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Abstract: Despite great advances in the area of Semantic Web, industry rather seldom adopts Semantic Web technolo-
gies and their storage and query approaches. Instead, relational databases (RDB) are often deployed to store
business-critical data, which are accessed via REST interfaces. Yet, some enterprises would greatly benefit
from Semantic Web related datasets which are usually represented with the Resource Description Framework
(RDF). To bridge this technology gap, we propose a fully automatic approach that generates suitable RDB
models with REST APIs to access them. In our evaluation, generated databases from different RDF datasets
are examined and compared. Our findings show that the databases sufficiently reflect their counterparts while
the API is able to reproduce rather simple SPARQL queries. Potentials for improvements are identified, for
example, the reduction of data redundancies in generated databases.

1 INTRODUCTION

The Resource Description Framework (RDF) (Rai-
mond and Schreiber, 2014) is a well-established data
model in the Semantic Web community. It is used
to express facts about resources identified with uni-
form resource identifiers (URIs) (Berners-Lee et al.,
1998) in the form of statements (subject, predicate
and object). Ontologies (Gruber, 1993) are used
to model domains and to share formally specified
conceptualizations which can be expressed by using
RDF Schema (RDFS) (Guha and Brickley, 2004).
RDF-based data is typically stored in triplestores
and queried with the SPARQL Protocol and RDF
Query Language (SPARQL) (W3C SPARQL Work-
ing Group, 2013).

In our experience, beyond the Semantic Web and
especially in industry, such technologies are rather
seldom used. A case study for the manufacturing in-
dustry also points out this observation (Feilmayr and
Wöß, 2016). Instead, relational databases (RDBs) are
commonly used to store important and system critical
data – information systems which are well-researched
over 50 years. By implementing Application Pro-
gramming Interfaces (APIs), a controlled access on
these datasets with Create, Read, Update and Delete
(CRUD) operations are provided for system develop-

Table 1: Comparison of storage and query approaches be-
tween Semantic Web and Industry.

Approach Semantic Web Industry
Storage Triplestore SQL Database
Domain Modeling Terminology in Ontology Database Schema
Data Modeling RDF Statement Assertions Database Records
Identification URIs Primary Keys
Query Interface SPARQL SQL / REST API
Exchange Format Result Set / RDF Result Set / JSON

ers. APIs often conform to the Representational State
Transfer (REST) software architecture, utilize the Hy-
pertext Transfer Protocol (HTTP) and exchange data
in the JavaScript Object Notation (JSON) format.

By examining both sides, we observe distinct
solutions regarding storage and query approaches.
Table 1 summarizes and compares these findings:
while the Semantic Web encourages the use of triple-
stores loaded with ontologies and assertions, industry
prefers databases with defined schemata and records.
Resources are identified with URIs on the Seman-
tic Web, while database records use primary keys.
Graph-oriented SPARQL queries and their special
result set responses are opposed to relational SQL
queries. On top of databases, additional web services
can provide document-oriented REST APIs returning
JSON documents.

Yet, some enterprises would greatly benefit from
Semantic Web technologies. This also includes re-
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lated datasets and the way knowledge is modeled. We
see a trend that more and more publicly available
datasets are modeled and/or published in the RDF
format, such as datasets in the Linked Open Data
(LOD) cloud1, DBpedia (Bizer et al., 2009) and Wiki-
data (Vrandečić and Krötzsch, 2014). Moreover, it
has been become popular in data integration services
and especially in knowledge services to construct and
maintain knowledge graphs (Hogan et al., 2020) for
selected use cases, for instance, when building a cor-
porate memory (Maus et al., 2013). To embed these
new datasets and technologies in workflows and pro-
cesses, corporations would have to spend consider-
able efforts. In order to keep a company’s overhead
to a minimum, we suggest transforming RDF-based
datasets back to storage systems they are more famil-
iar with, namely RDBs. This way, data can be main-
tained by admins without knowledge about Semantic
Web, but with the trade-off of losing the flexibility
of Semantic Web technologies. This implies that this
transformation should be performed only once and
further data changes should be made in the generated
database. For integration purpose, we further recom-
mend that enterprises implement CRUD REST APIs
to provide access and manipulation layers for their
developers. Since such conversions and implementa-
tions are quite tedious and costly when executed man-
ually, a fully automatic way to generate the envisioned
assets would be helpful.

Since related work did not appropriately address
this particular use case, in this paper, we provide a so-
lution to this challenge. A generation procedure is de-
scribed that accepts an arbitrary RDF(S) dataset and
generates an RDB with a CRUD REST API to ac-
cess and modify it. Doing this, raises the following
research questions which are addressed in our experi-
ments:

1. How well do the generated RDBs reflect their
RDF dataset counterparts? By using various RDF
datasets, we check if any critical data is missing
in the databases and how they are structured.

2. How well can the generated CRUD REST API re-
produce queries that would have been performed
with SPARQL? To answer this, we try to query
same information with our API compared with
given SPARQL queries.

3. What limitations do the generated databases and
interfaces have? In our experiments, we reveal
and discuss shortcomings of our approach.

For future research, the source code of our algorithm
and the evaluation material is publicly available at

1https://lod-cloud.net/

GitHub2.
This paper is structured as follows: in the next

section (Sec. 2) we investigate procedures and tools
in literature that also transform RDF to RDB. This is
followed by our own approach in Section 3. Section
4 presents the evaluation of our method and answers
the stated research questions. We close the paper with
a conclusion and an outlook in Section 5.

2 RELATED WORK

One can find a lot of papers in literature which are re-
lated to the conversion of RDB (and similar formats)
to RDF. However, only few works actually investi-
gated the opposite direction (from RDF to RDB).

An early work (Teswanich and Chittayasothorn,
2007) transforms RDF documents to databases to ap-
ply Business Intelligence (BI) technologies. RDFS-
related information is stored in meta tables, for exam-
ple, in relations like class, property and sub class of.
For each class and object property (regardless of
its cardinality) a table is created. SQL statements
demonstrate how a generated database can be queried.

Similarly, the R2D approach (Ramanujam et al.,
2009) generates databases from RDF data to reuse
visualization tools. The authors suggest several
improvements regarding (Teswanich and Chittaya-
sothorn, 2007): in contrast, their approach still works,
albeit no ontological information is available in the in-
put dataset. Moreover, it considers the cardinality of
properties to avoid the creation of tables, and it also
handles blank nodes.

RDF2RDB3 is a Python based tool that converts a
given RDF/XML document into a MySQL database.
The generation approach is also comparable with the
one from (Teswanich and Chittayasothorn, 2007), ex-
cept it does not generate meta tables for RDF schema
information.

RETRO (Rachapalli et al., 2011) focuses on query
translation with the same motivational arguments as
we have about bridging the gap between Semantic
Web and industry. However, their approach does not
physically transform RDF to an RDB. Instead, they
use a fixed schema mapping approach that virtually
maps all predicates from the A-Box statements to re-
lational tables having two columns, namely for sub-
ject and object.

Although R2D and RDF2RDB are comparable to
our approach, we did not find any related work that
also takes into account the generation of a suitable
REST interface to access the data.

2https://github.com/mschroeder-github/rdf-to-rdb-rest-api
3https://github.com/michaelbrunnbauer/rdf2rdb
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3 APPROACH

Our approach is divided into three phases. First, RDF
data is analyzed to receive valuable insights about the
nature of the dataset. Secondly, these findings are
used to design a suitable database model which con-
sists of tables, columns and data records. Thirdly,
based on the database model, Java source code is gen-
erated to directly provide developers with usable data
classes, a database access layer, a server and its REST
interface.

Figure 1 presents a very small example of the ap-
proach. A simple RDF dataset about persons read-
ing books (on the left in RDF Turtle syntax) is trans-
formed into three tables (in the middle): two of them
represent persons resp. books while the third one
models the many-to-many relation between them. On
the right side, corresponding source code is generated
to automatically implement the REST API. The ready
to use server application can be utilized by develop-
ers to query a book resource which returns a JSON
representation of it.

3.1 Analysis of RDF

Before the RDF model is analyzed, possible Blank
Nodes in the dataset are skolemized (Mallea et al.,
2011). This means that they are replaced with ran-
domly generated URIs in a consistent manner. That
way further analysis and processing is simplified
without any semantic change to the RDF model.

Next, for generating the RDB tables and filling
them with records later, classes and their instances
have to be discovered. They are collected by scan-
ning through the assertion box (A-Box) statements.
In this process, instances having more than one type
(multi-typed instances) are detected. The instances’
properties together with their domains and ranges are
further examined since they will be modeled as ei-
ther table columns or many-to-many tables. We di-
vide the properties into object properties (objects are
resources) and data type properties (objects are liter-
als). In case of object properties, the object’s type is
inspected (range). If the object is not further men-
tioned in the RDF dataset or has no type, it is clas-
sified as a dangling resource. Later, these resources
will be stored in the database as textual URIs (instead
of numeric IDs) because they are not present in the
database as a record. At least, this allows to look
up such resources by following the links. Regarding
data type properties, a suitable SQL storage class is
inferred which can be either text, real, integer or bi-
nary large object. If the literal has a language tag, the
property is assigned to be a special language string

property.
After that, the properties cardinalities are analyzed

to decide if a relationship should be modeled as a for-
eign key column or a many-to-many table. For each
property, based on the given data, it is deduced if it
has a one-to-one, one-to-many, many-to-one or many-
to-many cardinality by scanning through the A-Box
statements. The special rdf:type property is always
assumed to be many-to-many because multiple re-
sources can have multiple types in RDF. Additionally,
all the properties’ domains and ranges are collected.
Note that one predicate can have subjects and objects
with various domains and ranges. To retrieve clear
mappings from domains to ranges, distinct domain-
range pairs are calculated.

3.2 Conversion to RDB

Our generated RDBs follow the type-store approach
mentioned in (Ma et al., 2016). Multi-valued at-
tributes are avoided by using many-to-many tables
when cardinalities require it. We assume that the type-
based structure is easier to grasp for developers than
a horizontal or vertical structure.

Complying with the type-store approach, for each
determined type from the previous step, a table is des-
ignated that will contain all instances of this type in
form of records. We denote such relations as entity
tables. They contain mandatory numeric id-columns
which serve as primary keys. We do not add a uri-
column since the numeric primary key already serves
as an identifier and databases usually do not model
another textual identifier, like a URI, for their records.

An entity table is annotated with its representing
RDF class. All properties matching the class with
their domain are assumed to be a column of this ta-
ble. However, there are two special cases with re-
spect to the cardinality of the properties. In case of
a one-to-many cardinality, the column is placed in
the referring table instead. This is a usual step when
entity-relationship models (ER-models) are instanti-
ated as relations that should satisfy the third normal
form (Kent, 1983). In case of a many-to-many cardi-
nality, no column in an entity table is created. Instead,
an extra table is modeled that contains two columns,
namely to refer to subject and object. If we have a lan-
guage string property at hand, another lang column is
added to store the language tag.

Next, tables are filled with data records. To do
that consistently, each resource in the RDF dataset is
assigned to a unique numeric ID. A special res id-
relation records for each URI the mapped ID for later
lookup. Using this information, records of entity ta-
bles obtain distinct IDs for their primary keys. By
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RDF Dataset Relational Database REST API

public class Book {
  private Long id;
  private String title;

...

Table: Person
id | name      
 1 | John      
 2 | Thomas    

Table: Book
id | title  
 1 | Ash   
 2 | Claf 

Table: reads
person | book  
     1 |    1   
     2 |    1
     1 |    2
     2 |    2 

:p1 a :Person;
  :name “Thomas“
  :reads :b1, :b2 .
:p2 a :Person;
  :name “John“
  :reads :b1, :b2 .

...

:b1 a :Book;
  :title “Ash“ .
:b2 a :Book;
  :title “Calf“ .

...

{
  “id“: 1,
  “title“: „Ash“
}

GET /book/1

Figure 1: Illustrating example of our approach: An RDF dataset about persons reading books (left) is converted to a relational
database (middle). The further generated REST API contains corresponding source code (right) and allows to query the
database with REST calls (indicated by the gray arrow). The response is a JSON representation of the data.

scanning through the outgoing edges of every re-
source, record fields are allocated with the acquired
objects. For many-to-many tables, all statements with
the corresponding predicate are considered. Those
statements have the following mandatory condition:
the subject’s type matches the given domain and the
object’s type matches the given range. Only those
statements are inserted as appropriate records in the
table. Last, SQL statements are formulated to popu-
late an SQLite4 database with the modeled tables and
their records.

3.3 Generation of REST API Code

To generate source code and file contents, we uti-
lize the template engine Apache FreeMarker5. In this
phase, two Apache Maven6 projects are produced by
our approach: an api project containing data classes
together with the database access layer and a server
project with the RESTful communication logic.

For the api project, every entity table from the
previous part is converted into a Plain Old Java Ob-
ject (POJO)7. The tables’ columns are turned into at-
tributes of the POJO class. All many-to-many tables
that could be joined with the entity table on the first
column become attributes of type java.util.List.
In case of a table that originated from a language
string property, a special LangString POJO class
holding string and language tag is used as the at-
tribute’s type.

After the data classes, the database controller class
is generated. For each Java class, a corresponding se-
lect, insert, update and delete method is generated.
These methods internally use SQL to communicate
with the database. In case of the select method, filter-
ing is supported by using the resource query language
(RQL). For that we parse the syntax8 and filter results
based on given RQL expression.

4https://www.sqlite.org/
5https://freemarker.apache.org/
6https://maven.apache.org/
7https://www.martinfowler.com/bliki/POJO.html
8https://github.com/jirutka/rsql-parser

The server project has a dependency to the api
project. Thus, it reuses the POJO classes, database ac-
cess logic and provides the RESTful communication.
We use the Spark9 framework to implement the server
application. For each Java class (from the API) a cor-
responding REST endpoint is generated. The end-
points are able to interpret and perform HTTP GET,
POST, PUT, PATCH and DELETE requests by uti-
lizing the database controller from the api project. A
converter from POJO to JSON (and vice versa) is pro-
vided to exchange data.

4 EVALUATION

The evaluation of our approach consists of three parts.
First, several diverse and publicly available10 RDF(S)
datasets are transformed into RDBs to check the al-
gorithm’s ability to handle different datasets and to
analyze the generated databases. Second, we make
a comparison between the outcome of a similar tool
with our results using the same input dataset. Third,
a SPARQL benchmark is used which provides pre-
defined queries and an RDF dataset generator. Our
re-engineered database is compared with the bench-
mark’s generated SQL database. We also investi-
gate how well our REST API can reproduce given
SPARQL queries. The evaluation section is closed
with a general discussion of the results.

4.1 Datasets

The Linked Open Data (LOD) cloud11 is a hub
that refers to all kinds of publicly available RDF-
based resources or endpoints. To test our algorithm,
we randomly selected six rather small RDF datasets
from the LOD cloud. Additionally, a private dataset
from an industrial scenario and a generated one from

9http://sparkjava.com/
10Except of one private dataset that was obtained from an

industrial scenario.
11https://lod-cloud.net/
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the Berlin SPARQL Benchmark (BSBM) (Bizer and
Schultz, 2011) are examined too. Only relatively
small sized datasets with triples around a 5-digit num-
ber of statements are chosen since we are not inter-
ested in testing the time and memory performance of
our approach. Instead, we investigate what effects
various datasets have on the output of our algorithm.
The findings will be discussed at the end of the evalu-
ation section. Characteristics of the eight datasets and
the resulting RDBs are presented in Table 2. In the
following, we briefly describe each dataset and dis-
cuss the results.

TBL-C12 is the RDF representation of Tim
Berners-Lee’s electronic business card. Since
the instance representing himself has two types
(foaf:Person and con:Male), this record is redun-
dantly stored in two tables with identical columns.
Having multiple types causes also the generation of
several many-to-many tables with equivalent data.

The Copyright Term Bank CTB13 dataset con-
tains copyright terminology. After the conversion,
four entity tables contain data records: concept, lex-
ical entry, lexical sense and sense definition. How-
ever, lexical sense does not have any functional prop-
erties, thus containing no columns (except the manda-
tory id column).

The Edinburgh Associative Thesaurus RDF
dataset EAT14 (Hees et al., 2016) contains associa-
tions of terms. Despite the large number of statements
(1,674,376), it only has two classes which results in
two tables, namely association with 325,588 records
and term with 23,218 rows.

Pokedex15 is an RDF catalog of fictitious mon-
sters of the popular Pokémon franchise16. The main
table pokemon contains all functional properties and
has 493 entries. All Pokémon species are listed in the
species table. Because there is a one-to-many rela-
tionship between species (one) and Pokémon (many),
the property pkm:speciesOf is represented with a col-
umn in the pokemon table.

Betweenourworlds BOW17 is a dataset about ani-
mes which are drawn animations originated from
Japan. Besides having the largest number of state-
ments in our selection (4,041,676), it also has the
largest number of instances with multiple types
(349,195). The main reason is that every anime
is typed with at least dbo:Anime, dbo:Cartoon and
dbo:Work.

12http://www.w3.org/People/Berners-Lee/card.rdf
13https://lod-cloud.net/dataset/copyrighttermbank
14https://lod-cloud.net/dataset/associations
15https://lod-cloud.net/dataset/data-incubator-pokedex
16https://www.pokemon.com/
17https://betweenourworlds.org/ (Release 2020-06)

S-IT18 is a dataset generated from the traveling
website about the Salzburg state in Austria in Italian
language. The dataset has been built with WordLift19

(Volpini and Riccitelli, 2015), which is a plugin that
annotates website content with linked data. Although,
it has the second lowest number of statements (4,477),
the generated database contains the most tables. This
can be explained by the high number of classes (406)
and resources (81) which are instances of multiple
classes.

Our private RDF dataset IndScn from an indus-
trial scenario consists of meta-data about documents
and their revisions. The conversion went straight for-
ward: 16 classes result in the desired 16 tables with
appropriate many-to-many tables for the properties.

The BSBM20 (Bizer and Schultz, 2011) dataset
has been generated with the provided generator tool
(version 0.2). Its domain is about produced, offered
and reviewed products. With a product count param-
eter of 100, 40,177 RDF statements have been gen-
erated. After the conversion, all main entity tables
were created, namely product, product feature, prod-
uct type, person, producer, offer, review and vendor.

4.2 Comparison with RDF2RDB

RDF2RDB21 is an open-source tool that converts
RDF to relational databases. The procedure, which
is written in Python 2, reads RDF files and fills a
MySQL database with tables and records. We use two
datasets, namely No. 1 and No. 8 in Table 2, to com-
pare exemplarily the behavior of the procedures.

For demonstration purpose, the developer pro-
vides the generated database from Tim Berners-Lee’s
electronic business card22. Since we did also the con-
version of the same dataset (No. 1 in Table 2), we
can compare the resulting databases: RDF2RDB pro-
duced 59 tables, while our procedure made only 18
relations. The main reason for this is that RDF2RDB
converts more properties into many-to-many tables.
It also generated a thing table that sparsely records all
owl:Thing resources with their properties. Another
difference is that RDF2RDB provides a labels-table
and uris-table. In the labels-relation, all URIs from
the dataset are related to their labels to enable label-
based searches. The uris-table lists for each resource

18https://lod-cloud.net/dataset/salzburgerland-com-it
19https://wordlift.io/
20http://wifo5-03.informatik.uni-mannheim.de/bizer/

berlinsparqlbenchmark/
21https://github.com/michaelbrunnbauer/rdf2rdb
22https://www.netestate.de/Download/RDF2RDB/timbl.

txt
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Table 2: Characteristics of eight RDF datasets and their generated databases by our approach: the number of RDF statements
(Stmts), classes (Cls), multi-typed instances (MT) and average number of types per MT instance (avgMT). Further, the
number of object property (OP), datatype properties (DP), and properties which have the following cardinality: one-to-one
(OO), many-to-one (MO), one-to-many (OM) and many-to-many (MM). Regarding the database, we show the number of
generated entity tables (ET), many-to-many tables (MMT) and average number of columns per entity table (avgCol).

No. Name Stmts Cls MT avgMT OP DP OO MO OM MM ET MMT avgCol
1 TBL-C 109 5 1 2 26 18 31 19 7 1 5 11 12.2±12.4
2 CTB 10,853 4 0 - 10 5 4 6 1 4 4 7 3.0±1.6
3 EAT 1,674,376 2 0 - 3 3 1 5 0 0 3 1 2.7±2.1
4 Pokedex 26,562 19 0 - 9 29 13 28 5 3 19 40 3.5±6.7
5 BOW 4,041,676 15 349,195 2.9±0.9 7 19 2 9 0 15 15 180 5.3±3.0
6 S-IT 4,477 406 81 14.3±9.0 9 25 18 6 3 7 406 3,056 2.6±1.0
7 IndScn 25,016 16 0 - 24 37 4 34 0 23 16 74 5.7±4.5
8 BSBM 40,177 22 100 2.0±0.0 12 28 16 22 0 2 22 17 13.7±5.5

its class and assigned numeric ID. This table is com-
parable with our res id-relation.

We also use the generated BSBM dataset (No. 8
in Table 2) to compare the tool’s outcome with our
result. While RDF2RDB’s database contains 145 ta-
bles, our method generated 41 relations. RDF2RDB
created for each product type a table but used for its
name the product type’s label. As before, a lot of
many-to-many tables are created by the tool. The
entity tables are nearly equal, except that RDF2RDB
decided to model some relations as tables instead of
columns.

In conclusion, RDF2RDB comply more with the
RDF model with the side effect of generating more
tables, especially many-to-many tables. Our version
is more data-driven, thus more properties are mod-
eled as columns since their observed cardinalities al-
low that. In both cases the given facts could be stored
in the databases. However, some more specific RDF
structures, like RDF containers or Blank Node infor-
mation, is not stored.

4.3 REST Interface Test with BSBM

The Berlin SPARQL Benchmark (BSBM) (Bizer
and Schultz, 2011) provides a dataset generator and
SPARQL queries to enable performance comparisons
of storage systems with a SPARQL endpoint. First,
using the dataset generator, we will examine how
well our approach re-engineers the benchmark’s in-
tended database. Second, we utilize provided queries
to check if our API can reproduce them.

BSBM’s dataset generator can produce, aside
from usual RDF, a SQL description of a database con-
taining equivalent data. In the following, we examine
how close our method can re-engineer this database
only from the RDF dataset. Our generated database
was already described in the previous section (No. 8
in Table 2). The comparison shows that we found
all necessary entity and many-to-many tables. Re-

garding the offer table, our version misses the pro-
ducer column. However, this is not a surprise because
the dataset does not contain any linkage between of-
fer and producer. Concerning the product type-table,
BSBM additionally added a parent and sub class of -
column to model the class hierarchy. Another dif-
ference is the way dates are stored. While BSBM
uses text representations in ISO 8601, our database
uses milliseconds since the UNIX epoch. Because
of multi-typed instances, our procedure created some
unnecessary tables per type as well as some many-to-
many tables. In conclusion, despite small differences,
our re-engineered database is similarly modeled and
contains all intended data.

The benchmark’s main purpose is to provide
queries to test performance of SPARQL endpoints.
With 12 formulated exploration queries23, endpoints
can be queried in various ways by using mainly SE-
LECT queries, a DESCRIBE query and a CON-
STRUCT query. Since they contain substitution pa-
rameters, they are actually templates that can be in-
stantiated in various ways. In our evaluation, we in-
vestigate if our generated REST API can reproduce
these queries by testing them with meaningful substi-
tutions. Our expectation is that the REST API can
retrieve equal information.

In the following, we present for each BSBM query
its REST API call counterpart. For readability and re-
producibility reasons they are available online24. In
some cases more then one call has to be made to join
data in the client appropriately. We omitted calls that
would have been necessary to retrieve further infor-
mation about referred resources, like mostly their la-
bels. The resource query language (RQL) is often
used to mimic SPARQL’s basic graph patterns and
filter possibilities. We put the responsibility for or-

23http://wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/spec/ExploreUseCase/index.html

24https://github.com/mschroeder-github/
rdf-to-rdb-rest-api/blob/master/bsbm-queries.txt
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dering the results to the client. The interpretation of
optional information (expressed in SPARQL with the
OPTIONAL keyword) is also up to the developer.

What follows are short explanations how some
queries are reproduced with our API. Regarding
Query 3, the label of the optional ProductFeature2
is checked to be not bound. This is solved in our
case by excluding this feature with RQL’s =out= op-
erator which yields to the same result. In Query 4,
the UNION statement is imitated by a logical or con-
struction (in RQL a ‘,’) whether ProductFeature2
or ProductFeature3 (or both) are the product’s fea-
tures. Concerning Query 5, the SPARQL query con-
tains filters with arithmetic expressions that can not
be emulated by our RQL engine. Thus, in a second
call (5b), the client will be responsible for filtering
the results to find matching products. Using RQL’s
=regex= operator, we reproduce the regular expres-
sion filter in Query 6. Query 7 demonstrates that
joining data involves multiple REST calls and has to
be done on the client-side. Since data types of lit-
erals are not stored in our database, the currency of
an offer’s price can not be retrieved. With the spe-
cial =lang= operator in RQL, language strings can
be filtered as shown in Query 8. Regarding Query
9, a first call determines the reviewer of ReviewXYZ,
while in a second call (not shown in the code), the re-
viewer is retrieved by using the /person endpoint. In
Query 11, also incoming edges of a given OfferXYZ
are queried. Since our REST API can only retrieve
outgoing edges of a resource, this request is only par-
tially reproducible. In case of Query 12, which is a
CONSTRUCT query, the actual construction part lies
in the responsibility of the client.

4.4 Discussion

At the beginning of the paper, we stated three ques-
tion that can now be answered based on the evalua-
tion results. When answering the first two questions,
we also address limitations of our generated databases
and interfaces.

How well do the generated RDBs reflect their RDF
dataset counterparts? The observation of the eight
generated databases (Table 2) shows that the informa-
tion content of a dataset’s A-Box is sufficiently re-
flected by its database counterpart, i.e. we did not
miss any critical information. However, it is possible
to express the same information with different rela-
tional models. Compared to RDF2RDB, our proce-
dure created less tables but still more than intended
by BSBM. The evaluation reveals that the handling
of multi-typed instances poses the main challenge.
Since RDF classes directly correspond to RDB tables,

a resource having more then one type is redundantly
distributed among respective tables. It also causes
the generation of more many-to-many tables because
such a table relates one certain domain to one particu-
lar range. That means that unnecessary and unwanted
data redundancies occur.

Another major challenge is the decision for a
trade-off that determines whether a property becomes
a table or a column. If, on the one extreme, every
property has a table counterpart, the number of tables
explodes and joins become inevitable which make
queries more complex. If, on the other extreme, prop-
erties become columns in tables, data redundancy oc-
curs since relations would violate the second normal
form. That is why generation procedures should have
a meaningful (maybe configurable) trade-off. We de-
cided to infer the cardinality of properties based on
existing A-Box statements to minimize the number
of many-to-many tables. However, this makes the
properties’ cardinalities unchangeable in the database
model. For example, a one-to-many relationship can
not be easily turned into many-to-many relationship
once the database model is defined.

Evaluation also points out smaller issues in our
generator. Tables having only an id column could
be removed because they provide no further informa-
tion. We also noticed that RDF data types are missing
in our database model. In conclusion, our generated
RDBs indeed reflect their RDF dataset counterparts
sufficiently but contain unnecessary redundant data as
well.

How well can the generated CRUD REST API
reproduce queries that would have been performed
with SPARQL? Many SPARQL operations like aggre-
gates, arithmetic expressions, sub-queries and various
functions are not supported by our rather simple API.
When such queries become more complex, we make
the client responsible to send more requests and to
process the results accordingly. A major issue is that
the API does not provide a join-mechanism. Since
each endpoint represents a class and returns the cor-
responding instances, the join has to be performed by
the client. Another limitation is the inability to re-
trieve a resource’s incoming edges since the underly-
ing database model is not designed for that. Yet, by
using the BSBM benchmark, we showed that our in-
terface could in almost all cases retrieve the same in-
formation as the given SPARQL queries. Hence, our
conclusion is that the API can reproduce rather simple
and common queries, while more complex ones have
to be handled by the client.
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5 CONCLUSION AND OUTLOOK

Especially in industry, Semantic Web technologies
are rather seldom used. Since corporations would
greatly benefit from available and future RDF-based
datasets, we suggested to bridge the technology gap
by a fully automatic conversion of RDF to RDBs to-
gether with CRUD REST APIs. Our experiments
suggest that in comparison to related work, our re-
engineered databases reflect their RDF counterparts
with less tables. Moreover, our generated REST
APIs are able to reproduce rather simple and com-
mon SPARQL queries. We identified as a remaining
challenge the generation of unnecessary data redun-
dancies because of multi-typed instances.

Future work should find an appropriate way to
model the database to reduce the high number of ta-
bles and data redundancies. In this regard, as already
pointed out, algorithms should provide a configurable
trade-off to decide whether properties become many-
to-many tables or simple columns. Thus, the right set-
ting can be dependent on a particular use case. Since
RDF datasets can change over time, we also suggest
that future procedures provide an update-mechanism
in order to avoid rebuilding the whole database (and
possibly removing already inserted data). Moreover,
to also process larger datasets (like DBpedia), we in-
tend to reduce our algorithm’s memory usage.
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