
Continuous Driver Activity Recognition from Short Isolated Action
Sequences

Patrick Weyers and Anton Kummert
Departement of Electrical Engineering, Bergische Universität Wuppertal, Gaußstraße, Wuppertal, Germany

Keywords: Driver Activity Recongition, Action Recognition, Recurrent Neural Networks, Network Initialization, Limited
Dataset, Online Action Recognition.

Abstract: Advanced driver monitoring systems significantly increase safety by detecting driver drowsiness or distraction.
Knowing the driver’s current state or actions allows for adaptive warning strategies or prediction of the driver’s
response time to take back the control of a semi-autonomous vehicle.
We present an online driver monitoring system for detecting characteristic actions and states inside a car
interior by analysing the full driver seat region. With the proposed training method, a recurrent neural network
for online sequence analysis is capable of learning from isolated action sequences only. The proposed method
allows training of a recurrent neural network from snippets of actions, while this network can be applied to
continuous video streams at runtime. With a mean average precision of 0.77, we reach better classification
results on our test data than commonly used methods.

1 INTRODUCTION

Knowing what the driver is doing while driving is go-
ing to be an essential aspect of safety and infotain-
ment systems in future cars. Driver inattention is a
major factor in most traffic accidents (Dong et al.,
2011). Therefore, different driver monitoring sys-
tems are developed to detect the driver’s state (Weyers
et al., 2018; Yan et al., 2016), activity (Weyers et al.,
2019; Ohn-Bar et al., 2014) or gestures (Molchanov
et al., 2016; Pickering, 2005).

Advanced safety driver assistant systems can
adaptively draw the driver’s attention back to the road
depending on the driver’s state or activity if necessary.
For semi-autonomous cars, an estimation of the time
the driver would need to take over the control of the
car can be deduced e.g. from the body pose. Assistant
systems like gesture recognition reduce the distrac-
tion caused by interaction with infotainment systems.

We present a method for recognizing the driver’s
state and detecting movements based on infrared (IR)
amplitude image sequences of a time of flight camera.
We calculate optical flow images between consecutive
frames as input for a deep recurrent neural network
to detect different movements in the car interior in-
cluding, but not limited to the driver. Although our
systems works on this special kind of input data, the
principles can be applied to other 2d image streams.

While most comparable approaches train an on-
line detection network on long data sequences, we
use only short clips showing isolated actions or static
scenes for training, while classifying continuous im-
age sequences at runtime. With default training meth-
ods, this raises the problem of setting appropriate ini-
tial internal states of the recurrent network that allow
it to function on continuous input.

We present a method for handling the initial inter-
nal state problem of recurrent neural networks while
training on short clips of actions. In contrast to
concatenating different short video clips to simulate
longer videos with class transitions, our method re-
lies on a memory module to effectively store and load
relevant hidden states at training-time. The trained re-
current neural network is capable of classifying short
clips of single actions as well as actions appearing in
continuous image sequences at runtime.

2 RELATED WORK

Deep neural networks receive much attention in mul-
tiple types of recognition tasks. For video recogni-
tion tasks, works like (Wang et al., 2019; Simonyan
and Zisserman, 2014; Carreira and Zisserman, 2017;
Donahue et al., 2017; Liu et al., 2019) focus either
on isolated sequences or on online action recognition

158
Weyers, P. and Kummert, A.
Continuous Driver Activity Recognition from Short Isolated Action Sequences.
DOI: 10.5220/0010185501580165
In Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021), pages 158-165
ISBN: 978-989-758-486-2
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(Zolfaghari et al., 2018; Molchanov et al., 2016; Lin
et al., 2019). Recurrent neural networks (RNN) are a
neural network variant that unfolds in time and can be
trained with Back Propagation Through Time (Wer-
bos, 1990). Variants of RNNs that are commonly
used are Long Short-Term Memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Re-
current Unit networks (GRU) (Cho et al., 2014). To
focus on the movement aspect of actions, works like
(Simonyan and Zisserman, 2014) use optical flow im-
ages for action classification and detection. They
show that optical flow images of action sequences can
improve sequence classification. While much work is
done on weight initialization for artificial neural net-
works (Krizhevsky et al., 2012; Glorot and Bengio,
2010; He et al., 2015), very few publications focus
on the initialization of the hidden states of recurrent
neural networks.

When using recurrent neural networks for classi-
fication or prediction, the initial hidden states of the
RNNs are usually set to zero or are randomly initial-
ized and run until the effect of the initialization has
no significant influence on the network output (Jaeger,
2002).

For long input sequences, where the entire input
sequence does not fit into the memory while train-
ing the network, the sequences are cropped to mul-
tiple smaller clips. The hidden state for a training
step is initialized with the the latest hidden state of
the last training step (Zaremba et al., 2014). Another
approach to initialize the hidden states of RNNs is to
consider the initial state as a trainable parameter. The
error that the network produces can then be propa-
gated back to the initial state. This way, a preferable
initial state can be learned (Mehri et al., 2016). More-
over, a neural network can be trained to calculate an
initial state from a short input sequence. After the
initial state prediction is completed, the recurrent net-
work is fed with the subsequent input data (Mohajerin
and Waslander, 2017).

3 DATA

The data examples used for training in this work are
QVGA IR image sequences of a Time of Flight cam-
era at 30 frames per second, with varying lengths be-
tween 20 and 200 frames per clip. They are recorded
with a top down camera view in different vehicle in-
teriors. The field of view covers the front row of
each car. The participants were instructed to perform
13 different actions without specific explanations of
how to perform them. The actions to distinguish are
specific body movements of the driver. They include

Figure 1: Data sequence example of a driver leaving the
car. Top row: IR image sequence, middle and bottom row:
corresponding optical flow sequence in x and y components.

movements where the driver leans from a driving po-
sition into various non-driving positions. These lean-
ing actions are: Leaning towards steering wheel (To
Front), Leaning towards the passenger seat (Leaning
Right), Leaning towards the rear seats (Lean Back),
Leaning back the from steering wheel (From Front),
Leaning back from the passenger seat (From Right),
Leaning back from the rear seats (From Back). Ad-
ditionally, the following common driver actions are
included as well: Entering, Leaving, Strapping the
seat belt (Strap), Unstrapping the seat belt (Unstrap).
Moreover, we added the following additional static
classes: Empty, In driving position, Out of driving po-
sition leaning towards the steering wheel (Out of Po-
sition Front), Out of position towards the passenger
seat (Out of Position Right), Out of position towards
the rear seats (Out of Position Back). Each data exam-
ple shows one of these action sequences performed in
a driver seat of a car. Fig. 1 shows an example of
one image sequence with corresponding optical flow
images of a driver leaving the car.

The sequences were recorded in multiple different
cars with multiple participants performing the men-
tioned actions.

The dataset used for training the networks consists
of several short sequences, each representing one of
the action classes or one of the static classes. For test-
ing, longer sequences were recorded, covering mul-
tiple actions and static classes as well as transitions
between these classes. The long sequences are used
only for testing while the short sequences are used for
training and validation.

For validation, about one fifth of the samples from
each class are randomly selected to detect and prevent
overfitting on the short training clips by augmenting
the data and regularizing the training. The class dis-
tribution of the different examples in the dataset is
shown in Fig. 2.

Continuous Driver Activity Recognition from Short Isolated Action Sequences

159



Em
pt

y

In
Po

sit
io

n
To Fr
on

t
To Ri
gh

t
To Ba

ck
Fr

om
Fr

on
t

Fr
om

Ri
gh

t
Fr

om
Ba

ck
Ou

t o
f

Po
sit

io
n 

Fr
on

t
Ou

t o
f

Po
sit

io
n 

Ri
gh

t
Ou

t o
f

Po
sit

io
n 

Ba
ck

En
te

r

Le
av

e

St
ra

p

Un
st

ra
p

0

50

100

150

200

250

300

350

# 
ex

am
pl

es

Training
Validation

Figure 2: Dataset sample distribution.

The different classes are heavily imbalanced, and
the number of samples is comparably small for a
dataset used for deep learning. To reduce the influ-
ence of the different amount of data per class, the
underrepresented class samples are upsampled to the
second biggest number of class samples. The maxi-
mum number of class samples is not used, because we
found that the second class ’In position’ has a higher
variation in its imagery and needs more different ex-
amples than the other classes.

4 ACTION RECOGNITION

Our approach to recognise different actions in online
sequences relies on preprocessed input data, a com-
mon network architecture for action recognition with
RNNs and a special method of initializing the hidden
states while training the network.

4.1 Input Data

Dense optical flow image sequences were calculated
between consecutive IR frames with the Farneback
method (Farnebäck, 2003).

For training and validation, short sequences of ei-
ther one action class or one static class are used. For
testing longer sequences with multiple examples of
actions, static examples and transitions between those
are applied. At runtime, the system operates on con-
tinuous video data.

4.2 Network Structure

To classify image sequences, we trained a combina-
tion of a convolutional neural network (CNN) and a
RNN in a many to many fashion. This means that the
network calculates one classification result for each

GRU
Network

GRU
Network

Input CNN
RNN
Network Classification

t

t+1

...

Figure 3: Network architecture.

input frame. Fig. 3 shows the basic network architec-
ture.

In the first part of the network, convolutional lay-
ers extract features from the inputs. These spatial
features are the input to a recurrent neural network,
which extracts time series features. At the end of the
network, fully connected layers classify the features
extracted from each time step.

While training, a state handling approach is used
to initialize the hidden state at the beginning of each
example sequence. At runtime, the hidden state needs
to be initialized only once at the very beginning of the
live stream.

4.3 Recurrent State Handling

In order to create a continuous classification sys-
tem, untrimmed continuous training data examples
are preferable. However, this data is often not avail-
able or too expensive to annotate, which makes it hard
to combine data from different sources, and causes a
risk of overfitting to the temporal action combinations
present in the training data. In contrast, our dataset
used to train the network consists of multiple short
clips, each representing one example of one of the
proposed classes.

To use this data to train a system for continu-
ous video classification, one can concatenate logical
matching clips (in terms of classes) to produce longer
sequences with class transitions. This not only makes
the training process more ineffective, as additional
data needs to be loaded and processed, but reduces the
flexibility to learn transitions between classes as the
network can only learn from directly pre-calculated
states.

With our approach to train a system for continu-
ous video classification with the given data, we store
the hidden states of each example of the recurrent unit
at each training step. The stored hidden states are
used to initialize the recurrent unit in future training
steps. Older hidden states from earlier training steps

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

160



Figure 4: Transition lists for proposed classes. Left: Transition list to show the possible class transitions, right: Transition
probability list to show the probabilities of transitions between classes.

are deleted, as they get less relevant for newer training
steps.

As not all stored hidden states are meaningful to
use as initialization for each example, each class only
gets initial states from reasonable previous classes.
This reasonable previous classes are predefined in a
transition table, where all reasonable class transitions
are stored. From this transition list a transition prob-
ability list is calculated to get the transition probabil-
ities between the classes. The transition lists used for
this work is shown in Fig. 4. The transition list shows
which classes can precede which class, while the tran-
sition probability list shows the probability for each
class to precede another class. An example showing
an Empty seat can only be preceded by an example
showing an Empty seat, or an example showing the
class Leave. The probability for each of these two
classes to precede this current example is 0.5 respec-
tively, as only examples from two classes can precede
the class Empty. With this transition tables, we intro-
duce a logic to select initial hidden states to initialize
the recurrent units for each training example. This
means that only hidden states resulting from reason-
able previous examples are used to initialize the re-
current units. Reasonable previous examples are ex-
amples that can precede the current examples in the
real continuous world. For example, using a hidden
state resulting from an Empty sample where only an
empty driver seat is visible is a reasonable initializa-
tion for a sample where someone enters the car. On
the other hand, a hidden state resulting from an exam-
ple where someone is already sitting on the driver seat
is rather not relevant for the examples of someone en-
tering the car. The hidden state, used for initializing
the recurrent unit at the beginning of a training step
can either be a single reasonable hidden state or the
mean of multiple reasonable hidden states.

Fig. 5 illustrates this state handling in the training
phase of the network.

The hidden states of each time step of the recur-
rent network are stored inside a State Memory. This
State Memory has the capacity to store the hidden
states for each training example once. Like this, we
prevent the network to learn from old hidden states,
which become obsolete due to the training progress.
For each following training sequence one reasonable
hidden state is selected with the probabilities given by
the transition probability table from all stored hidden
states in the State Memory. For validation, one initial
hidden state is selected with the probabilities given
by the transition probability table from all reasonable
hidden states stored in the validation procedure.

5 TRAINING

The networks presented in this paper are trained us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019) with Back Propagation Through Time (Werbos,
1990).

5.1 Augmentation

To get more variation to the data, we augmented the
input data. We randomly rotate and translate the IR
images within certain limits. Each frame of one single
sequence is augmented in the same way to prevent
temporal artifacts in a rotation and translation stable
scene. This means that each frame from one sequence
is rotated with the same angle and translated the exact
same way. If the frames are not augmented in the
same way, movement between frames would appear
where no real movement is happening.

Continuous Driver Activity Recognition from Short Isolated Action Sequences

161



State
Memory

State
Memory

RNN
Network

RNN
Network

RNN
Network

RNN
Network

RNN
Network

RNN
Network

t

t+1

t+n

Sequence i Sequence i+1

Single 
hidden state

Initialization Initialization

Single 
hidden state

Figure 5: State handling in the training and validation phase with a single hidden state: For each time step spatial features
are extracted with a CNN. The recurrent network is initialized with a previous hidden state from the state memory. Temporal
features are extracted with an initialized recurrent network. The new hidden state for each time step is stored to the state
memory and the temporal features are classified.

To augment the time component of the sequences,
frames at different time steps are duplicated or
dropped, resulting in slowing down or speeding up
the parts of the sequence respectively (Weyers et al.,
2019).

5.2 State Handling

While training, we store the hidden states as well as
the corresponding label of the examples from the lat-
est training step. The hidden states for the following
training step are initialized with relevant stored hid-
den states. Information about relevant hidden states
and the transition probabilities are stored in the previ-
ous shown transition lists. The used previous class is
randomly selected from all relevant previous classes.
As soon as new hidden states for a class are cal-
culated, previously stored hidden states are replaced
with the new ones. If no hidden state for a randomly
selected previous class exists, the hidden state is ini-
tialized with entirely random values. This way, we
ensure that only up to date hidden states are used for
the initialization and old hidden states, resulting from
earlier training steps, are discarded as they might not
represent valid hidden states anymore.

The proposed state handling method is used for
training the network. For testing, the hidden states
of the recurrent units are initialized at the very begin-
ning of each test sequence. Afterwards, the hidden
state is calculated by the recurrent unit. At runtime,
the hidden state is initialized at the very beginning of

the streaming, and from then on evolves continuously
without any artificial resets or the like.

6 RESULTS

For testing, we recorded 30 long sequences showing
multiple action classes, static classes and transitions
between those. A snippet of an example for a test
sequence is shown in Fig. 6. To evaluate our state
handling approach, we compare our results to the re-
sults of networks trained with two standard training
approaches, namely initializing the hidden states of
the recurrent network with zeros or with random val-
ues, and concatenated input data. While testing the
networks trained with zero and random initialization
we test different strategies to reset the hidden states
at runtime. The first strategy is to not reset the hid-
den state at all. The other strategies are resetting the
hidden state every nreset , where we choose nreset to
be the minimum sequence length, the maximum se-
quence length and the mean sequence length of the
training examples.

Moreover we train networks on concatenated se-
quence examples. For this a reasonable previous ex-
ample is randomly selected in the same way as with
the state handling approach. The selected sequence
is concatenated with the current sequence to simulate
the transition of classes directly in the input data. Be-
side using optical flow images as input to our net-
works, we trained networks with grayscale images

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

162



Figure 6: Snippet of a test sequence. From left to right: In position, Leaving, Empty, Entering, In position, Leaning backwards,
Out of position back, Leaning back from back, In position.

and depth images as input to see the impact of the
input format to the results. Moreover we trained
networks with two consecutive grayscale images per
timestep as input to the network. All compared net-
works have the same architecture, except for the input
layer, as grayscale and depth images have only one
channel and the optical flow images and two consec-
utive grayscale images have two input channels. As
metric, we use the macro F1-scores:

F1macro =
1
|L| ∑l∈L

F1(yl , ŷl) (1)

with L as the set of labels, yl as the set of prediction
pairs for label l and ŷl as the set of true pairs for label
l, and the balanced accuracy scores as the mean of
class-wise accuracy:

ACCbalanced =
1
|L| ∑l∈L

T Pl

T PlFNl
(2)

with T Pl as the true positive classifications and FNl as
the false negative classifications, as well as the mean
average precision and the average precision per class.
We use the macro F1-score and the balanced accu-
racy as metrics to evaluate all classes equally, as the
test set is imbalanced. This results from the fact that
some actions take longer to perform and therefore are
represented in more frames. Moreover some actions
are represented more often than others as they occur
naturally between actions.

Table 1 shows the F1-scores and balanced accu-
racy scores of the trained networks for the different
input formats, the initialization and reset strategies.

Comparing the network results on the test set, the
networks trained with explicit state handling trained
on optical flow images and consecutive grayscale im-
ages exceed all other approaches in terms of F1-scores
and balanced accuracy. The networks trained with ze-
ros and random initialization result in the worst scores
when not reset. When resetting these networks the
performance on the test set rises as the networks regu-
larly get new artificial starting points. This resembles
the training procedure more than the strategy where
the hidden states are not reset. The network trained
on consecutive sequences scores better than the net-
works trained with zero or random initialization when
trained on flow image sequences, though not better
than those trained with the state handling approach.
For the single grayscale and depth images the best re-
set strategy results in similar scores compared to our
approach. When using consecutive grayscale frames
or optical flow images as input to the network, our ap-
proach works best in terms of F1-score and balanced
accuracy. The CNN can extract more valuable fea-
tures for the RNN from optical flow images or con-
secutive frames. The single image input networks
might score better with bigger networks. However,
training bigger networks resulted in early overfitting
to the available training data and would require addi-
tional data to avoid this effect. This applies to net-
works that were increased in width and depth and for
implemented two-stream like networks similar to the
work of (Simonyan and Zisserman, 2014).

Table 2 shows the mean average precision and av-

Table 1: Macro F1-score and balanced accuracy score comparison for the networks trained on the different initialization and
reset strategies and the different inputs.

IR Depth IR 2 frame Flow
Initialization method F1 accuracy F1 accuracy F1 accuracy F1 accuracy
States (proposed) 0.42 0.41 0.43 0.43 0.62 0.64 0.66 0.71
Zeros, no reset 0.19 0.21 0.10 0.11 0.17 0.19 0.16 0.18
Zeros, reset min 0.34 0.37 0.38 0.40 0.45 0.47 0.42 0.48
Zeros, reset max 0.40 0.40 0.42 0.43 0.45 0.45 0.46 0.50
Zeros, reset mean 0.30 0.30 0.30 0.28 0.34 0.33 0.36 0.38
Random, no reset 0.24 0.24 0.11 0.14 0.22 0.23 0.26 0.30
Random, reset min 0.31 0.35 0.32 0.35 0.44 0.47 0.40 0.47
Random, reset max 0.40 0.41 0.36 0.39 0.47 0.48 0.46 0.52
Random, reset mean 0.32 0.32 0.27 0.27 0.37 0.36 0.39 0.43
Concatenated 0.30 0.32 0.36 0.36 0.47 0.50 0.58 0.64

Continuous Driver Activity Recognition from Short Isolated Action Sequences

163



Table 2: Mean average precision and average precision per class scores of flow networks for different initialization, reset and
training strategies.

Initialization method mAP Empty In
position

To
front

To
right

To
back

From
front

From
right

From
back Front Right Back Enter Leave Strap Unstrap

States (proposed) 0.77 0.92 0.92 0.68 0.63 0.57 0.75 0.70 0.74 0.84 0.80 0.71 0.75 0.76 0.64 0.58
Zeros,
no reset 0.33 0.51 0.64 0.14 0.12 0.13 0.06 0.14 0.11 0.20 0.41 0.22 0.53 0.46 0.42 0.16

Zeros,
reset min 0.41 0.31 0.66 0.56 0.65 0.36 0.47 0.41 0.42 0.35 0.57 0.21 0.26 0.19 0.22 0.15

Zeros,
reset max 0.41 0.51 0.71 0.21 0.18 0.19 0.26 0.27 0.21 0.35 0.42 0.29 0.63 0.36 0.42 0.23

Zeros,
reset mean 0.51 0.50 0.78 0.36 0.44 0.33 0.53 0.45 0.45 0.39 0.58 0.30 0.72 0.30 0.33 0.37

Random,
no reset 0.24 0.43 0.60 0.39 0.20 0.22 0.30 0.55 0.14 0.26 0.47 0.33 0.75 0.44 0.33 0.14

Random,
reset min 0.35 0.30 0.64 0.54 0.65 0.40 0.51 0.40 0.40 0.30 0.50 0.22 0.28 0.18 0.19 0.13

Random,
reset max 0.35 0.40 0.70 0.35 0.33 0.28 0.41 0.47 0.24 0.35 0.56 0.49 0.69 0.41 0.36 0.31

Random,
reset mean 0.43 0.43 0.72 0.48 0.52 0.44 0.60 .52 0.45 0.34 0.63 0.40 0.66 0.36 0.36 0.31

concatenated 0.67 0.87 0.87 0.61 0.58 0.63 0.76 0.65 0.61 0.80 0.63 0.73 0.90 0.57 0.53 0.54

erage precision per class for the networks with opti-
cal flow images as inputs for the different initializa-
tion and reset strategies. Our state handling approach
results in the highest mean average precision and av-
erage precision per class with a significant margin for
most classes. In Fig. 7 we show the classification re-
sults for each frame of the test sequences in a con-
fusion matrix. This matrix demonstrates that most
frames are classified correctly. The biggest confusion
occurs between similar classes like To right and To
back, where there is some similarity to phases of other
actions. This can be seen in the classification results
for the class Empty, where the 20% wrongly classified
frames belong to the classes Mount and Leave, where
images of nearly empty seats are visible.

Em
pt

y

In
 p

os
iti

on

To
 fr

on
t

To
 ri

gh
t

To
 b

ac
k

Fr
om

 fr
on

t

Fr
om

 ri
gh

t

Fr
om

 b
ac

k

Ou
tP

os
Fr

on
t

Ou
tP

os
Ri

gh
t

Ou
tP

os
Ba

ck

M
ou

nt

Le
av

e

St
ra

p

Un
st

ra
p

Predicted label

Empty
In position

To front
To right
To back

From front
From right
From back

OutPosFront
OutPosRight
OutPosBack

Mount
Leave
Strap

Unstrap

Tr
ue

 la
be

l

0.8 0 0 0 0 0 0 0 0 0 0 0.13 0.07 0 0

0.01 0.74 0.01 0 0.01 0.01 0 0.03 0 0 0.01 0.01 0.03 0.06 0.08

0 0.1 0.67 0.05 0.01 0.02 0.01 0.01 0.04 0 0 0 0.06 0.01 0.02

0 0.05 0.01 0.45 0.3 0.04 0.01 0.03 0.01 0.03 0.03 0 0 0.02 0.01

0 0.06 0 0.01 0.72 0.01 0 0.03 0 0 0.12 0 0 0.04 0.02

0 0.08 0 0 0.03 0.83 0.02 0 0.03 0 0 0 0 0 0

0 0.02 0.01 0.02 0.04 0.01 0.54 0.22 0 0.11 0.01 0 0 0 0.02

0 0.01 0 0 0 0 0 0.92 0 0 0.07 0 0 0 0

0 0.06 0.1 0 0 0.12 0 0 0.62 0.01 0 0 0.09 0 0

0 0.02 0 0.07 0.03 0.01 0.09 0 0 0.6 0.17 0 0 0 0

0 0.05 0 0 0.05 0 0 0.05 0 0 0.84 0 0 0.01 0

0.01 0.06 0 0 0.01 0.06 0 0 0 0 0 0.85 0 0 0

0.01 0.07 0.02 0 0.01 0.01 0 0 0 0 0 0 0.83 0.03 0.01

0 0.17 0 0 0.08 0.01 0 0.03 0 0 0 0 0.02 0.61 0.08

0 0.08 0 0 0.07 0 0 0.01 0 0 0 0 0.03 0.12 0.7

Confusion Matrix

Figure 7: Confusion Matrix for test results of the state han-
dling approach.

7 CONCLUSION

We presented an adaptive initial state handling
method for training online action classification recur-
rent neural networks on short action clips. With this
method, the knowledge about the expected class tran-
sitions can be used to enhance the training of a re-
current scene classifier for online action classification,
when only isolated action examples are available. In
contrast to other common initialization methods like
zero or random initialization, the hidden state does
not need to be reset during actual execution, as class
transitions that can occur at runtime are part of the
training procedure, even if such transitions are not di-
rectly included in the short video clips. Simulating
the transitions by concatenating sequences resulted
in better classification results than training on single
sequences with random or zero initialization. How-
ever, our approach outscores this intuitive approach
not only with respect to classification results, but also
speeds up training, as only one example sequence per
training step needs to be loaded and calculated instead
of two. When using optical flow images or consecu-
tive frames as input to the network, the network does
not need to be trained with a big data set like most
deep learning approaches.

ACKNOWLEDGEMENTS

The authors thank Aptiv and in particular David
Schiebener, Xuebing Zhang and Alexander Barth for
supporting this work with fruitful input and data.

With financial support from the state government
of North Rhine-Westphalia.

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

164



REFERENCES

Carreira, J. and Zisserman, A. (2017). Quo vadis, action
recognition? a new model and the kinetics dataset. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4724–4733.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1724–1734.

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugopalan,
S., Guadarrama, S., Saenko, K., and Darrell, T.
(2017). Long-term recurrent convolutional networks
for visual recognition and description. IEEE Trans.
Pattern Anal. Mach. Intell., page 677–691.

Dong, Y., Hu, Z., Uchimura, K., and Murayama, N. (2011).
Driver inattention monitoring system for intelligent
vehicles: A review. IEEE Transactions on Intelligent
Transportation Systems, 12(2):596–614.

Farnebäck, G. (2003). Two-frame motion estimation based
on polynomial expansion. In Proceedings of the 13th
Scandinavian Conference on Image Analysis, page
363–370. Springer-Verlag.

Glorot, X. and Bengio, Y. (2010). Understanding the diffi-
culty of training deep feedforward neural networks. In
In Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics (AISTATS’10). Soci-
ety for Artificial Intelligence and Statistics.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In Proceedings of the 2015
IEEE International Conference on Computer Vision
(ICCV), page 1026–1034.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9:1735–80.

Jaeger, H. (2002). Tutorial on training recurrent neural net-
works, covering bppt, rtrl, ekf and the echo state net-
work approach. GMD-Forschungszentrum Informa-
tionstechnik, 2002., 5.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems 25, pages 1097–1105. Curran Asso-
ciates, Inc.

Lin, J., Gan, C., and Han, S. (2019). Tsm: Temporal shift
module for efficient video understanding. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 7083–7093.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-
Y., and Kot, A. C. (2019). Ntu rgb+d 120: A large-
scale benchmark for 3d human activity understanding.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization. In International Conference on
Learning Representations.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S.,
Sotelo, J., Courville, A., and Bengio, Y. (2016). Sam-
plernn: An unconditional end-to-end neural audio
generation model.

Mohajerin, N. and Waslander, S. L. (2017). State initializa-
tion for recurrent neural network modeling of time-
series data. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 2330–2337.

Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S.,
and Kautz, J. (2016). Online detection and classifica-
tion of dynamic hand gestures with recurrent 3d con-
volutional neural networks. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4207–4215.

Ohn-Bar, E., Martin, S., Tawari, A., and Trivedi, M. M.
(2014). Head, eye, and hand patterns for driver activ-
ity recognition. In 2014 22nd International Confer-
ence on Pattern Recognition, pages 660–665.

Pickering, C. A. (2005). The search for a safer driver inter-
face: a review of gesture recognition human machine
interface. Computing Control Engineering Journal,
16(1):34–40.

Simonyan, K. and Zisserman, A. (2014). Two-stream con-
volutional networks for action recognition in videos.
In Advances in Neural Information Processing Sys-
tems 27. Curran Associates, Inc.

Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang,
X., and Van Gool, L. (2019). Temporal segment net-
works for action recognition in videos. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
41:2740–2755.

Werbos, P. (1990). Backpropagation through time: what
does it do and how to do it. In Proceedings of IEEE,
volume 78, pages 1550–1560.

Weyers, P., Barth, A., and Kummert, A. (2018). Driver state
monitoring with hierarchical classification. In 2018
21st International Conference on Intelligent Trans-
portation Systems (ITSC), pages 3239–3244.

Weyers, P., Schiebener, D., and Kummert, A. (2019). Ac-
tion and object interaction recognition for driver ac-
tivity classification. In 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), pages 4336–
4341.

Yan, C., Coenen, F., and Zhang, B. (2016). Driving posture
recognition by convolutional neural networks. IET
Computer Vision, 10(2):103–114.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recur-
rent neural network regularization.

Zolfaghari, M., Singh, K., and Brox, T. (2018). Eco: Ef-
ficient convolutional network for online video under-
standing. In The European Conference on Computer
Vision (ECCV).

Continuous Driver Activity Recognition from Short Isolated Action Sequences

165


