
On Order-preserving, Gap-avoiding Rectangle Packing

Sören Domrös a, Daniel Lucas b, Reinhard von Hanxleden c and Klaus Jansen d

Department of Computer Science, Kiel University, Westring, Kiel, Germany

Keywords: Automatic Layout, User Intentions, Rectangle Packing.

Abstract: We present 2D rectangle packing heuristics that preserve the initial ordering of the rectangles while maintain-
ing a left-to-right reading direction. Furthermore, rectangles are placed such that inner whitespace (“gaps”)
can be eliminated by enlarging and repositioning them without enlarging the drawing. This is achieved by
initially approximating the required width and using a strip packing algorithm to pack the rectangles. The
algorithms are suitable for interactive scenarios and can also be applied to strip packing problems to maintain
the reading direction.

1 INTRODUCTION

Packing rectangles in a specific area, width, height,
aspect ratio, or different bins has been studied on sev-
eral occasions and remains in most cases a hard prob-
lem (Dowsland and Dowsland, 1992). This prob-
lem is relevant for numerous areas. For example,
the transportation industry does not only need tightly
packed packages, but also ordered packages and a
stable packing (Da Silveira et al., 2014). The pack-
ages should be ordered such that they can be removed
easily at a specified destination. This is expressed
by adding stability and removal order constraints to
the strip packing problem of determining the minimal
height for an overlapping free packing of rectangles
in a bounded width and infinite height.

Another application, which has actually motivated
the work presented in this paper, is the placement of
regions in SCCharts (von Hanxleden et al., 2013),
a synchronous language for Model-Driven Engineer-
ing (MDE). SCCharts are a graphical language and
graphical models are predominantly still created man-
ually. In this paper, however, we are interested in cre-
ating SCChart diagrams automatically, from a purely
textual model. Since the inception of SCCharts,
this approach has been realized and stress-tested in
the Kiel Integrated Environment for Layout Eclipse
Rich Client (KIELER)1 (Fuhrmann and von Hanxle-

a https://orcid.org/0000-0002-8011-8484
b https://orcid.org/0000-0001-6090-2637
c https://orcid.org/0000-0001-5691-1215
d https://orcid.org/0000-0001-8358-6796
1www.rtsys.informatik.uni-kiel.de/en/research/kieler

den, 2010; von Hanxleden et al., 2011), which makes
use of the open source Eclipse Layout Kernel (ELK)2.
The application case of SCCharts has already inspired
a number of works in the area of graph drawing (Chi-
mani et al., 2011; Rüegg et al., 2014; Jabrayilov et al.,
2016; Gutwenger et al., 2014; Rüegg et al., 2016;
Rüegg et al., 2017; Schulze et al., 2014). However,
these previous works have focused on the drawing of
the node-link diagrams present in SCCharts; the rect-
angle packing problem posed by SCChart regions has
not been covered so far.

As illustrated in Figure 1, SCChart regions can be
expanded making their content visible, as it is the case
for regions F, H, and K in the example, or collapsed.
In both cases, each region requires a rectangular area.
Collapsed regions usually have the same height but
vary in width. Expanded regions can have any size
and are typically much bigger than the collapsed re-
gions.

An SCChart drawing usually has to fit into a cer-
tain drawing area that has a specific width and height,
which also prescribes an aspect ratio. The drawing
should not only fit this aspect ratio, but it should also
use minimal area to draw regions with a higher zoom
level, as expressed by the scale measure, formally de-
fined later. A bigger scale measure means that regions
can be drawn bigger, which means all components
and labels can be read more easily.

Regions should also not have any “gaps”, i. e., no
unnecessary whitespace between them. They should
be placed such that their size can be increased to elim-
inate the remaining whitespace to obtain an aestheti-

2https://www.eclipse.org/elk/

38
Domrös, S., Lucas, D., von Hanxleden, R. and Jansen, K.
On Order-preserving, Gap-avoiding Rectangle Packing.
DOI: 10.5220/0010186400380049
In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021) - Volume 3: IVAPP, pages 38-49
ISBN: 978-989-758-488-6
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

cally pleasant drawing. For example, Figure 1d con-
tains undesired whitespace, which is eliminated in
Figure 1e.

Contributions & Outline

The technical contributions are:

• The presentation and formalization of the region
packing problem (Section 2), including placement
constraints that lead to a reading direction for
regions, as well as whitespace elimination con-
straints.

• A first, rather simplistic box algorithm to solve
the region packing problem (Section 3, see Fig-
ure 1b).

• Second, an alternative approach, the rectpacking
algorithm (Section 4, seen in Figure 1c). This in-
cludes a width approximation step and also intro-
duces and provides specific treatment of the one
big region case.

• Finally, the LR-rectpacking algorithm (Section 5,
see Figure 1e). This includes an improved com-
paction step to maintain the reading direction as
well as the elimination of special handling for the
one big region case.

The algorithms are evaluated against an optimal
solution (Section 6, see Figure 1f). We conclude and
present future work in Section 7.

Related Work

Dowsland and Dowsland give an overview of numer-
ous works on rectangle packing and strip packing
(Dowsland and Dowsland, 1992). Each of them does
not consider ordering and reading direction as it is
proposed by this paper.

Da Silveira et al. present a strip packing algo-
rithm that considers the packaging order by assigning
packages to classes, which indicate the removal order
(Da Silveira et al., 2013). They initially place pack-
ages in rows as in the box layout algorithm. How-
ever, to optimize the used space, they reverse the even
rows and compact the drawing, which may destroy
the reading direction and may produce a drawing in
which whitespace cannot be eliminated.

Augustine et al. explore strip packing with prece-
dence constraints and strip packing with release times
for FPGA programming (Augustine et al., 2006).
Rectangles are placed such that they are above/below
other rectangles or above their release time, which
represents dependencies between different jobs. This
placement also allows to eliminate the whitespace be-
tween the different rectangles, but this is not consid-
ered in this context. In contrast to our work, their

precedence constraints only restrict the vertical place-
ment and do not consider a reading direction.

Kenyon and Rémila present an asymptotic fully
polynomial approximation scheme for strip-packing
(Kenyon and Rémila, 2000). They pack all wide rect-
angles sorted by width in a stack and group neighbor-
ing rectangles by their cumulative heights. Rounding
up rectangle width in a group allows to solve this as
a fractional strip packing problem. The narrow rect-
angles are placed using a next fit decreasing height
algorithm. In contrast to this paper, the ordering of
the rectangles is not considered. However, it might be
useful to design an approximation algorithm for the
proposed rectangle packing problem.

Bruls et al. suggest a method to visualize file sys-
tem or company structures via treemaps (Bruls et al.,
2000). They solve the issue of long and small rectan-
gles in treemaps by forming rows and subrows similar
to our approach. However, they order the rectangles
by their size, since this produces the best drawings.
Moreover, only the area of their rectangles is given.
The rectangle bounds can be changed. We have to
deal with a minimum width and height instead and
consider a reading direction.

Wang et al. present EdWordle, which allows to
move and edit words in wordclouds while preserving
the neighborhood of words (Wang et al., 2017). In
contrast to our approach this does not consider on or-
dering of the words. Moreover, a reading direction is
not necessary in that scenario, gaps are allowed, it is
not necessary to align words in rows of columns, and
the dimensions of words seem rather restricted and do
not seem to differ much in size.

The second author presented the rectpacking al-
gorithm in his thesis (Lucas, 2018), including further
details on how the width approximation works, how
the algorithm was implemented, and how the one big
region case works.

2 THE REGION PACKING
PROBLEM

Given an ordered sequence of regions
R = (r1,r2, . . .rn) with ri = (wi,hi) for region
ri, with the minimal width wi and minimal height hi,
we compute a drawing by assigning coordinates xi
and yi and a new computed width wi and height hi to
each region ri. Henceforth, we call the regions ri−1
and ri+1 the neighbors of ri.

Clearly, a requirement on the drawing is that re-
gions must not overlap with other regions, and that
computed widths/heights are at least the specified
minimum widths/heights. Beyond these correctness

On Order-preserving, Gap-avoiding Rectangle Packing

39

Example

+ A + B + C + D + E

A

- F + G

A
B

C D

1:

2:

- H

+ I + J

int X = 2

- K + L

(a) Box layouter, with whitespace, SM
= 0.00363

Example

+ A + B + C + D + E

A

- F + G

A
B

C D

1:

2:

- H

+ I + J

int X = 2

- K + L

(b) Box layouter, after whitespace elim-
ination, SM = 0.00363

Example

+ A

+ B

+ C

+ D

+ E

A

- F + G

A
B

C D

1:

2:

- H + I

+ J

int X = 2

- K

+ L

(c) Rectpacking, after whitespace elimi-
nation, SM = 0.00446

Example

+ A + B + C

+ D + E A

- F + G

A
B

C D

1:

2:

- H + I + J

int X = 2

- K

+ L

(d) LR-rectpacking, with whitespace,
SM = 0.00446

Example

+ A + B + C

+ D + E A

- F + G

A
B

C D

1:

2:

- H + I + J

int X = 2

- K

+ L

(e) LR-rectpacking, after whitespace
elimination, SM = 0.00446

Example

+ A + B

+ C + D

+ E

A

- F

+ G

A
B

C D

1:

2:

- H

+ I + J

int x = 2

- K + L

(f) CP optimizer solution, SM = 0.00508

Figure 1: An SCChart with region F, H, and K expanded, desired aspect ratio of 1.6 (red-dashed bounding box), with scale
measure SM (larger is better).

requirements, we seek to produce drawings that make
best possible use of the drawing area, and that con-
sider the mental map of the user, as detailed in the
following sections.

Since we talk about layout creation and the men-
tal map is usually only used for layout adjustment
(Purchase et al., 2006), we need to broaden this term.
The user begins to create a mental map by writing
the textual model. We should preserve the order of
that textual model also in the corresponding diagram.
Since our drawings are not one dimensional but two
dimensional, the drawing should make clear when re-
gions are ordered horizontally and when vertically. A
trivial solution to achieve this is the box layout algo-
rithm (see Section 3), which has a clear placement
of regions in rows and a left to right reading direc-
tion. Moreover, we deem the dimension of a region
as unimportant to recognize the region. In an SCCha-
rts scenario, inner state machines define the look of a
region, which is not influenced by the dimension of
the region. To summarize, regions should be discov-
erable by their name, their contents, and their display
order.

2.1 Rows, Blocks, and Subrows

If we want to talk about reading direction and place-
ment of regions, we have to introduce proper termi-
nology to describe region placement and alignment.

A drawing consists of rows, which in turn consist
of blocks, which in turn consist of of subrows (rows
within rows). Figure 2 has two rows. The top row
consist of three blocks. The first block consist of two
subrows. The top subrow consist of three regions: re-
gion A, region B, and region C. Henceforth we call
the upper bound of a row the row level of that row. In
Figure 2 region A, B, C, F, G, H, I, and J are on the
row level of their row. This means they align at their
top with their row level.

2.2 Aspect Ratio and Scale Measure

The size of the different elements is an important lim-
iting factor regarding readability and understandabil-
ity.

Let A = (wd ,hd) be the drawing area defined by
the desired width wd and the desired height hd . This
defines the desired aspect ratio DAR = wd/hd . Simi-
lar to the DAR, the aspect ratio is defined as AR = wa

ha
given by the actual width wa and the actual height
ha. The original scale measure OSM = min(wd

wa
, hd

ha
)

expresses how well the drawing uses the given area
(Rüegg and von Hanxleden, 2018). E.g., an OSM of 1
means that both the width and the height fit the draw-
ing area, but that the drawing cannot be enlarged any-
more without exceeding the drawing area. An OSM
of 0.5 means that the drawing has to be shrunk by a

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

40

Example

+ A + B + C

+ D + E A

- F + G

A
B

C D

1:

2:

- H + I + J

int X = 2

- K

+ L

(a) Blocks (red)

Example

+ A + B + C

+ D + E A

- F + G

A
B

C D

1:

2:

- H + I + J

int X = 2

- K

+ L

(b) Subrows (red)

Figure 2: Rows, blocks, and subrows (dotted, black) in a
rectangle packing.

factor of 2 to fit the drawing area. Clearly, a larger
OSM allows a more readable diagram and is hence
better. In our case we only have a given desired as-
pect ratio and not the desired width and height. This
means that we can arbitrarily assume hd = 1, which
results in wd = DAR. This yields the scale measure
SM = min(DAR

wa
, 1

ha
), which is based on the desired

aspect ratio DAR. Again, just as for the OSM, larger
SM is better. Practically, we allow ourselves to pro-
duce drawings of arbitrary height and width, and leave
it up to the rendering to scale the drawing such that
it fits the drawing area, modulo zooming/panning ac-
tions taken by the user.

2.3 Ordering and Whitespace

We assume that regions are correctly ordered if for
each pair of regions ri, r j with i < j the following
holds:

xi +wi ≤ x j ∨ yi +hi ≤ y j

This means that the region i is horizontally or ver-
tically before the region j. This constraint is not
enough to identify the order of the regions just by their
placement. In bigger graphs this hinders the ability to
discover regions in the drawing even if the previous
ordering and the position of its neighbors is known.

The reading direction (visible in Figure 1d) makes
the region ordering better discernible. Here regions
are placed such that they preferably align horizontally
and form rows of regions.

A region is either placed

(1) directly right of its preceding neighbor

(2) right of its preceding neighbor on the current row
level

(3) in the next subrow

(4) in the next row

This is not enough to clearly identify a reading di-
rection, as seen in Figure 1d and 1f. A random align-
ment of subrows, as in Figure 1f, could irritate the
user and suggest to continue right instead of down.
Therefore, the height of each row should be defined
by the highest element in it. This helps the user to
follow a reading direction.

We also want to be able to eliminate the whites-
pace in a drawing, as seen in Figure 1d compared to
Figure 1e. This allows to use the available space to
its full extent and creates a visually pleasing draw-
ing by increasing the width or height of the regions.
Moreover, it is easier to follow the region order. If
empty space is below and right of a region, it is un-
clear where to continue. If the whitespace is elim-
inated, the user continues below, if the right region
does not align horizontally with the current one, and
right if it does align. It is not always possible to re-
move all whitespace in arbitrary drawings. However,
since we only consider the position (1) to (4) for a
node, the whitespace can always be eliminated.

A lower-numbered constraint is preferred over a
higher one to maintain a left-to-right reading direc-
tion. Constraint (1) is true if a region is directly right
of its preceding neighbor (see region B in Figure 1d).
A region fulfills (2) if it is on its row level right of
its preceding neighbor. Region F in Figure 1d fulfills
this constraint. Constraint (3) means a region is in the
next subrow below and possibly left of its preceding
neighbor (see i. e. regions H and K in Figure 1d). Re-
gion H in Figure 1d is an example for Constraint (4).
The box layouter fulfills (1) or (4) but fulfills neither
(2) nor (3) without fulfilling (1) or (4) at the same
time. Since the (2) implies (1) and (3) implies (4) in
case of the box layouter. Rectpacking considers all of
them, but prefers (3) over (2). LR-rectpacking uses
these constraints as they are intended to maintain the
reading direction.

Additionally to the reading direction, the drawing
has to be space efficient and near the desired aspect
ratio to produce better drawings than the one in Fig-
ure 1b, which is expressed by the scale measure.

On Order-preserving, Gap-avoiding Rectangle Packing

41

To summarize, we want an algorithm that pro-
duces drawings with a high scale measure, makes re-
gions discoverable by maintaining a reading direc-
tion, and places the regions such that the inner whites-
pace can be eliminated.

3 BOX LAYOUTER

Algorithm 1 presents the box algorithm, a greedy al-
gorithm for layouting regions.

The algorithm reduces the rectangle packing prob-
lem to a strip packing problem by estimating the
width based on the area and the region sizes (Algo-
rithm 2).

The layout algorithm places the regions next to
each other in rows (line 3) without considering the
height of such a row, as seen in Figure 1a.

Next, the regions are expanded to fill the row
height (see regions A to G in Figure 1a compared to
Figure 1b). The last region in a row is also horizon-
tally enlarged (see region F). Note that it is also pos-
sible to divide the available width among all regions
of a row, but the use of this algorithm allows to only
enlarge the width of the last node compared to the fol-
lowing ones.

Algorithm 1: box.

Input: Regions rs, DAR
Output: Placed regions rs

1 // Width approximation, see Algorithm 2
2 width = approx(rs,DAR)
3 boxPlace(rs,width) // Region placement
4 expand(rs) // Whitespace elimination

Algorithm 2: boxWidthApproximation.

Input: Regions rs, DAR
Output: Approximated width

1 totalArea = ∑area(rs)
2 area = totalArea+ |rs| ∗ stddev(totalArea)
3 returnmax(maxWidth(rs),

√
area∗DAR)

The algorithm produces rather good drawings for
graphs with regions of similar height. Since the re-
gions are aligned in rows, one can find a region with-
out much effort if their initial ordering is known. In
the SCCharts case, big regions, which contain state
machines, are easy to identify and can be used as a
reference point. Here, the shape of the region itself
is irrelevant for the mental map, since the shape of
their innards is preserved and it is discoverable by the
position of its neighboring regions.

Algorithm 3: boxPlace.

Input: Regions rs, width w
Output: Placed regions rs

1 lineX , lineY , lineHeight = 0
2 foreach r in rs do
3 if lineX + r.width≤ w then
4 r.x = lineX
5 r.y = lineY
6 lineX += r.width
7 lineHeight =

max(lineHeight,r.height)
8 else
9 lineY += lineHeight

10 lineX = 0
11 lineHeight = r.height
12 r.x = 0
13 r.y = lineY

However, big regions are also the weak point of
this algorithm, as seen in Figure 1b. For graphs with
different region sizes, the estimated width is too big,
and by stacking the regions inside a row the whites-
pace could be drastically reduced. As a result, region
names and inner behavior are very small and difficult
to read. The user needs pan and zoom action to un-
derstand and read everything. This limits understand-
ability and is quite time consuming.

One big expanded region and many small col-
lapsed regions are a common use case in SCCharts
development and inspired the one big region case in
the rectpacking algorithm (see Section 4.4).

4 RECTPACKING HEURISTIC

The rectpacking algorithm aims to optimize the scale
measure SM (see Section 2.2), and with it the read-
ability of the diagram, while preserving a reading di-
rection to not disturb the mental map of the user. A
structural overview can be seen in Algorithm 4. The
algorithm exists in two variations, LR-rectpacking
and plain rectpacking, which have the same structure
but vary in which subroutines are called, as indicated
by the optional “lr” prefix.

Algorithm 4: [LR-]rectpacking.

Input: Regions rs, DAR
Output: Placed regions rs

1 width = rpApprox(rs,DAR)
2 [lr]rpPlace(rs,width)
3 [lr]compact(rs)
4 [lr]expand(rs,width,DAR)

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

42

1 2

3 4

DR

LR

LBDB

Figure 3: Candidate positions.

4.1 Width Approximation

If one wants to improve the box algorithm, a more
compact drawing is expected. Since the static width
approximation of the box algorithm does not take the
order of the rectangles into account and does over-
estimate the width in no relation to the actual draw-
ing width, we propose to use a greedy placement al-
gorithm that does not consider reading direction (see
Figure 4a) but approximates the area better than the
box algorithm, as seen in Figure 4c.

The greedy algorithm places one region after the
other on one of four candidate positions, as seen in
Figure 3.

• Directly right of the last placed region (LR)

• Right of the whole drawing, top aligned (DR)

• Directly below the last placed region (LB)

• Below the whole drawing, left aligned (DB)

These positions are weighted based on the result-
ing scale measure, area, and aspect ratio. If one wants
to optimize scale measure, it is the primary criterion,
area the secondary, and aspect ratio the tertiary. If one
wants to optimize the aspect ratio, they are applied
in the following order: aspect ratio, area, scale mea-
sure. Depending on whether the aspect ratio or the
scale measure should be optimized, the option that
currently yields the best values is chosen. Regions
placed at LR might be shifted up, regions placed at
LB might be shifted left to optimize the current draw-
ing, since the width is often overestimated. After po-
tentially shifting the previous region, the next one is
placed. A complete placement can be seen in Fig-
ure 4a. The scale measure is the main optimization
goal. In this example, region E is placed on the DR
candidate position, since DR is preferred over LR and
both produce the same scale measure, which is better
than the one of the DB and LB position, since the used
DAR prefers wider drawings over higher ones.

4.2 Region Placement and Compaction

The approximated width reduces the problem to a
strip packing problem. In the first step, the regions

are placed in rows the same way as in the box al-
gorithm, as seen in Figure 4b. Using the maximum
height of a row, the drawing is compacted by assign-
ing regions to stacks, which are sequences of regions
that are aligned vertically, inside a row, as seen in Fig-
ure 4c. Note that this imposes a top-down reading di-
rection compared to the left-to-right reading direction
of the rows. In Figure 4c region A and B, region C and
D, region E, region F, region G, region H, and region
I, J, K and L form a stack.

4.3 Whitespace Elimination

The whitespace is eliminated by iterating through all
stacks in a row and enlarging the height of the regions
in the stacks such that the stack fits the row height,
as seen in Figure 5. The additional width of a row is
divided among all stacks. Moreover, all stacks are en-
larged to fit the row height. All regions in a stack are
enlarged to fit the stack width and equally enlarged to
fit the new stack height, which creates an aesthetically
pleasing drawing (Figure 1b compared to Figure 1c).

4.4 Big Region Handling

The rectpacking heuristic includes a special case han-
dling for sets of regions that indicate SCCharts re-
gions with one expanded region, i. e. a set of regions
with one big region and other regions with the same
height. We henceforth refer to this as the one big re-
gion case.

We consider a left-to-right reading direction for
the regions, as in Figure 6b, to be more pleasing than
the standard case top-down reading direction in Fig-
ure 6a. Moreover, a left-to-right reading direction is
already present in the rows the rectpacking algorithm
forms.

To achieve drawings as in Figure 6b, we assume
that all small regions before and after the big region
have the same width and height respectively. Since all
regions have the same size they can easily be placed
in rows, as seen in Figure 6b. For the normal case this
is not trivial, since we only know the bounding height,
but no bounding width. This is why we form rows of
stacks, what is basically solving a vertical strip pack-
ing problem using the box layouter vertically.

5 LR-RECTPACKING

The rectpacking algorithm achieves a better scale
measure than the box layouter. However, it lacks a
consistent reading direction. Furthermore, the one big
region case does not consider the DAR and makes the

On Order-preserving, Gap-avoiding Rectangle Packing

43

Example

+ A + B

+ C + D

+ E

A

- F

+ G

A
B

C D

1:

2:

- H

+ I

+ J

int X = 2

- K

+ L

(a) After width approximation, SM =
0.00446

Example

+ A + B + C + D + E

A

- F + G

A
B

C D

1:

2:

- H + I + J

int X = 2

- K + L

(b) After placement, SM = 0.00371

Example

+ A

+ B

+ C

+ D

+ E

A

- F + G

A
B

C D

1:

2:

- H + I

+ J

int X = 2

- K

+ L

(c) After compaction, SM = 0.00446

Figure 4: Layout with rectpacking heuristic, DAR = 1.6 (red-dashed).

A
B C

(a) After compaction

A
B C

(b) Move stacks

A

B
C

(c) Move regions

A

B
C

(d) Expand regions

Figure 5: Rectpacking whitespace elimination in a row, the arrows indicate the direction in which the regions are enlarged.

1 4

2 5 6

3

7

8

9

(a) Normal stacks

1 2

3 4 6

5

7

8

9

(b) One big region case layout

Figure 6: Normal rectpacking compared to the one big re-
gion case.

algorithm difficult to maintain in terms of software
engineering.

We, therefore, propose the following algorithm
that changes the placement, compaction, and expan-
sion step. The width approximation step does not
change. It places the regions to get a target width,
as seen in Figure 4a and described in Section 4.1.

5.1 Region Placement

In the next step, the regions are placed in rows, as
seen in Algorithm 5, which results in the same place-
ment as the region placement of the rectpacking algo-
rithm in Figure 4b. However, regions with “similar
height” are grouped into blocks, since such regions
do not lose too much space if they are aligned in sub-
rows. A region fits in a block, if it can be put directly
right of all regions in it without exceeding the target
width and has a similar height than the regions in this
block. The height, width, and position of rows and
blocks are updated on creation. Regions are placed
when they are added to their block. As seen in Fig-
ure 4b, blocks only have one subrow and the result
looks like a placement the box layouter would create.

Later, during compaction, such blocks are
grouped to form stacks of blocks. After region place-
ment each block forms a stack of blocks containing
only itself. During compaction other blocks can be
added to it as described in the following.

5.2 Region Compaction

Given the blocks, which are drawn as flat as possible,
and stacks of blocks that only contain one block after
placement, we try to compact the drawing by a one
pass algorithm which handles each block one after the
other, as seen in Algorithm 6. After placement, the
row heights are defined by the highest node in them.
This height only decreases during compaction.

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

44

Algorithm 5: lrrpPlace.

Input: Regions rs, width w
Output: Placed regions rs

1 Row row = new Row(w)
2 Stack stack = new Stack(row)
3 Block block = new Block(row,stack)
4 foreach r in rs do
5 similar = hasSimilarHeight(block,r)
6 f it = fitRow(block,r)
7 if similar∧ f it then
8 block.add(r)

9 else if f it then
10 stack = new Stack(row)
11 block = new Block(row,stack,block)
12 block.add(r)

13 else
14 row = new Row(w,row)
15 stack = new Stack(row)
16 block = new Block(row,stack,block)
17 block.add(r)

Algorithm 6: lrcompact.

Input: Regions rs, width w
Output: Placed regions rs

1 rows = getRows(rs)
2 foreach row ∈ rows do
3 foreach block ∈ row.blocks do
4 Block next = block.nextBlock()
5 block.addRegions(next)
6 if fitTop(block, next) then
7 block.stack.add(next)

8 else if fitRight(block, next, w) then
9 block.stack.drawInRowHeight()

10 block.placeRight(next)

11 else
12 block.stack.drawInRowWidth(w)

The current block places the next block above it-
self if it does not exceed the row height (see line 6-7).
If the block fits, it is added to the stack of the current
block (see blocks I to J, K, and L in Figure 1d). If the
next block is in the next row, its regions are added to
the current block if their height is similar to the cur-
rent block height (see line 5).

If placing the next block below itself is not possi-
ble but the next block does fit right (line 8), the current
stack is drawn as narrow as possible (see stack A to E
in Figure 1d and line 9-10). Else the current stack is
drawn as flat as possible in the remaining row width
to facilitate the left-to-right reading direction.

Remember that each block aligns their regions in
subrows, which does not waste much space since their
height is similar. Therefore, one wants to find the
minimal width such that all blocks of the current stack
do not exceed the row height, which is realized by
a binary search algorithm. This leaves room for im-
provement. If the number of region widths is limited,
we only need to check width permutations between
the minimum stack width and the current stack width.
The next block/stack is placed next to the compacted
current block or at the beginning of the next row and
we continue with the next block/stack of blocks until
all blocks are placed.

5.3 Whitespace Elimination

The whitespace elimination step in LR-rectpacking is
similar to the one of the rectpacking procedure pre-
sented in Section 4.3 and produces drawings such
as the one in Figure 1e. Since the regions are now
grouped in subrows, blocks, and stacks of blocks, the
additional width and height is now equally divided
under the stacks of blocks in each row, the blocks,
and henceforth the subrows and the regions in them
(see Figure 7) instead of dividing it among the stacks
and their regions, as it is done in Section 4.3.

The algorithm has an option to enlarge the regions
such that the drawing exactly fits the DAR during the
whitespace elimination step.

5.4 Worst Case

Clearly this algorithm performs worst, if very high
and very wide regions alternate, as seen in Figure 8.

In this example, the rows are highlighted in dot-
ted black, stacks of blocks and blocks are highlighted
in red if their bounds are unclear. For Figure 8a, the
width approximation yields a much too small width,
since it does not respect the reading direction. The
optimal packing (see Figure 8b) gets more freedom
since its row height is not limited by the highest el-
ement in it. However, the reading direction suffers.
Without a proper numbering of the regions, one would
rather think that n8 is before n7. Only the left aligned
placement with n4 lets the user guess that n7 should
belong to the same row as n8. Whitespace elimina-
tion helps to highlight this alignment, since n2 and
n8 would fill their entire block and would enframe
the row and highlight the blocks and stacks. The in-
fluence on readability has to be quantitatively deter-
mined in future work.

On Order-preserving, Gap-avoiding Rectangle Packing

45

A B
C D

(a) After compaction

A B
C D

(b) Move stacks and
blocks

A B

C
D

(c) Move subrows

A B

C
D

(d) Move regions

A B

C
D

(e) Expand regions

Figure 7: LR-rectpacking whitespace elimination in a row, the arrows indicate the direction in which the regions are enlarged.

n1 n2n3

n4n5 n6

n7 n8n9

(a) LR-rectpacking solution

n1
n2n3
n4n5 n6

n7

n8

n9

(b) Optimal packing

Figure 8: Worst case for LR-rectpacking.

6 EVALUATION

All layout algorithm were implemented in the ELK
framework3. We evaluated the performance of the al-
gorithms using the GrAna tool (Rieß, 2010) with 200
graphs for each graph class. The number of regions is
between 20 and 30 to make the instances solvable by
CP optimizer. Normal regions have a height of 20 and
a width with the mean of 100 and a standard deviation
of 20. The big nodes class (BN) has 2 to 5 big re-
gions with a width and height between 300 and 1000.
The one big node class (OB) has only one big region.
The same height class (SH) has no big regions. The
graphs are drawn and evaluated for six different algo-
rithm configurations with a DAR of 1.3 and a spacing
of 1 between regions:

• B: Using the box layouter with set priorities to en-
force region order

• AA: Using only the width approximation step of
the rectpacking heuristic optimized for aspect ra-
tio (see Section 4.1)

• EA: Using LR-rectpacking optimized for aspect
ratio

• AS: Using the width approximation step of the
rectpacking heuristic optimized for scale measure
(see Section 4.1)

3https://www.eclipse.org/elk/reference/algorithms.html

• ES: Using LR-rectpacking optimized for scale
measure

• OS: Using CP optimizer

OS maximizes the scale measure and minimizes
the used area as a secondary criterion. The run time
of OS is limited to at most one hour per graph. Five
graphs in BN, and two in OB were removed, since
the time limit was reached. The regions are placed by
considering only the position (1) to (4) in Section 2.3,
as seen in Figure 1f.

The run times of the box algorithm and
the rectpacking algorithm are clearly in O(n).
LR-rectpacking solves the placement problem in
O(n log(n)) since the compaction step uses binary
search to calculate the best width for a block. How-
ever, in practice the run time of B, AA, EA, AS, and
ES seem linear in the problem size and are in our ex-
periments in millisecond range.

The box layouter heuristic (B) handles same
height regions (SH) quite well, but if big regions oc-
cur it tends to overestimate the needed width, as seen
in Figure 9a – 9c. Therefore, the aspect ratio suffers,
as seen in Figure 9h and Figure 9i. The height of the
OB and BN graphs seems to depend mostly on the
size of the big regions in these graphs, as seen in Fig-
ure 9e and Figure 9f. This can be observed in the scale
measure for the box layouter in Figure 9m – 9o. In the
SH graphs it achieves a relatively good scale measure,
a better one than the LR-rectpacking approaches EA
and ES. However, the big region graphs OB and BN
tend to have smaller scale measures than the rectpack-
ing approaches.

The LR-rectpacking approaches optimized for as-
pect ratio (EA) and scale measure (ES) do not per-
form well for the SH graphs. Since the greedy width
approximation overestimates the width, the following
strip packing cannot perform well in these cases, as
seen in Figure 9a. As a result the height tends to be
smaller than needed, as seen in Figure 9d. However,
this cannot be generalized, and there are OB or BN
cases that underestimate the width. For the big region
cases OB and BN the algorithm achieves values near
the optimum, as seen in the aspect ratio in Figure 9h
and Figure 9i, the whitespace in Figure 9k and Fig-
ure 9l, and the resulting scale measure in Figure 9n

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

46

25
0

35
0

45
0

B EA ES

●

●

●

●

●

●

Same height

W
id

th

B EA ESAA AS OS

(a) Width (SH)
50

0
15

00
25

00

B EA ES

●

●

● ●
●

●

One big node
W

id
th

B EA ESAA AS OS

(b) Width (OB)

50
0

15
00

25
00

35
00

B EA ES

●

●

●

●

●

●

Big nodes

W
id

th

B EA ESAA AS OS

(c) Width (BN)

15
0

20
0

25
0

30
0

B EA ES

●

●

●

●

●

●

Same height

H
ei

gh
t

B EA ESAA AS OS

(d) Height (SH)

40
0

60
0

80
0

10
00

B EA ES

●

●

●

●

●
●

One big node

H
ei

gh
t

B EA ESAA AS OS

(e) Height (OB)

50
0

15
00

25
00

B EA ES

● ●
●

●

●

●

Big nodes

H
ei

gh
t

B EA ESAA AS OS

(f) Height (BN)
1.

0
1.

5
2.

0
2.

5
3.

0

B EA ES

●

●

●

●

●

●

Same height
A

sp
ec

t R
at

io
B EA ESAA AS OS

(g) Aspect ratio (SH)

1
2

3
4

B EA ES

●

● ● ● ● ●

One big node

A
sp

ec
t R

at
io

B EA ESAA AS OS

(h) Aspect ratio (OB)

0.
5

1.
5

2.
5

3.
5

B EA ES

●

●

●

●

●

●

Big nodes

A
sp

ec
t R

at
io

B EA ESAA AS OS

(i) Aspect ratio (BN)

0
20

40
60

80

B EA ES

●

●

●

●

●

●

Same height

To
p−

Le
ve

l W
hi

te
sp

ac
e

B EA ESAA AS OS

(j) Whitespace (SH)

0
20

40
60

80

B EA ES

●

●

●

●

●

●

One big node

To
p−

Le
ve

l W
hi

te
sp

ac
e

B EA ESAA AS OS

(k) Whitespace (OB)
0

20
40

60
80

B EA ES

●

●

●
● ●

●

Big nodes
To

p−
Le

ve
l W

hi
te

sp
ac

e
B EA ESAA AS OS

(l) Whitespace (BN)

0.
00

30
0.

00
40

0.
00

50

B EA ES

●

●

●

●

●

●

Same height

S
ca

le
 M

ea
su

re

B EA ESAA AS OS

(m) Scale
measure (SH)

0.
00

05
0.

00
15

0.
00

25

B EA ES

●

●
● ● ●

●

One big node

S
ca

le
 M

ea
su

re

B EA ESAA AS OS

(n) Scale
measure (OB)

0.
00

04
0.

00
10

B EA ES

●

● ●

●

●

●

Big nodes

S
ca

le
 M

ea
su

re

B EA ESAA AS OS

(o) Scale
measure (BN)

−
0.

5
0.

5
1.

0
1.

5

SM BN

●

●

●

A
sp

ec
t R

at
io

 D
iff

er
en

ce

SM BNOB

(p) Aspect ratio

−
20

0
20

40

SM BN

● ●

●

W
hi

te
sp

ac
e

D
iff

er
en

ce

SM BNOB

(q) Whitespace

0.
00

00
0.

00
06

0.
00

12

SM BN

●

●

●

S
ca

le
 M

ea
su

re
 D

iff
er

en
ce

SM BNOB

(r) Scale measure

Figure 9: Width, height aspect ratio, whitespace, scale measure, and comparison.

On Order-preserving, Gap-avoiding Rectangle Packing

47

and Figure 9o. It outperforms the box layouter in all
non-trivial cases.

The heuristics focused on aspect ratio (AA, EA)
and scale measure (AS, ES) perform nearly the same.
They both optimize the aspect ratio to be as close as
possible at the desired aspect ratio in the width ap-
proximation step. The AA approach in Figure 9g –
9i seems to be more strict to achieve the aspect ra-
tio. In terms of scale measure, the scale measure ap-
proach, not surprisingly, outperforms the aspect ratio
approach. In terms of aspect ratio the aspect ratio ap-
proach achieves better results. When whitespace is
eliminated to fit the aspect ratio, AA is the better al-
gorithm. Otherwise, ES should be used. Therefore,
ES is the standard approximation strategy for the rect-
packing algorithm in ELK.

Figure 9p shows a comparison between ES and
OS in terms of aspect ratio, calculated via |DAR−
ar(ES)| − |DAR− ar(OS)| with ar being the aspect
ratio for the given set of regions. A negative value
means that ES is closer to the desired aspect ratio than
OS. OS is nearly always better than the heuristic. The
negative cases occur because space was sacrificed to
achieve a better aspect ratio.

Figure 9q presents the difference in whitespace
usage for the specific graphs ws(OS)−ws(ES), with
ws being the whitespace for the given set of regions.
Again, a negative value means that ES is better than
OS. For the SH graph set, OS is nearly always bet-
ter. For OB and BN the median is near zero and some
cases are even better. However, these cases have a
worse aspect ratio.

Figure 9r shows the difference in scale measure
sm(OS)− sm(ES) with sm being the scale measure.
As expected, no negative values are present. The
heuristic seems to be most effective for graphs with
only one big region and bad for sets without big re-
gions, as mentioned before, and is in most cases near
the optimum.

Figure 10 shows an example BN graph layouted
with B, ES and OS. Figure 10c achieves a better scale
measure than Figure 10b. However, the reading direc-
tion suffers. In Figure 10c subrows of different blocks
align, which visually creates rows that do not exist.
Figure 10a shows that graphs layouted with the box
layouter always align their regions in rows. The re-
sulting scale measure is clearly worse than the ones of
Figure 10 and Figure 10c. The solution is clearly far
from optimal since the algorithm refrains from stack-
ing the regions inside the rows.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9

n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24 n25 n26 n27 n28

(a) Example BN graph layouted with B
n0

n1

n2 n3 n4

n5

n6 n7 n8

n9

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20

n21

n22

n23

n24

n25

n26

n27

n28

(b) Example BN graph layouted with ES
n0

n1

n2

n3 n4 n5

n6

n7 n8

n9

n10 n11 n12 n13 n14 n15 n16 n17

n18 n19 n20 n21 n22 n23 n24 n25

n26 n27 n28

(c) Example BN graph layouted with OS

Figure 10: Example BN graph.

7 CONCLUSION AND FUTURE
WORK

The proposed LR-rectpacking algorithm achieves bet-
ter results than the box layouter and the initial rect-
packing algorithm in all interesting cases. Same
height regions usually only occur in SCCharts if all
regions are collapsed. Then the zoom level is not
that important since all regions are relatively small
in this case. We propose to use the LR-rectpacking
algorithm for SCCharts regions in the future. This al-
gorithm is currently also used in the Object Explorer
tool4 (created by Xplain Data) in order to analyze
complex mass data. In this application a user may
open multiple windows. The “box” or “rectpacking”
algorithm is used to later create a smooth layout.

The heuristic produces drawings with scale mea-
sures near the optimum for the graphs with at least
one big region.

As seen in the results for SH graphs, the algorithm
has room for improvement in the width approxima-
tion step, which will be optimized in future work.

4https://www.xplain-data.de/

IVAPP 2021 - 12th International Conference on Information Visualization Theory and Applications

48

We believe that an ordering of regions and a read-
ing direction helps the user to discover regions and
helps to maintain the mental map. The exact influ-
ence of this has to be determined in future work.

Part of future work is to analyze real SCCharts to
compare the algorithms and to include user feedback
for the different drawings.

REFERENCES

Augustine, J., Banerjee, S., and Irani, S. (2006). Strip pack-
ing with precedence constraints and strip packing with
release times. In Proceedings of the Eighteenth An-
nual Acm Symposium on Parallelism in Algorithms
and Architectures (SPAA’06), pages 180–189, New
York, NY, USA. ACM.

Bruls, M., Huizing, K., and Van Wijk, J. J. (2000). Squari-
fied treemaps. In Data visualization 2000, pages 33–
42. Springer.

Chimani, M., Gutwenger, C., Mutzel, P., Spönemann, M.,
and Wong, H.-M. (2011). Crossing minimization and
layouts of directed hypergraphs with port constraints.
In Proceedings of the 18th International Symposium
on Graph Drawing (GD ’10), volume 6502 of LNCS,
pages 141–152. Springer.

Da Silveira, J. L., Miyazawa, F. K., and Xavier, E. C.
(2013). Heuristics for the strip packing problem with
unloading constraints. Computers & operations re-
search, 40(4):991–1003.

Da Silveira, J. L., Xavier, E. C., and Miyazawa, F. K.
(2014). Two-dimensional strip packing with un-
loading constraints. Discrete Applied Mathematics,
164:512–521.

Dowsland, K. A. and Dowsland, W. B. (1992). Pack-
ing problems. European Journal of Operational Re-
search, 56(1):2 – 14.

Fuhrmann, H. and von Hanxleden, R. (2010). On the prag-
matics of model-based design. In Proceedings of the
15th Monterey Workshop 2008 on the Foundations of
Computer Software. Future Trends and Techniques for
Development, Revised Selected Papers, volume 6028
of LNCS, pages 116–140, Budapest, HR. Springer.

Gutwenger, C., von Hanxleden, R., Mutzel, P., Rüegg, U.,
and Spönemann, M. (2014). Examining the compact-
ness of automatic layout algorithms for practical di-
agrams. In Proceedings of the Workshop on Graph
Visualization in Practice (GraphViP ’14), pages 42–
52.

Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., and von
Hanxleden, R. (2016). Compact layered drawings of
general directed graphs. In Proceedings of the 24th
International Symposium on Graph Drawing and Net-
work Visualization (GD ’16), pages 209–221.

Kenyon, C. and Rémila, E. (2000). A near-optimal solution
to a two-dimensional cutting stock problem. Mathe-
matics of Operations Research, 25(4):645–656.

Lucas, D. (2018). Order- and drawing area-aware
packing of rectangles. Bachelor thesis, Christian-

Albrechts-Universität zu Kiel, Faculty of Engi-
neering. https://rtsys.informatik.uni-kiel.de/∼biblio/
downloads/theses/dalu-bt.pdf.

Purchase, H. C., Hoggan, E. E., and Görg, C. (2006). How
important is the “mental map”? – an empirical in-
vestigation of a dynamic graph layout algorithm. In
Proceedings of the 14th International Symposium on
Graph Drawing (GD ’06), volume 4372 of LNCS,
pages 184–195. Springer.

Rieß, M. (2010). A graph editor for algorithm engineer-
ing. Bachelor thesis, Kiel University, Department of
Computer Science.

Rüegg, U., Ehlers, T., Spönemann, M., and von Hanxle-
den, R. (2017). Generalized layerings for arbitrary and
fixed drawing areas. Journal of Graph Algorithms and
Applications, 21(5):823–856.

Rüegg, U., Kieffer, S., Dwyer, T., Marriott, K., and
Wybrow, M. (2014). Stress-minimizing orthogonal
layout of data flow diagrams with ports. In Proceed-
ings of the 22nd International Symposium on Graph
Drawing (GD ’14), pages 319–330.

Rüegg, U., Schulze, C. D., Grevismühl, D., and von
Hanxleden, R. (2016). Using one-dimensional com-
paction for smaller graph drawings. In Proceedings
of the 9th International Conference on the Theory and
Application of Diagrams (DIAGRAMS ’16), volume
9781 of LNCS, pages 212–218. Springer.

Rüegg, U. and von Hanxleden, R. (2018). Wrapping layered
graphs. In Proceedings of the 10th International Con-
ference on the Theory and Application of Diagrams
(DIAGRAMS ’18), pages 743–747. Springer.

Schulze, C. D., Spönemann, M., and von Hanxleden, R.
(2014). Drawing layered graphs with port constraints.
Journal of Visual Languages and Computing, Special
Issue on Diagram Aesthetics and Layout, 25(2):89–
106.

von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S.,
Mendler, M., Aguado, J., Mercer, S., and O’Brien, O.
(2013). SCCharts: Sequentially Constructive State-
charts for safety-critical applications. Technical Re-
port 1311, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science. ISSN 2192-6247.

von Hanxleden, R., Fuhrmann, H., and Spönemann, M.
(2011). KIELER—The KIEL Integrated Environment
for Layout Eclipse Rich Client. In Proceedings of
the Design, Automation and Test in Europe University
Booth (DATE ’11), Grenoble, France.

Wang, Y., Chu, X., Bao, C., Zhu, L., Deussen, O., Chen,
B., and Sedlmair, M. (2017). Edwordle: Consistency-
preserving word cloud editing. IEEE transactions on
visualization and computer graphics, 24(1):647–656.

On Order-preserving, Gap-avoiding Rectangle Packing

49

