Martin, M.; Raquel Amanda Garcia;
Myers Elijah

Alice

During the text generation, our procedure records
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Table 1: Patterns to generate mentions of persons in various ways which are demonstrated by an example. An ‘x’ in FN, MN
and LN indicates that first name, middle name or last name are fully mentioned in a pattern.

Nr. Pattern Example FN MN LN
1 f n John x
2 ln Kennedy x
3 f n ln John Kennedy x x
4 ln f n Kennedy John x x
5 ln, f n Kennedy, John x x
6 ln, letterp f nq. Kennedy, J. x
7 ln departmentpq Kennedy US-Z-G x
8 departmentpqêln f n US-Z-GêKennedy John x x
9 ln f n  lcplnq@rndp5q.rndp2q¡ Kennedy John  kennedy@xraok.nc¡ x x

10 notepq rolepq ln f n new Admin Kennedy John x x
11 f n mn ln John Fitzgerald Kennedy x x x
12 f n letterpmnq. ln John F. Kennedy x x
13 letterp f nq. letterpmnq. ln J. F. Kennedy x
14 ln, letterp f nq. letterpmnq. Kennedy, J. F. x

Sum - - 9 1 13

which person was unambiguously mentioned in a cer-
tain text in order to capture the relation R. If, in con-
trast, a person has an ambiguous name, the relation A
is filled instead.

4 BASELINE APPROACH

In this section, we describe our first approach to solve
the person index challenge. This work does not in-
tend to provide a novel procedure to solve the person
index challenge in the best way possible. It is meant
to present initial results and act as a comparative mea-
sure for future approaches.

The data’s messiness is handled by our approach
with some assumptions. A guess about name capital-
ization and their ordering allows us to initially pop-
ulate the person index. Additionally, a first name
gazetteer lookup is performed to potentially correct
the name order. For disambiguation there is no spe-
cial handling.

First, our proposed procedure discovers persons in
texts. Commonly, named entity recognition (NER) is
applied to identify entities such as organizations, lo-
cations and also persons in texts. We therefore use
OpenNLP2 which is a library that provides various
natural language processing (NLP) algorithms. Its
module Name Finder3 allows to detect text entities
of various types. To do so, it requires a model which
is pre-trained on a corpus in a specific language for

2http://opennlp.apache.org/
3http://opennlp.apache.org/docs/1.9.2/manual/opennlp.

html#tools.namefind

a certain entity type. In our algorithm, we utilize
the person name finder model en-ner-person.bin4,
which was trained on an English corpus to detect
names. Although, this model was trained in a super-
vised manner, our baseline algorithm is still unsuper-
vised since no ground truth (see previous section) was
used to train it. Given a list of tokens, the NER model
predicts with a certain probability if a sequence of to-
kens refers to an individual. Unfortunately, the model
cannot decide which of the tokens are first name, mid-
dle name or last name. That is why we make for now
the following three provisional assumptions: if one
token occurs, it is assumed to be a last name; if two
tokens are found, the first token is last name and sec-
ond one is first name; if three tokens are discovered,
the token in the middle is presumed to be the middle
name. Doing this for given short texts yields a list of
persons where some of them occur several times.

Because of errors made in the detection, some per-
sons get improper names such as symbols or letters.
We define a proper name as a name that starts with an
upper case letter and ends with lower case letters. To
filter persons, we match their names with a regular ex-
pression. In this process, duplicates are also removed.
Although this makes it easier to construct a complete
person index, we may lose valuable information (like
initials) for a possible disambiguation later. Still, it
is unclear, if first name, middle name and last name
were correctly assigned. Our solution is the usage of
a first name gazetteer list. We swap names accord-
ingly if falsely assumed last names turn out to be first
names. However, this feature requires a previously
compiled list.

4http://opennlp.sourceforge.net/models-1.5/
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Next, the relations (R) which relate short texts to
persons are discovered. We iterate again over all short
texts and match tokens with (first and last) names of
all persons in our index. In case a single person was
found, we state a relationship between the text and the
person. If multiple persons are matched, we make an
entry in the ambiguity list (A).

Our approach has three features that can be acti-
vated independently. First, OpenNLP’s Name Finder
allows to clear adaptive data5 that is collected during
the text processing. This can be done each time a new
short text is processed which may improve the detec-
tion result. Second, the probability measures of Name
Finder’s model can be used to filter uncertain detec-
tions. If the probability is below 0.5, tokens will not
be regarded as names of a person. Third, as already
described, a first name gazetteer list can be used to
swap names accordingly.

5 EVALUATION

In this section, we present our evaluation strategy
that assesses algorithms that try to solve the proposed
person index challenge. The ground truth GT :�
pT,P,R,Aq consists of short texts T , a person index
P, a relation R and an ambiguity list A. Potential al-
gorithms consume short texts in T and output a person
index Pa, a relation Ra and an ambiguity list Aa.

First, we are interested in the algorithm’s perfor-
mance of building the person index. Therefore, the
ground truth’s index P is compared with the algo-
rithm’s index Pa. If all names of two given persons
are identical, a correct match is assumed. Formally,
an intersection of both sets can be calculated to get
the matches Pm :� PXPa. By this, we can calculate
the algorithms precision and recall for assembling the
person index:

precP :�
|Pm|

|Pa|
recallP :�

|Pm|

|P|

Second, we examine how often a correct mapping be-
tween short text and person are suggested. This makes
only sense for persons which are correctly found by
the algorithm, namely Pm. Thus, for each person
pk P Pm, the relations
R̂ :� tpti, pkq | pti, pkq P R, pk P Pmu and similar for
the algorithm’s output
R̂a :� tpti, pkq | pti, pkq P Ra, pk P Pmu can be de-
fined. Again, identical mappings are calculated with

5https://opennlp.apache.org/docs/1.9.2/apidocs/
opennlp-tools/opennlp/tools/namefind/NameFinderME.
html

the intersection R̂m :� R̂X R̂a. Doing this for all per-
sons @pk PPm, we can calculate the average (avg) pre-
cision and recall for finding the relationships:

precR :� avgp
|R̂m|

|R̂a|
q recallR :� avgp

|R̂m|

|R̂|
q

Third, our goal is to find out how well the algorithm
detects ambiguity. Similar to the person index com-
parison, the ground truth’s list A is compared with
the algorithm’s list Aa. However this time, we in-
dividually consider every person that was correctly
suggested in the group of ambiguous people. For-
mally, since an element pti,r,PAq P A contains a set
of ambiguous people PA, we define an auxiliary set
Â :� tpti,r, pAq | pti,r,PAq P A, pA P PAu to ease fur-
ther comparison. Again, an intersection can be calcu-
lated as Âm :� ÂX Âa. With this, the precision and re-
call for ambiguity detection can be stated as follows:

precA :�
|Âm|

|Âa|
recallA :�

|Âm|

|Â|

For each precision and recall pair, we can calculate
the harmonic mean which is commonly known as the
F-score value:

f score :� 2�
prec� recall
prec� recall

Our actual evaluation can be divided into two parts.
In the first part, we examine how our method’s fea-
tures effect its detection performance. By testing on
various generated data, we discover that only the first
name gazetteer improves results in average. In the
second part, we investigate eight experiments with
specifically generated datasets. They give insights
in our method’s detection performance in more de-
tail. Whenever we generate ground truth, we took
for its input the 100 most common last names in
USA6 and collected 197 popular first names7 (with-
out middle names). As a list of roles we use “Admin”,
“CEO”, “Chief”, “Executive”, “Developer”, “Con-
tact” and empty string. Notes can have the follow-
ing forms: “new”, “old”, “TODO”, “remember”, “re-
move”, “send PDF to”, “send mail to” and “write
message to”. For delimiters we use “\n” (new line),
“\n\n” (two new lines), “/”, “ / ”, “ - ”, “; ” and “;”
and for brackets we consider “< >”, “( )”, “[ ]”, “{ }”,
“" "” (double quote) and “’ ’” (single quote).

Because our approach has three usable features,
we first examine how they have an effect on its de-
tection performance. The described features are (a)

6https://en.wikipedia.org/wiki/List of most common
surnames in North America#United States .28American.
29 (Accessed 2020-04-05).

7https://en.wikipedia.org/wiki/List of most popular
given names#Americas (Accessed 2020-04-05).
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clearing adaptive data, (b) usage of probability mea-
sures and (c) lookup in a first name gazetteer list.
Since these features influence the detection of per-
sons, we investigate how accurately our algorithm
compiles the person index using the fP measure-
ment. Therefore, several tests with differently gener-
ated data are performed where no persons with mid-
dle names and no ambiguity are involved. 60 ground
truth datasets of various sizes were generated at ran-
dom. In particular, we vary the number of persons
|P| (10 to 100), the amount of short texts |T | (150 to
1500), the maximum number of persons mentioned
in a text snippet (1 to 10) and the random seed. With-
out any feature activated, the algorithm reaches in av-
erage an fP of 0.369� 0.012. The usage of proba-
bility measures to filter improbable detections does
not show any effect. If for every new short text
adaptive data is cleared, the value slightly reduces to
0.358� 0.026. Once a first name gazetteer is used,
the correction of name assignments increases fP in
average to 0.462� 0.024. Because of these insights,
in further evaluation only the first name gazetteer fea-
ture is used.

Next, we examine in more detail how our algo-
rithm performs on eight generated datasets. Table 2
summarizes the evaluation results of the experiments.
Regarding ground truth, |P| denotes the length of the
person index list, |T | shows the number of generated
short texts, Max is the maximum number of persons
mentioned in a text, MN counts how many persons
have a middle name and Amb states the degree of am-
biguity. With an ambiguity degree of n, the dataset
has n groups of n people each share a last name while
other n groups of n persons each share a first name.
As stated in the evaluation section, the precision and
recall measures are calculated accordingly. In the fol-
lowing, the eight experiments are examined.

In the first experiment, our algorithm correctly
found the one person in ten different variations be-
cause the generation patterns always contain either
first name or last name. However, if the number of
generated short texts is increased (experiment num-
ber two), more persons are incorrectly detected. This
is mainly due to role names and department names
that look like real names (e.g. “Chief”, “Admin”,
etc). Since so many falsely extracted persons share
equal names, the algorithm assumes that they are all
ambiguous and does not state any correct relation be-
tween short texts and persons in Ra.

In the third test, we increase the number of per-
sons to 20, still, per short text only one person is men-
tioned. Because different names are used, the algo-
rithm has a better chance to find a correct name pair
in the patterns. This is also the reason why more cor-

rect relations are found, since there is less possibility
for ambiguity.

For the fourth run, the maximum number of men-
tioned persons per text is increased to 10, thus now
multiple persons can be mentioned in one text. This
situation seems to distract our algorithm which re-
sults in a lower fP and fR value. Regarding line 5,
the performance declines slightly if persons with mid-
dle names are introduced. In fact, only one individual
with a middle name was identified correctly. We as-
sume that the OpenNLP model is not trained to iden-
tify persons with middle names.

In the sixth experiment, ambiguity is introduced:
two groups of two people each share a last name while
other two groups of two persons each share a first
name. All eight ambiguous persons where discov-
ered correctly in Pa and their ambiguity were detected
completely in Aa (since recallA reaches 1.00). How-
ever, many other persons are incorrectly listed in the
index which share first names and last names by acci-
dent. This results in a very low precA precision. If the
degree of ambiguity is increased (line 7) and nearly
every person is ambiguous (18 of 20), the recall de-
clines a little.

In the last experiment, we increase the number of
persons to 40 and short texts to 300. Having more
persons, the algorithm falsely assumes more ambigu-
ity which declines recallA slightly.

Our experiments show that our baseline does not
reach an fP value above 0.6 in more realistic use
cases. Also fR reveals similar poor results. Since
many wrong persons with same names are discovered,
precA lists the worst results. As improvements, we
suggest to train detection models that are able to dis-
tinguish first name and last name. In addition, more
context should be considered when relations between
texts and persons are discovered. For example, a letter
of an abbreviated name can reduce ambiguity drasti-
cally. We assume that if more persons are correctly
discovered, the precision of ambiguity discovery will
increase.

6 CONCLUSION AND OUTLOOK

In this paper, we asked how well an unsupervised al-
gorithm is able to build a person index from a set of
short texts. We defined a person index as a struc-
tured table that distinctly catalogs individuals by their
names. After we gave a formal definition for this
problem, we proposed a generator that is able to pro-
duce ground truth datasets for this challenge inspired
by concrete data. Additionally, a first baseline ap-
proach was described to examine first results. In the
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Table 2: Performance of the baseline algorithm on generated ground truth data. |P| – length of person index list, |T | – number
of generated short texts, Max – maximum number of mentioned persons per text, MN – number of persons with middle names
and Amb – degree of ambiguity. Precision (prec), recall and f-score (f ) are calculated based on the relations P, R and A.

Nr. |P| |T | Max MN Amb precP recallP fP precR recallR fR precA recallA fA

1 1 10 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 - - -
2 1 200 0 0 0 0.14 1.00 0.25 0.00 0.00 - - - -
3 20 200 0 0 0 0.63 0.85 0.72 0.82 0.72 0.77 - - -
4 20 200 10 0 0 0.38 0.90 0.54 0.61 0.09 0.16 - - -
5 20 200 10 4 0 0.31 0.80 0.45 0.63 0.09 0.16 - - -
6 20 200 10 4 2 0.39 0.75 0.52 0.47 0.41 0.44 0.03 1.00 0.06
7 20 200 10 4 3 0.45 0.85 0.59 0.59 0.54 0.56 0.05 0.95 0.09
8 40 300 10 4 3 0.39 0.75 0.52 0.53 0.49 0.51 0.03 0.87 0.06

evaluation, several measurements were defined to ex-
amine the performance of potential solutions. With
this, we analyzed our approach and suggested further
potentials for improvement for future approaches.

For future work, we plan to examine performance
in real use cases using data of our industrial scenar-
ios. In case of ambiguities, our goal is to efficiently
integrate human experts which are able to contribute
with their knowledge. The challenge itself can be
made more difficult by generating names with differ-
ent cases (i.e. lower case, upper case, mixed case,
camel case, etc). Regarding the domain, we aim to
generalize the problem statement to other entity types
which have multiple names or IDs in different forms.
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