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Abstract: Bidirectional incremental model transformations are crucial for supporting round-trip engineering in model-
driven software development. A variety of domain-specific languages (DSLs) have been proposed for the
declarative specification of bidirectional transformations. Unfortunately, previous proposals fail to provide
the expressiveness required for solving practically relevant bidirectional transformation problems. To address
this shortcoming, we propose a layered approach: On the declarative level, a bidirectional transformation
is specified concisely in a small and light-weight external DSL. From this specification, code is generarated
into an object-oriented framework, on top of which the behavior of the transformation may be complemented
and adapted in an imperative internal DSL. An evaluation with the help of a well-known transformation case
demonstrates that this layered hybrid approach is both concise and expressive, and also scalable.

1 INTRODUCTION

A wide range of application domains demands for
bidirectional transformations (bx), which are mecha-
nisms for specifying and maintaining consistency be-
tween two or more models. Many areas, including
model-driven software development (MDSD) (Völter
et al., 2006) have been subject for studies of bx.
Roundtrip engineering in model-driven architecture
(MDA)(Mellor et al., 2002) processes e.g. is a use
case for bx.

Unidirectional languages and tools may be used
to solve bx problems, resulting in increased effort of
maintaining separate implementations with mutually
consistent behavior. To cope with this fact, a wide
range of dedicated domain-specific languages (DSLs)
and accompanying tools for bx have been developed
in the past, promising to assist transformation devel-
opers in solving bx problems more efficiently and
reliably. A detailed and feature-based classification
of numerous bx approaches and tools may be found
in (Czarnecki and Helsen, 2006) and (Hidaka et al.,
2016).

Typically, bx approaches reside on a high level of
abstraction. They provide declarative languages that
relieve the transformation developer from explicitly
specifying both transformation directions as well

as incremental behavior. This is achieved in differ-
ent ways: In grammar-based approaches, a gram-
mar is defined to generate consistent pairs of models
(Schürr, 1994). In relational approaches (Cicchetti
et al., 2010), consistency relations between source
and target models are defined. In functional ap-
proaches (Foster et al., 2007), one transformation di-
rection is specified explicitly, and the opposite trans-
formation is derived automatically.

Unfortunately, the declarative bx approaches that
have been proposed so far suffer from a problem
which is shared by all of them: While they guaran-
tee certain bx laws (regarding consistent behavior of
forward and backward transformations), they lack ex-
pressiveness: Certain bx problems cannot be solved
at all, or they can be solved only partially, or they can
be solved, but the specification effort is much higher
than expected. In previous work, this claim was sub-
stantiated by a number of benchmarks and case stud-
ies, covering both artificial and real-world transfor-
mation scenarios (Anjorin et al., 2020; Westfechtel,
2019; Westfechtel and Buchmann, 2019; Buchmann
and Westfechtel, 2013; Greiner et al., 2016; Buch-
mann and Westfechtel, 2016).

These observations motivated us to setup BXtend
(Buchmann, 2018) – a framework for bidirectional in-
cremental model transformations based on the pro-
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Figure 1: Layered approach to bidirectional transforma-
tions.

gramming language Xtend1. The framework pro-
vides a set of reusable classes that are extended to
program bidirectional transformations. Thus, a bidi-
rectional transformation is specified in an imperative
language which provides for the required expressive-
ness to solve non-trivial bx problems. The BXtend
approach was evaluated successfully in several trans-
formation scenarios (Anjorin et al., 2020; Westfech-
tel and Buchmann, 2019; Bank et al., 2020; Greiner
et al., 2016). Although in BXtend both transformation
directions have to be programmed explicitly, the re-
sulting transformation definitions are still even more
concise than in some declarative approaches. This is
due to lacking flexibility of the respective languages,
resulting in redundant rule sets.

This paper complements previous work on BX-
tend by providing a declarative language called BX-
tendDSL. While the BXtend framework provides
an imperative internal DSL (based on Xtend), BX-
tendDSL is a small and light-weight declarative ex-
ternal DSL. In BXtendDSL, the transformation de-
veloper essentially declares correspondences between
elements of source and target languages. Intention-
ally, BXtendDSL is incomplete, i.e., usually it is not
possible to solve the respective transformation case
completely in this external DSL (this would have re-
quired a considerably more expressive and compre-
hensive language). Rather, from a transformation def-
inition written in BXtendDSL code may be generated
on top of the BXtend framework. Subsequently, the
generated code is extended with manually written im-
perative code. Altogether, this results in a layered
approach (Figure 1): First, the external DSL is used
to specify correspondences declaratively. In a second
step, the internal DSL is employed to take care of all

1http://www.eclipse.org/xtend/

the algorithmic details required to solve the respective
bx problem completely.

In this paper, we start by outlining our overall ap-
proach to specifying bidirectional incremental trans-
formations (Section 2). Subsequently, we present
BXtendDSL (Section 3). We illustrate our approach
by a well-known bx problem: the Families-to-Persons
case (Section 4). This example is used in Section 5
to perform a thorough evaluation comparing our new
layered approach to the plain BXtend solution, re-
garding the following research questions:

1. Is the size of the resulting transformation defini-
tion smaller, indicating a reduced implementation
effort for the transformation developer?

2. Does the resulting transformation fulfill the qual-
ity criteria? I.e., it must pass all tests that the BX-
tend solution also passes.

3. Is the overall performance affected by introducing
the additional layer of abstraction?

Finally, related work is discussed in Section 6,
while Section 7 concludes the paper.

2 APPROACH

As stated above, BXtend (Buchmann, 2018) is a
pragmatic approach to programming bx, with a spe-
cial emphasis to address problems encountered in
the practical application of existing bx languages and
tools. Built upon the programming language Xtend,
BXtend provides the full-fledged potential of imper-
ative programming, combined with powerful declara-
tive parts used for describing transformation patterns.

Technically, the transformation developer pro-
grams a Triple Graph Transformation System (TGTS)
(Buchmann et al., 2009) using the BXtend frame-
work, employing a correspondence model which may
be manipulated using an internal DSL. The project
presented in this paper – BXtendDSL – extends
the framework and furthermore provides an exter-
nal DSL, which allows for a concise specification of
(bidirectional) transformation rules in a declarative
textual syntax.

When working with the stand-alone BXtend
framework, certain classes have to be adapted for
specific transformations in several places, e.g. when
model elements are created or deleted, when user sup-
plied rules are called and for rule orchestration. Fur-
thermore, the standard generic correspondence model
only supports 1:1 correspondences. If 1:n or m:n cor-
respondences are required, manual adaptions are pos-
sible – resulting in additional adaptations of the in-
ternal DSL for accessing and manipulating the cor-
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Figure 2: Architecture, based on the generation gap pattern.

respondence model. The transformation developer
needs to specify both transformation directions sep-
arately, resulting in BXtend transformation rules with
a significant portion of repetitive standard code.

BXtendDSL aims at minimizing the effort for
the transformation developer significantly, by auto-
matically generating the transformation-specific code
from the DSL containing the transformation def-
inition into the corresponding BXtend framework
classes by keeping the flexibility of BXtend at the
same time, since all generated classes may still be
adapted freely. Furthermore, BXtendDSL supports
m:n correspondences and provides a new internal
DSL, which allows for an even more efficient ac-
cess to the correspondence model. The concise and
declarative notation of transformation rules allows to
specify patterns between attributes and references of
classes of both source and target model which are
subject to transformation. The rule body provides a
less-verbose syntax for model access and allows for
a consistent specification of both transformation di-
rections. BXtend transformation classes are automati-
cally derived from the DSL avoiding the need of man-
ually supplying repetitive standard code. All aspects
of the transformation which can not be expressed ad-
equately in a declarative way may be supplied imper-
atively using predefined hooks in the generated code.
Figure 2 depicts the architecture with the DSL and all
derived artifacts on the different levels, designed as a
generation gap pattern (Fowler, 2011).

The framework comprises generic code for ac-
cessing the correspondence model and for transfor-
mation rules (depicted in the row framework). Based
on code specified in the DSL file, generated classes
inherit from those base classes adding specific behav-
ior (src-gen). If parts of the transformation can not be
expressed adequately in a declarative way in the DSL,
extension points are generated (src-once), where im-
perative code may be added by the transformation de-
veloper on the level of the Xtend programming lan-
guage.

TransformationTransformation
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Figure 3: Correspondence metamodel (Ecore).

Incremental change propagation relies on a persis-
tently stored correspondence model which has been
generalized significantly compared to its predecessor
version (Buchmann, 2018). Figure 3 depicts the un-
derlying metamodel. A Transformation maintains a set
of correspondences of class Corr, each of which stores
the respective applied rule (attribute ruleId) and refer-
ences to source and target elements of class CorrElem.
In this way, m:n correspondences may be represented.
Correspondence elements refer to the actual objects of
the source and the target model by attributes of type
EObject. A correspondence element may in turn rep-
resent a single object (SingleElem) or a set of objects
(MultiElem). Sets of objects may be used for example
when dealing with transformation problems which re-
quire folding/unfolding operations of source and tar-
get elements respectively and go beyond the scope of
this paper. However, the interested reader is referred
to (Bank, 2019) for further details.

3 LANGUAGE

In this section, we describe the syntax and semantics
of BXtendDSL in general terms; an application fol-
lows in the next section.

3.1 Syntax

BXtendDSL is a small and light-weight textual lan-
guage for the declarative specification of bidirectional
incremental model transformations. Transformations
defined in BXtendDSL define relations between lan-
guage elements and are located at a high level of
abstraction. However, the expressiveness of BX-
tendDSL is limited. Several language constructs pro-
vide hooks for the implementation of imperative as-
pects of the transformation at the BXtend layer. Be-
low, we will explain the language constructs of BX-
tendDSL, referring to Listing 1, which will be ex-
plained in detail in Section 4.

BXtendDSL is designed for the bidirectional
transformation between two models, called source
model and target model, respectively. The keywords
sourcemodel and targetmodel are followed by refer-
ences (URLs) to the respective metamodels. Actual
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instances of these metamodels are supplied when the
transformation is executed.

A transformation may be configured with the help
of options. Each option will be bound to a Boolean
value at runtime when the transformation is executed.
Options are only defined, but not used at the BX-
tendDSL layer; they will be queried in BXtend code
to be written by the transformation developer. In this
way, the behavior of the transformation may be con-
trolled.

BXtendDSL is a rule-based language. A BX-
tendDSL program consists of a set of rules that spec-
ify correspondences between elements of the source
and the target model. The keywords src and trg are
followed by lists of typed elements. In this way, it is
possible to define m:n correspondences.

Each element may be decorated by a list of mod-
ifiers, each of which is indicated by a respective key-
word. Each modifier requires an implementation in
BXtend; the code generator provides for the respec-
tive method hook. Modifiers are used for different
purposes. A filter indicates an application condition.
A creation modifier stands for code that needs to be
executed when the respective element is created; like-
wise, a deletion modifier is available for clean-up ac-
tions required in the course of the deletion of an ele-
ment. BXtendDSL provides a few more modifiers for
other purposes which are not relevant for our running
example; see (Bank, 2019).

Each rule may define a list of mappings, which de-
fine correspondences between structural features (at-
tributes or references) of source and target elements.
At the BXtendDSL layer, mappings are only defined;
calculation rules for the values of structural features
may have to be provided at the BXtend layer.

A mapping is defined by a list of source features,
a mapping operator, and a list of target features. The
mapping operator < −− > indicates a bidirectional
mapping that is executed in both transformation direc-
tions. Likewise, the operators −− > and < −− rep-
resent unidirectional mappings (in forward and back-
ward direction, respectively).

In simple cases, a mapping may be translated into
executable code. For example, in the case of a birec-
tional 1:1 mapping between attributes of the same
type, code is generated to copy attribute values back
and forth. Similarly, in the case of a bidirectional
1:1 mapping between references to corresponding ob-
jects, code is generated for “copying” links: When an
object s is referenced in the source model, the corre-
sponding object t is referenced in the target model. In
this case, the mapping defines correspondence by re-
ferring to another rule that connects the corresponding
objects. If a mapping is not 1:1, method hooks will be

generated, where the mapping defines the signature of
the respective generated method.

3.2 Semantics

There is no declarative specification of the seman-
tics of BXtendDSL. From a program written in BX-
tendDSL, code is generated on top of the BXtend
framework code according to the generation gap ar-
chitecture of Figure 2. In the src-gen layer, either
abstract or concrete classes are generated, depend-
ing on whether the BXtendDSL code defines the se-
mantics partially or completely. In the src-once layer,
the transformation developer has to provide all miss-
ing method implementations, but (s)he is also free to
override default behavior as required. Altogether, the
semantics of BXtendDSL programs may be adapted
in a flexible way.

The framework contains an abstract class Transfor-
mation which defines the default behavior of transfor-
mations. This class provides two methods sourceTo-
Target and targetToSource for executing transforma-
tions in forward and backward direction, respectively.
Execution is structured into the following phases (as-
suming forward direction in the following):

1. Rules are executed in their textual order in the
BXtendDSL program. For each rule, its sourceTo-
Target method is called. All matches for the cur-
rent rule are retrieved (taking filters into account),
and consistency of the target elements with the
source elements is established (including the ex-
ecution of mappings). Furthermore, the method
sourceToTarget collects all created elements and
all elements to be deleted (in the target model) for
further processing.

2. For all rules, their creation hooks are executed
in turn. In this phase, the target elements to be
deleted are still available.

3. For all rules, their deletion hooks are executed in
turn. This allows for the execution of additional
operations on the model which require the ele-
ments to be deleted.

4. In a final clean-up phase, target elements sched-
uled for deletion are actually deleted.

4 EXAMPLE

In this section we present the transformation problem
which is used as a running example in this paper, be-
fore we discuss details of our solution.
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Figure 4: Metamodels.

4.1 Transformation Problem

As a running example in this paper, we chose to use
the well-known Families-to-Persons benchmark (An-
jorin et al., 2017), since it allows for a quantitative and
qualitative evaluation of our DSL compared to other
bx approaches (Anjorin et al., 2020). In the trans-
formation case, two related, but differently structured
models have to be kept in synch: A families model,
with family members taking different roles within a
family, and a flat set of males and females in a persons
model (c.f., Figure 4). A unique root in each model is
assumed. A family register stores an unordered col-
lection of families, where each family has members
who are distinguished by their roles. The metamodel
permits at most one mother and at most one father as
well as an arbitrary number of daughters and sons. In
contrast, a person register maintains a flat unordered
collection of persons who have a birthday and are ei-
ther male or female. Please note that there may be
multiple families with the same name, family mem-
bers with the same name even within a single family,
and multiple persons with the same name and even
the same birthday.

A families model is consistent with a persons
model if a bijective mapping between family mem-
bers and persons can be established such that:

1. Mothers and daughters (fathers and sons) are
paired with females (males).

2. The name of every person p is “ f .name, m.name”,
where m is the member (in family f ) paired with
p.

Any transformation should result in a pair of mu-
tually consistent models. However, this requirement
does not determine the behavior of the transforma-
tion in a unique way. For example, when a per-
son is inserted into the persons model, it is not clear
whether the corresponding new member should be in-

serted into an existing or a new family, and whether
the member should occupy the role of a parent or a
child. Therefore, the definition of the Families-to-
Persons benchmark includes behavioral descriptions
for all types of model changes both for forward and
backward transformations; see (Anjorin et al., 2020)
for further details.

4.2 Solution

The solution for the Families-to-Persons benchmark
is structured into a declarative and an imperative
layer, which are explained in turn below.

4.2.1 Declarative Layer (BXtendDSL)

Listing 1 shows the BXtendDSL code for the
Families-to-Persons transformation. On this declar-
ative level, the overall transformation is defined only
partially. The BXtendDSL code is supplemented with
Xtend code which will be explained in the next sub-
section.

In lines 1–2, the source and target metamodels
are defined on which the transformation is based.
Lines 4–6 introduce Boolean options which are used
to control the backward transformation. These op-
tions, which will be used only on the imperative layer,
define whether a member should be inserted as a par-
ent or a child and whether (s)he should be inserted
into a new or into an existing family.

The rule Register2Register maps the root contain-
ers of both models (lines 8–10). The correspond-
ing references families and persons cannot be mapped
onto each other since there is no corresponding class
for a Family in the persons model. These references
are managed via the rules Member2Female and Mem-
ber2Male, respectively.

Member2Female is used to specify the transfor-
mation of a FamilyMember to a Female person and
vice versa (lines 12–17). The rule defines two mod-
ifiers, resulting in the creation of methods stubs at
the imperative layer. The transformation developer
needs to implement the respective bodies in order to
realizes the desired behavior. Both modifiers are rel-
evant only in forward direction. The filter modifier
on the source element member (line 13) has to ensure
that only mothers and daughters are considered by the
rule. The creation modifier (line 14) has to handle a
special case that may occur due to a move operation
in the families model: A father or son may be reas-
signed to one of the references daugthers or mother
within a family. As a consequence, a male person has
to be deleted, and a female person has to be created.
To avoid loss of information, the birthday has to be
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1 sourcemodel "platform:/plugin/Families/model/Families.ecore"

2 targetmodel "platform:/plugin/Persons/model/Persons.ecore"

3

4 options

5 PREFER_CREATING_PARENT_TO_CHILD

6 PREFER_EXISTING_FAMILY_TO_NEW

7

8 rule Register2Register

9 src FamilyRegister s;

10 trg PersonRegister t;

11

12 rule Member2Female

13 src FamilyMember member | filter;

14 trg Female female | creation;

15 member.name member.motherInverse member.daughtersInverse --> female.name;

16 member.daughtersInverse member.motherInverse --> female.personsInverse;

17 member.name <-- female.name member;

18

19 rule Member2Male

20 src FamilyMember member | filter;

21 trg Male male | creation;

22 member.name member.fatherInverse member.sonsInverse --> male.name;

23 member.sonsInverse member.fatherInverse --> male.personsInverse;

24 member.name <-- male.name member;

Listing 1: Transformation of Families to Persons.

copied from the male person to be deleted to the fe-
male person to be created (the gender has changed,
but the person still is the same).

Furthermore, the rule Member2Female includes
three mappings (lines 15–17). All of these mappings
are directed, either in forward direction (−−>) or in
backward direction (<−−). Mappings are handled in
a similar way as filters: A mapping defines the inputs
and outputs of some calculation; the actual calcula-
tion is programmed at the imperative layer.

The mapping in line 15 is required in forward di-
rection for the calculation of the name of the female
person, based on the name of the member and the
name of the family to which the member belongs.
The family name is not supplied directly as a sec-
ond parameter (this would require a more general ex-
pression syntax in BXtendDSL). Rather, the family
is determined by navigating along an inverse refer-
ence (motherInverse or daughtersInverse). In a simi-
lar way, the mapping in line 16 is used to connect the
female person to the person register.

Finally, the mapping in line 17 is required in back-
ward direction to calculate the member’s name. In
addition, this mapping is used for the management of
families. The implementation of the mapping at the
imperative layer has to provide a policy for inserting
the member into a new or existing family as a parent
or a child. For this purpose, member is required as a
second argument.

The rule Member2Male works analogously to
Member2Female.

4.2.2 Imperative Layer(BXtend)

At the imperative layer, we have to provide imple-
mentations of filters and modifiers defined at the
declarative layer. These implementations are located
at the bottom layer of the generation gap architecture
displayed in Figure 2. The transformation developer
implements bodies of hook methods which are called
by the framework code. At the imperative layer, we
exploit the expressiveness of imperative languages to
exactly implement the required behavior of the bidi-
rectional transformations.

Listing 2 displays the code for implementing the
modifiers defined in lines 13–14 of Listing 1. The
filter modifier is implemented in lines 2–7. The rule
Member2Female may be applied only if the mem-
ber is a daughter or a mother (line 6). In addition,
the method filterMember contains management code
which is required for handling the special case of
switching the member’s gender from male to female
in response to a move operation. In this case, the rule
Member2Female has to be applied to generate a new
Female object; afterwards, the old Male object will be
deleted. To save the male’s birthday, a map from fam-
ily members to dates is maintained which is declared
in line 1. In lines 3–5, the map is extended with the
birthday of the still existing male person.

The creation modifier (line 14 of Listing 1) is im-
plemented by the method onFemaleCreation (lines 8–
12 of Listing 2). If the member corresponding to the
new female object has an entry in the birthdays map,
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1 Map<FamilyMember , Date > birthdays = newHashMap()

2 override protected filterMember(FamilyMember member) {

3 if (member.hasCorr) {

4 birthdays.put(member , (unwrap(member.corr.target.get(0)) as Person).birthday)

5 }

6 return member.daughtersInverse !== null || member.motherInverse !== null

7 }

8 override protected onFemaleCreation(Female female) {

9 if (birthdays.containsKey(female.corr.source().member)) {

10 female.birthday = birthdays.get(female.corr.source().member)

11 }

12 }

Listing 2: Code for implementing modifiers.

its value is retrieved from the map and used to assign
the birthday attribute of the object female.

Mappings are translated into methods which cal-
culate the requested outputs. Listing 3 shows the
methods implementing the mappings defined in lines
16–17 of Listing 1. The method femNameFrom com-
poses the name of the female person from the family’s
name and the member’s name, as described at the end
of Section 4.1. The respective string is not returned
directly; rather, it is wrapped into an instance of some
generated type which in general may aggregate mul-
tiple outputs (which are allowed in the definition of
mappings).

Similarly, the method personsInverseFrom (lines
5–8) returns the target of the reference personsInverse
connecting the Female object to the PersonRegister
object. The target is retrieved by navigating from the
family to the family register and then using the corre-
spondence for the rule Register2Register to navigate
from the source to the target.

Finally, the mapping defined in line 19 of Listing
1 is implemented by the method shown in Listing 4.
The name of the female person is split into the fam-
ily name and the member name (lines 2–3), the latter
of which is returned as the result of the method (line
25). The remaining code manages families, according
to the policy determined by the options introduced in
lines 5–6 of Listing 1. Any further action is required
only if the member has not been inserted yet into a
family or the family name of the person differs from
the current family name in the families model (line
5). If an existing family is preferred, it is attempted to
retrieve a family with the given family name, giving
priority to families without a mother (lines 6–11). If
the attempt is successful, the retrieved family is used
throughout the rest of the method; otherwise, a new
family is created and inserted into the family register
(lines 12–15). If a child is preferred or the selected
family has a mother who is different from the member
to be inserted, the member is inserted as a daughter;
otherwise, the member is inserted as a mother (lines

17–22).
An analogous implementation is supplied for the

corresponding filters and mappings for male persons,
which are not shown here due to space restrictions.

5 EMPIRICAL RESULTS

The declarative language presented in this paper was
evaluated with several transformation scenarios, e.g.
the transformation problems discussed in (Westfech-
tel, 2019). Due to space restrictions we decided
to give detailed insight into the Families-to-Persons
transformation problem (Anjorin et al., 2017), which
was evaluated with several bx approaches in (Anjorin
et al., 2020). In (Anjorin et al., 2020), the BXtend so-
lution for the Families to Persons case is discussed, al-
lowing for an easy comparison with the BXtendDSL
solution presented in this paper. However, the results
of this case apply also to the other transformation sce-
narios studied in (Bank, 2019).

5.1 Quantitative Analysis

While BXtend already allows for concise transfor-
mation definitions (Anjorin et al., 2020; Bank et al.,
2020), one of the goals of the work presented in this
paper was to further minimize the specification effort.
As our solution supports a textual concrete syntax, a
quantitative impression of the size of the transforma-
tion definitions can be obtained by counting the num-
ber of lines of code (excluding empty lines and com-
ments), the number of words (character strings sepa-
rated by whitespace) in these lines, and the number of
characters in these words. Empty lines, comments as
well as generated code lines are omitted. Table 1 de-
picts the values obtained for those metrics for BXtend
and BXtendDSL. For both solutions, only those lines
were counted which had to be written manually. In the
case of BXtendDSL, both the code in the DSL itself
and the supplementary BXtend code was counted.
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1 override protected femNameFrom(String memName , Family motherInverse , Family daughtersInverse) {

2 new Type4femName((motherInverse ?: daughtersInverse).name + ", " memName)

3 }

4

5 override protected personsInverseFrom(Family daughtersInverse , Family motherInverse) {

6 new Type4personsInverse

7 (Register2Register.target((daughtersInverse ?: motherInverse).familiesInverse.corr).t)

8 }

Listing 3: Code for determining properties of females.

1 override protected memNameFrom(FamilyMember member , String femName) {

2 val familyName = femName.split(", ").get(0)

3 val memberName = femName.split(", ").get(1)

4

5 if (member.eContainer === null || (member.eContainer as Family).name != familyName) {

6 val preferExisting = trafo.getOption(Families2Persons.OPT_PREFER_EXISTING_FAMILY_TO_NEW)

7 val families = srcRoot.families

8 var family = if (preferExisting == true) {

9 families.findFirst[name == familyName && mother === null] ?:

10 families.findFirst[name == familyName]

11 }

12 family = family ?: FamiliesFactory.eINSTANCE.createFamily() => [

13 name = familyName

14 familiesInverse = srcRoot

15 ]

16

17 val preferParent = trafo.getOption(Families2Persons.OPT_PREFER_CREATING_PARENT_TO_CHILD)

18 if (preferParent == false || (family.mother !== null && family.mother !== member)) {

19 family.daughters += member

20 } else {

21 family.mother = member

22 }

23 }

24

25 new Type4memName(memberName)

26 }

Listing 4: Code for calculating member names and managing families.

Table 1: Size of the transformation definitions of both solu-
tions.

BXtendDSL BXtend
Lines of code 89 211
Number of words 276 565
Number of characters 3030 7571

The transformation definition was written by the
same developer in both tools which are subject to this
comparison. The same layout conventions and pro-
gramming practices have been applied. Consequently,
those numbers give a good indication that the goal of
reducing the size of the transformation definition was
reached. In fact, they yield a significant reduction in
terms of this LOC metrics.

5.2 Qualitative Analysis

In order to perform a qualitative analysis, test cases
for the different transformation directions have been
specified and executed for both batch and incremen-
tal mode of operation. We assume a test case to be
passed, if the resulting model matches a predefined
expected model state. The BXtend solution is able
to pass all tests specified in (Anjorin et al., 2020).
The same holds for the BXtendDSL solution. Ta-
ble 2 gives an overview of the tests and the obtained
results following the criteria used in (Anjorin et al.,
2020). Please note that two unexpected passes are due
to cases that test for order-dependent update behavior
(which state-based tools cannot provide).

The qualitative analysis shows that the correct-
ness of the transformation is not affected by intro-
ducing the additional DSL layer. Moreover, with
respect to functional requirements both BXtend and
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Table 2: Aggregate test results, grouped into categories and
classified as expected/unexpected passes/fails.

Category Result BXtendDSL BXtend
expected pass 7 7

Batch expected fail 0 0
FWD unexpected pass 0 0

unexpected fail 0 0
expected pass 11 11

Batch expected fail 0 0
BWD unexpected pass 0 0

unexpected fail 0 0
expected pass 8 8

Incr. expected fail 0 0
FWD unexpected pass 0 0

unexpected fail 0 0
expected pass 7 7

Incr. expected fail 0 0
BWD unexpected pass 1 1

unexpected fail 0 0

Total

expected pass 33 33
expected fail 0 0

unexpected pass 1 1
unexpected fail 0 0

BXtendDSL achieve a perfect result: Both solutions
pass all test cases. None of the other solutions com-
pared in (Anjorin et al., 2020) exhibit a pass rate of
100 %.

5.3 Performance Analysis

In order to evaluate the efficiency and scalability of
the resulting transformation with respect to increasing
model size, two experiments were conducted in both
forward and backward directions for each of the trans-
formation problems resulting in four sets of measure-
ments: (1) batch transformations in forward and back-
ward directions, and (2) incremental transformations
in forward and backward directions. The batch trans-
formations test how the solutions scale when creat-
ing corresponding opposite models of increasing size
(model size up to 1.000.000 elements). For incre-
mental transformations, the time required to locate
and propagate corresponding changes to the depen-
dent model is measured.

The tests were performed on the same machine
and in isolation for each solution and each transfor-
mation problem. A desktop PC with an AMD Ryzen
7 3700x CPU was used, running at a standard clock of
3.60 GHz, with 32 GB of DDR4 RAM and with Mi-
crosoft Windows 10 64-bit as operating system. We
used Java 13.0.2, Eclipse 4.11.0, and EMF version
2.17.0 to compile and execute the Java code for the
scalability test suite. Each test was repeated 5 times
and the median measured time was computed.

The four measurement results are depicted in Fig.
5, 6, 7, and 8. The figure for the batch backward

measurement is composed of two plots – a plot with
linear/linear scale to the left, and a plot with log/log
scale to the right. While the linear plot provides a re-
alistic impression for the actual complexity of each
solution, the logarithmic one zooms into finer details
for smaller models and zooms out for larger models,
allowing to qualitatively present large differences in
runtime. Since we observed a significant difference in
runtime for the batch backward solution, we decided
to supply those two plots.

In three out of four measurements, the BX-
tendDSL solution is slower than the stand-alone BX-
tend solution (as expected, due to the additional layer
of abstraction). However, in all measurements the
BXtendDSL solution roughly exhibits linear perfor-
mance, proving its scalability. Thus, the gap between
BXtend and BXtendDSL is still in a reasonable range,
and even the BXtendDSL solution outperforms many
of the bx approaches compared in (Anjorin et al.,
2020).

The reason why the BXtendDSL solution is so
much faster in the batch backward case is that in the
BXtend solution, retrieving matching families is ex-
pensive and results in a sharp increase of runtime. In
our original implementation we used an Xtend switch
statement to switch over the family size, which re-
sults in Java code which iterates over the same col-
lection several times using non-standard Java collec-
tion classes. Increasing model sizes lead to a signifi-
cant decrease in performance in this case. In the BX-
tendDSL solution we did not use Xtend switch state-
ments, and only a single iteration over the families
collection was neccessary, resulting in an almost lin-
ear runtime. For the sake of comparability and trace-
ability, we did not modify the original BXtend solu-
tion, since it was the solution submitted for the TTC
2017 (Anjorin et al., 2017) and also the one that was
discussed in (Anjorin et al., 2020).

5.4 Summary

As expected, the use of BXtendDSL reduces the over-
all size of the transformation definition considerably.
This is due to the fact that parts of the transformation
may be specified in a declarative way, without being
forced to write separate forward and backward trans-
formations. Functional correctness is not affected
negatively; the full expressiveness of plain BXtend
is retained due to the combination of declarative and
imperative code. Finally, the BXtendDSL solution
proves scalable since it roughly exhibits linear per-
formance. Compared to plain BXtend, it degrades
performance to an acceptable degree, due to the ad-
ditional layer of abstraction.
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Figure 5: Forward batch transformation: Linear/linear scale.
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Figure 6: Forward incremental transformation: Linear/linear scale.
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Figure 7: Backward batch transformation: Linear/linear scale (left) and log/log scale (right).
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Figure 8: Backward incremental transformation: Linear/linear scale.
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6 RELATED WORK

Over the years, many approaches for model transfor-
mations have been proposed. In the following, we
will focus our discussion only on the ones providing
support for bidirectional and incremental model-to-
model transformations. Please note that rather than
comparing our framework against single tools, we
tried to categorize the existing formalisms and dis-
cuss the benefits and drawbacks of the chosen ap-
proach instead. Of course we will give examples of
tools belonging to the respective categories. However,
our own observations and case studies have revealed
that all of the approaches listed below have limitations
when conditional creations of target elements are re-
quired. In this case, imperative approaches like BX-
tend are more powerful.

6.1 Rule-based Approaches

Approaches belonging to this category usually are
grammar-based and provide a high-level language al-
lowing for generating all consistent pairs of source
and target models. While this technique can be ap-
plied to strings, lists, or trees, the most prominent
representative are Triple Graph Grammars (TGG)
(Schürr, 1994). TGGs have been implemented by var-
ious tools, such as, e.g. eMoflon (Anjorin et al., 2012)
or TGG Interpreter (Kindler and Wagner, 2007), just
to name a few. The basic idea behind TGGs is to inter-
pret both source and target models as graphs and ad-
ditionally have a correspondence graph, whose nodes
reference corresponding elements from both source
and target graphs, respectively. The resulting model
transformation language is highly declarative, as the
construction of triple graphs is described with a set
of production rules, which are used to describe the
simultaneous extension of the involved domains of
the triple graph. Please note that within the rules, no
information about a transformation direction is con-
tained. The corresponding rules for forward and back-
ward transformation may be derived automatically by
the TGG engine. Trace information is stored in the
correspondence graph, which is exploited for incre-
mental change propagation. From the viewpoint of
the transformation designer, incrementality and bidi-
rectionality come for free and need not be specified
explicitly in the transformation definition, as well as
modifications and deletions, which are also handled
automatically by the TGG engine.

6.2 Constraint-based Approaches

Constraint-based approaches are usually even more
high-level than grammar-based approaches, as they
only require a specification of the consistency rela-
tion but all details how to restore this consistency re-
lation are left open. QVT-R (OMG, 2015) is a lan-
guage following this principle. Unfortunately, there
are only very few tools which are based on this stan-
dard. QVT-R allows for a declarative specification
of bidirectional transformations. The transformation
developer may provide a single relational specifi-
cation which defines relations between elements of
source and target models respectively. This specifi-
cation may be executed in different directions (for-
ward and backward) and in different modes (check-
only and enforcement). Furthermore, QVT-R allows
to propagate updates from the source model to the
target model in subsequent transformation executions
(incremental behavior). JTL (Cicchetti et al., 2010)
is also a constraint-based approach, which provides
guarantees of round-trip laws when executing a trans-
formation specification. It is specifically tailored to
support bidirectionality and non-determinism. When
using JTL, the transformation developer supplies a
set of constraints specifying a consistency relation.
Those constraints are transformed together with the
involved metamodels to an Answer Set Programming
(ASP) (Gelfond and Lifschitz, 1988) problem, which
an ASP solver can use to enable consistency restora-
tion. However, since constraint solving is an NP-hard
problem, JTL may only be applied to very small mod-
els and it does not scale with increasing model sizes.

6.3 FP-based Approaches

In functional programming-based approaches, the ba-
sic idea is to program a single function (forward or
backward), which is used to infer the opposite func-
tion (backward or forward). In this way, a pair of
functions is provided which adheres to round tripping
laws. These approaches origin from the BX com-
munity and are based on lenses (Foster et al., 2007),
which are used to specify view/update problems. A
different terminology is used for forward and back-
ward directions: the forward direction is referred to
as get, while the backward direction is called put. The
round trip idea can be realised either by using get to
infer put, or vice versa. In all cases, the underlying
consistency relation is not specified explicitly. One
representative of this approach is BiGUL (Ko et al.,
2016).
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6.4 Our Approach

The main differences of our approach compared to
the approaches discussed above, is that BXtendDSL
builds upon BXtend – a framework which is im-
plemented in the imperative programming language
Xtend. A switch of paradigms is possible whenever
needed. The transformation developer may work on
the declarative layer as long as possible and then
switch to imperative constructs on demand. The gen-
eration gap pattern allows for a seamless integration
of BXtend code generated from the BXtendDSL spec-
ification and hand-written imperative extensions to
certain parts of the transformation rules. This ap-
proach allows for much greater flexibility in transfor-
mation definitions compared with traditional bx ap-
proaches. Furthermore, our BXtend environment is
easy to use for Java developers, as the Xtend pro-
gramming language directly builds upon Java and just
makes it less verbose. Thus, the transformation de-
veloper does not need to learn a new programming
language. Finally, the resulting M2M transformation
may be integrated seamlessly with any other Java ap-
plication without requiring additional dependencies,
which makes it particularly interesting for tool inte-
grators.

7 CONCLUSION

In this paper we presented BXtendDSL – a program-
ming language, specifically designed for bidirectional
and incremental model transformation – which adds
a declarative layer for specifying relations between
model elements on top of the BXtend framework. We
were able to significantly reduce the coding effort for
the transformation developer, preserving all benefits
from the BXtend framework at the same time by ap-
plying the generation gap pattern to our solution. A
thorough evaluation proved the feasibility of our ap-
proach. Due to space restrictions, we limit ourselves
to results from a popular benchmark – Families-to-
Persons – in this paper. A detailed comparison with
BXtend is performed in terms of quality (passed test
cases), quantity (coding effort measured in LOC met-
rics) and performance (scalability tests). Following
the Benchmarx approach, the results obtained are
comparable with dedicated bx languages discussed in
(Anjorin et al., 2020).

What makes our work unique is the layered ap-
proach to the specification of bidirectional incremen-
tal transformations. Quite a number of DSLs for bx
have been developed. While they allow to specify bx
on a high level of abstraction, they trade guarantees

of bx laws for expressiveness. This is a severe prob-
lem in practice: If you cannot provide a solution in a
DSL for bx which passes all test cases, you have to
go for another language. In contrast, BXtendDSL is
a small and lightweight DSL which allows to spec-
ify parts of the transformation declaratively. To ob-
tain a complete solution, code is generated on top of
the BXtend framework, and those problems not ad-
dressed at the declarative layer may be solved at the
imperative layer. Thus, BXtendDSL in combination
with BXtend provides for a pragmatic bx approach
which is optimized towards conciseness, expressive-
ness, and scalability. Therefore, we consider this a
practical contribution which facilitates the develop-
ment of bidirectional incremental model transforma-
tions.
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