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Abstract: Allowing the prediction of human-virus protein-protein interactions (PPI), our algorithm is based on a 
Siamese Convolutional Neural Network architecture (CNN), accounting for pre-acquired protein evolutionary 
profiles (i.e. PSSM) as input. In combinations with a multilayer perceptron, we evaluate our model on a variety 
of human-virus PPI datasets and compare its results with traditional machine learning frameworks, a deep 
learning architecture and several other human-virus PPI prediction methods, showing superior performance. 
Furthermore, we propose two transfer learning methods, allowing the reliable prediction of interactions in 
cross-viral settings, where we   train our system with PPIs in a source human-virus domain and predict 
interactions in a target human-virus domain. Notable, we observed that our transfer learning approaches 
allowed the reliable prediction of PPIs in relatively less investigated human-virus domains, such as Dengue, 
Zika and SARS-CoV-2.

1 INTRODUCTION 

Deep learning as a branch of machine learning 
represents information through artificial neural 
network modules, which share similar properties with 
neural modules in the brain (Kriegeskorte and 
Douglas, 2018; Yamins and DiCarlo, 2016). In the 
past decade, applications of deep learning approaches 
demonstrated improved performance in many fields 
(e.g. biomedicine, image, speech recognition, etc) 
(Karimi et al., 2019; Pospisil et al., 2018; Sainath et 
al., 2015). In particular, convolutional neural 
networks (CNN) (Hashemifar et al., 2018) and 
recurrent neural networks (RNN) (Zhang et al., 2016) 
automatically capture local features in images as well 
as preserve contextualized/long-term ordering 
information in sequence data. In addition, many 
recent studies adopt a Siamese network architecture 
based on CNN or RNN to capture mutual influence 
between two individual inputs (Chen et al., 2019; 
Hashemifar et al., 2018).  
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In general, traditional machine learning/deep 
learning can only perform well, if training and test 
sets are cut from the same feature space, ensuring 
similar statistical distributions of feature values. 
(Shao et al., 2015). While the rigid application of a 
trained model on data sets with different distributions 
usually perform poorly, transfer learning methods 
utilize prior knowledge from a ‘source’ to train in a 
‘target’ task domain (Chang et al., 2018; Shao et al., 
2015). In particular, transfer learning approaches 
have been successfully applied to tackle problems in 
many fields, such as medical imaging (Cheplygina et 
al., 2019), biomedicine (Taroni et al., 2019), and 
visual categorization (Shao et al., 2015). A regular 
phenomenon appears in various training objectives 
(Le et al., 2011; Lee et al., 2009) in that the first layers 
of deep neutral networks (DNN) usually capture 
standard features of the training data, providing a 
foundation for transfer learning. Specifically, a deep 
neural network can be trained on a source task, 
establishing the parameters of the first layers. 
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Subsequently, parameters of late layers are trained on 
the target task. Depending on the size of the target 
dataset and number of parameters of the DNN, first 
layers of the target DNN can either remain unchanged 
during training on the new dataset (i.e. frozen), or 
fine-tuned towards the new task, indicating a balance 
between specificity and generality of derived prior 
knowledge. 

Here, we propose a framework to predict 
interactions between virus and human proteins that is 
based on a Siamese Convolutional Neural Network 
architecture (CNN), accounting for pre-acquired 
protein evolutionary profiles (i.e. PSSM) as protein 
sequence input. In combination with a multilayer 
perceptron (MLP), we assess the prediction 
performance of our model on different human-virus 
PPI datasets, outperforming other prediction 
frameworks. Allowing to predict interactions in a 
target domain of human-virus interactions, we 
propose two types of transfer learning methods where 
we freeze/fine-tune weights learned in the Siamese 
CNN. Notably, the transfer of prior knowledge 
learned from a large-scale human-virus PPI dataset 
allowed the reliable prediction of PPIs between 
human and proteins of less well investigated viruses 
such as Dengue, Zika and SARS-CoV-2.  

2 MATERIALS AND METHODS 

2.1 Deep Neural Networks Framework 

Representing interactions between human and viral 
proteins through their amino-acid sequences, we 
introduce an end-to-end deep neural network 
framework, called a Siamese-based CNN that 
consists of a pre-acquired protein sequence profile 
module, a Siamese CNN module and a prediction 
module (Fig. 1). In particular, the Siamese 
architecture of the CNN module allows us to account 
for residual relationships between interacting viral 
and human protein sequences through protein 
sequence profiles (i.e. PSSM) that capture 
evolutionary relationships between proteins. Such 
latent protein profile representations of interacting 
protein pairs are fed to the Siamese CNN module to 
generate respective high-dimensional sequence 
embeddings. Finally, output embeddings of two 
proteins are combined to form a sequence pair vector 
as the input of a multilayer perceptron (MLP) with an 
appropriate loss function to predict the 
presence/absence of an interaction between a viral 
and a human protein. 

 

2.1.1 Pre-acquired Protein Sequence Profile 
Module  

For each protein sequence with variable lengths, we 
generate a sequence profile, called PSSM. In 
particular, we performed PSI-BLAST searches with 
default parameters applying a threshold of E-value < 
0.001 in the UniRef50 protein sequence database 
(Suzek et al., 2015) as PSI-BLAST allows us to 
discover protein sequences that are evolutionary 
linked to the search sequence (Hamp and Rost, 2015;  

 
Figure 1: Overall deep learning architecture to predict 
interactions between viral and human host proteins. 

Hashemifar et al., 2018). Sequence profiles for each 
search sequence were processed by truncating 
profiles of long sequences to a fixed length n and 
zero-padding short sequences, a method widely used 
for data pre-processing and effective training 
(Matching, 2018; Min et al., 2017). As a result, we 
obtained a 𝑛 × 20  dimensional array S for each 
protein sequence, capturing the probability 𝑠,  that 
the residue in the ith position of the sequence is the jth 
out of the alphabet of 20 amino acids. 

𝑆 = ⎣⎢⎢
⎢⎡𝑠ଵ,ଵ ⋯ 𝑠ଵ, ⋯ 𝑠ଵ,ଶ⋮ ⋯ ⋮ ⋯ ⋮𝑠,ଵ ⋯ 𝑠, ⋯ 𝑠,ଶ⋮ ⋯ ⋮ ⋯ ⋮𝑠,ଵ ⋯ 𝑠, ⋯ 𝑠,ଶ⎦⎥⎥

⎥⎤, 
2.1.2 Siamese CNN Module 

To capture complex relationship between two 
proteins we employ a Siamese CNN architecture with 
two identical CNN sub-networks that share the same 
parameters for a given pair of protein profiles 𝑆, 𝑆ᇱ. 
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Each sub-network produces a sequence embedding of 
a single protein profile that are then concatenated. 
While each single CNN module consists of a 
convolutional and pooling layer, we leveraged four 
connected convolutional modules to capture the 
patterns in an input sequence profile.  

Specifically, we use 𝑋, a 𝑛 × 𝑠 array of length 𝑛 
with 𝑠  features in each position. The convolution 
layer applies a sliding window of length 𝑤 (the size 
of filters/kernels) to convert 𝑋 into a(𝑛 − 𝑤 + 1) ×𝑓𝑛 array 𝐶  where 𝑓𝑛  represents the number of 
filters/kernels. Let 𝐶,  denote the score of 
filter/kernel 𝑘 , 1 ≤ 𝑘 ≤ 𝑓𝑛 , that corresponds to 
position 𝑖  of array 𝑋 . Moreover, the convolutional 
layer applies a parameter-sharing kernel 𝑀, a 𝑓𝑛 ×𝑚 × 𝑠 array where 𝑀,, is the coefficient of pattern 𝑘 at position 𝑗 and feature 𝑙. The calculation of 𝐶 is 
defined as 𝐶 = 𝐶𝑜𝑛𝑣ெ(𝑆) 

𝐶, =    𝑀,,௦
ୀଵ


ୀଵ 𝑋ା, 

Furthermore, the pooling layer is utilized to reduce 
the dimension of 𝐶  to a  (𝑛 − 𝑝 + 1) × 𝑓𝑛 array 𝑃 
where p is the size of pooling window. Array 𝑃 =𝑃𝑜𝑜𝑙(𝐶)  is calculated as the maximum of all 
positions 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑝  over each feature 𝑘  where 1 ≤ 𝑖 ≤ (𝑛 − 𝑚 + 1) − 𝑝,  𝑃, = 𝑚𝑎𝑥൫𝐶,, … , 𝐶ା,൯. 
2.1.3 Prediction Module 

The prediction module concatenates a pair of protein 
sequence embedding vectors into a sequence pair 
vector as the input of fully connected layers in an 
MLP and computes the probability that two proteins 
interact. The MLP contains three dense layers with 
leaky ReLU where cross-entropy loss is optimized for 
the binary classification objective defined as 𝐿𝑜𝑠𝑠 = − 1|𝐾|   𝑦𝑙𝑜𝑔ୀଵ∈ 𝑠 

where 𝑦 is numerical class label of the protein pair 𝑝. 
The output of the MLP for the protein pair 𝑝  is a 
probability vector �̂� , whose dimensionality is the 
number of classes 𝑚. s is normalized by a softmax 
function, where the normalized probability value for 
the 𝑖௧ class is defined as 𝑠  =exp (�̂�) ∑ exp (�̂�)ൗ . 
 

2.1.4 Implementation Details 

As for pre-acquired sequence profile construction, we 
consider a fixed sequence length of 2,000. As for the 
construction of our learning approach, we employ 
four convolutional modules, with input size 20, 64, 
128 and 256. The convolution kernel size is set to 3 
while the size of pooling window is set to 2 with 3 
max-pooling layers and a global max-pooling layer. 
To optimize the cross-entropy loss function we use 
AMSGrad (Reddi et al., 2018) and set the learning 
rate to 0.0001. The batch size was set to 64, while the 
number of epochs was 100. The fully connected 
layers contain three dense layers with input size 
1,024, 512, 256 and output a two-dimensional vector 
with the last softmax layer. The whole procedure was 
implemented with keras (https://keras.io/) with GPU 
configuration.  

2.2 Data Set Construction 

We collected experimentally verified human-virus 
PPI data capturing 9,880 interactions in HIV, 5,966 
in Herpes, 5,099 in Papilloma, 3,044 in Influenza, 
1,300 in Hepatitis, 927 in Dengue and 709 in Zika 
from five public databases, including HPIDB 
(Ammari et al., 2016), VirHostNet (Guirimand et al., 
2015), VirusMentha (Calderone et al., 2015), 
PHISTO (Durmuş Tekir et al., 2013) and PDB 
(Altunkaya et al., 2017). As for interactions of 
proteins of SARS-CoV-2, we used two recently 
published interaction sets (Gordon et al., 2020; Liang 
et al., 2020) that captured 291 and 598 PPIs, 
respectively. To obtain high-quality PPIs, we 
removed interactions from large-scale mass 
spectroscopy experiments that were detected only 
once, non-physical interactions and interactions 
between proteins without available PSSM features. 
Sampling negative interactions, we applied our 
‘Dissimilarity-Based Negative Sampling’ method as 
outlined in our previous work (Yang et al., 2020). 
Briefly, we sampled a negative training set of PPIs 
(i.e. pairs of proteins that do not interact) by 
considering interactions in the positive training set. 
Given that we found a protein B with a sequence that 
was similar to interacting protein A, we considered   
B and C non-interacting. In particular, we sampled a 
negative PPI set that was 10 times larger than the 
positive PPI training set.  

2.3 Transfer Learning 

To further improve the performance of our deep 
neural network especially when dealing with smaller 
datasets, we propose two transfer learning methods 
that keep the weights constant (i.e. frozen) or allow 
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their fine-tuning in the early layers and applied them 
to eight human-virus PPI sets. (i) We used the 
proposed DNN architecture to train the models based 
on a given source set of human-virus interactions to 
obtain pre-trained weights in the CNN layers that 
learn the representation of the protein sequences. (ii) 
In subsequent transfer learning steps, we keep the 
weights of these CNN layers constant (i.e. frozen) and 
only re-train parameters of the fully connected layers 
of the MLP to predict interactions in a target human-
viral interaction set. As an alternative, our fine-tuning 
approach allows us to retrain the weights of CNN 
layers that we obtained from the initial training step 
and change such weights by learning the interactions 
in a target set of human-virus interactions. In analogy 
to the ‘frozen’ approach, we re-train parameters of the 
fully connected layers of the MLP as well.  

2.4 Alternative Machine Learning and 
Feature Encoding Methods 

A great amount of research demonstrates that 
Random Forest (RF) algorithms perform better than 
other machine learning methods when applied to 
binary classification problems (Chen et al., 2019; Wu 
et al., 2009; Yang et al., 2020). Therefore, we 
compare the performance of our deep learning 
approaches to this representative state-of-art 
classifier. Moreover, we consider three widely-used 
encoding methods for feature representations as the 
input to the RF classifier. 

2.4.1 Random Forest 

Random Forest (F) (Hamp and Rost, 2015; Wu et al., 
2009) is an ensemble learning method where each 
decision tree is constructed using a different bootstrap 
sample of the data (‘bagging’). In addition, random 
forests change how decision trees are constructed by 
splitting each node, using the best among a subset of 
predictors randomly chosen at that node (‘boosting’). 
Compared to many other classifiers this strategy turns 
out to be robust against over-fitting, capturing 
aggregate effects between predictor variables. We 
utilize the GridSearchCV function to optimize the 
parameters for the RF algorithm and set the 
‘neg_log_loss’ scoring function as the assessment 
criterion. 

2.4.2 Alternative Feature Encoding 
Approaches 

Amino acid sequences provide primary structure 
information of a protein that work well as feature 
representations of binary PPIs. Here, we use three 
commonly used sequence-based encoding schemes 

including Local Descriptor (LD) (Cui et al., 2007; 
Davies et al., 2008; Tong and Tammi, 2008; Yang et 
al., 2010), Conjoint Triad (CT) (Sun et al., 2017) and 
Auto Covariance (AC) (Guo et al., 2008; You et al., 
2013). Generally, these features cover specific, yet 
different aspects of protein sequences such as 
physicochemical properties of amino acids, 
frequency information of local patterns, and 
positional distribution information of amino acids.  

3 RESULTS AND DISCUSSION 

3.1 Performance of the Proposed Deep 
Learning Method 

Applying our deep learning approach to a set of 
different human-viral protein interaction data sets, we 
observed generally high prediction performance of 
our deep learning approach (Table 1). However, we 
also found that small training data sets such as 
Dengue, Zika and SARS-CoV-2 translated into 
decreasing prediction performance.  

Table 1: Performance of our deep learning architecture 
(PSSM+CNN+MLP) using 5-fold cross validation. 

Human-viral 
PPI dataset Sensitivity Specificity AUPRC 

HIV 89.72 99.54 0.974 
Herpes 68.10 97.98 0.768 
Papilloma 70.48 98.53 0.818 
Influenza 70.30 98.68 0.834 
Hepatitis 49.77 97.79 0.636 
Dengue  45.85 98.04 0.605 
Zika 59.94 98.96 0.746 
SARS-CoV-2 55.12 98.53 0.672 

 
To compare the performance of our proposed 

deep learning method (i.e. PSSM+CNN+MLP), we 
trained a RF model using three widely used sequence-
based feature encoding schemes (i.e. LD, CT and AC) 
on human-virus PPI datasets using 5-fold cross 
validation. Comparing corresponding AUPRC 
values, we observe that our method generally 
outperformed other those RF based classifiers 
especially when applied to comparatively large 
datasets (Table 2). To further assess the impact of our 
encoding scheme to represent the features of 
interacting proteins, we compared the performance of 
our deep learning architecture using PSSMs and a 
different word embedding technique, word2vec+CT 
one-hot. Specifically, this method considers each 
amino acid as a word and learns a word-embedding 
of sequences based on the training data, where each 
amino acid is finally encoded by a 5-dimensional  
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Table 2: Performance comparison of our deep learning 
architecture (PSSM + CNN + MLP) and random forests 
(RF) that were combined with three sequence encoding 
schemes (LD, CT, AC) using 5-fold cross validation. 

 AUPRC 
Human-
viral PPI 
dataset 

Our 
method LD+RF CT+RF AC+RF 

HIV 0.974 0.972 0.97 0.972 
Herpes 0.768 0.741 0.737 0.699 
Papilloma 0.818 0.74 0.724 0.656 
Influenza 0.834 0.813 0.795 0.713 
Hepatitis 0.636 0.571 0.58 0.537 
Dengue 0.605 0.526 0.505 0.456 
Zika 0.746 0.720 0.718 0.698 
SARS-
CoV-2  0.672 0.668 0.678 0.652 

 
vector. Moreover, the 20 amino acids can be clustered 
into 7 groups based on their dipoles, volumes of the 
side chains and other chemical descriptors. 
Furthermore, CT one-hot is a 7-dimensional one-hot 
encoding based on the classification of these 20 
amino acids. As a result, word2vec+CT one hot is the 
concatenation of pre-trained word embeddings and 
CT one-hot encodings for each protein that is 
represented by a 𝑛 × 13 dimensional array. As noted 
previously, we considered a fixed sequence length of 
n = 2,000 and zero-padded smaller sequences. In 
comparison to word2vec+CT one hot, Table 3 
indicates that our learning approach combined with 
PSSM allows better prediction performance 
especially in comparatively small datasets such as 
Dengue, Zika and SARS-CoV-2. 

3.2 Comparison with Several Existing 
Human-virus PPI Prediction 
Methods 

To further assess the performance of our proposed 
method, we compared our method with three existing 
human-virus PPI prediction approaches. Recently, we 
proposed a sequence embedding-based RF method to 
predict human-virus PPIs with comparatively 
promising performance (Yang et al., 2020). The main 
point of our approach is the application of an 
unsupervised sequence embedding technique (i.e. 
doc2vec) to represent protein sequences as low-
dimensional vectors with rich features. Such 
representations of protein pairs were subjected to a 
RF method that predicted the presence/absence of an 
interaction. In Alguwaizani et al.’s work 
(Alguwaizani et al., 2018), the authors utilized a 
Support Vector Machine (SVM) model to  

predict human-virus PPIs based on a simple way to 
feature-encode protein sequences through repeat 
patterns and local patterns of amino acid 
combinations. As for the DeNovo method (Eid et al., 
2016), the authors introduced a domain/linear motif-
based SVM approach to predict human-virus PPIs. To 
compare, we first constructed the PSSMs of the 
 

Table 3: Performance comparison of combinations of 
different feature encodings (PSSM, word2vec+CT one-hot) 
and our deep learning architecture (CNN + MLP). 

 AUPRC 
Human-viral 
PPI dataset PSSM word2vec+ 

CT one hot
HIV 0.974 0.968 
Herpes 0.768 0.734 
Papilloma 0.818 0.778 
Influenza 0.834 0.808 
Hepatitis 0.636 0.587 
Dengue 0.605 0.481 
Zika 0.746 0.662

SARS-CoV-2  0.672 0.602 

 
protein sequences of DeNovo’s PPI dataset to train 
our learning model. Finally, we assessed the 
performance of our reconstructed deep learning 
model on the test set provided in (Eid et al., 2016) 
including 425 positive and 425 negative samples. 

Table 4: Performance comparison of our method (PSSM + 
CNN+MLP) with existing human-virus PPI prediction 
methods. 

Method Accuracy 
(%)

Sensitivity 
(%) 

Specificity 
(%)

Our model 94.12 90.82 97.41 
doc2vec+RFa 93.23 90.33 96.17 
SVMb 86.47 86.35 86.59 
DeNovoc 81.90 80.71 83.06 

a The corresponding values were retrieved from (Yang et 
al., 2020). b The corresponding values were retrieved from 
(Alguwaizani et al., 2018). c The corresponding values were 
retrieved from (Eid et al., 2016).  

Furthermore, we tested our previous RF based 
prediction method and Alguwaizani et al’s SVM 
approach on these data sets as well. Table 4 clearly 
suggests that our deep learning and previously 
published RF based method outperformed 
Alguwaizani et al.’s SVM and the DeNovo approach. 
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Table 4: Performance comparison of our method (PSSM + CNN+MLP) with existing human-virus PPI prediction methods. 

 

3.3 Cross-viral Tests and Transfer 
Learning 

To explore potential factors that affect prediction 
performance in a cross-viral setting, we trained our 
deep learning model on one human-virus PPI data set 
and predicted protein interactions in a different 
human-virus system. Expectedly, such cross-viral 
tests dropped considerably in performance compared 
to training and testing in the same human-viral system 
(Fig. 2). To allow reliable cross-viral predictions of 
PPIs, we introduce two transfer learning methods 
where we trained the parameters of CNN layers of the 
DNN model on a source human-virus PPI dataset. 
Subsequently, we transfer all parameters to initialize 
a new model (i.e. frozen or fine tuning) to train on a 
target human-virus PPI dataset. To comprehensively 
test our transfer learning approaches, we considered 
each combination of human-viral PPI sets as source 
and target data. The left panel in Fig. 3 indicates that 
a relatively rigid transfer learning methodology by 
keeping the parameters of the feature encoding CNN 
untouched (i.e. frozen) strongly outperformed 
baseline performance as shown in Fig. 2. In turn, fine-
tuning parameters using a given target human-viral 
domain allowed for another marked increase in 
performance (right panel, Fig. 3) compared to the 
‘frozen’ approach. As for individual pairs of human-
viral domains, we also observed that the frozen 
transfer methodology worked well if the target 
domain data set was large, independently of the 
training domain. In turn, performance dropped when 
the target human-viral domain datasets of PPIs were 

small. Notably, prediction performance improved 
when we applied our fine-tuning transfer learning 
approach on small target domains data sets such as 
human-Hepatitis, human-Dengue, human-Zika and 
human-SARS-CoV-2.  

 
Figure 2: AUPRC performance of cross-viral tests. Rows 
indicate human-viral PPIs that were used for training while 
columns indicate human-viral PPI test sets. 

4 CONCLUSIONS 

Here, we proposed a Siamese-based multi-scale CNN 
architecture by using PSSM to represent the 
sequences of interacting proteins, allowing us to 
predict interactions between human and viral proteins 
with an MLP approach. In comparison, we observed 
that our model outperformed previous state-of-the-art 
human-virus PPI prediction methods. Furthermore, 
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we confirmed that the performance of the 
combination of our deep learning framework and the 
representation of the protein features as PSSMs was 
mostly superior to combinations of other machine 
learning and pre-trained feature embeddings. While 
we found that our model that was trained on a given 
source human-viral interaction data set performed 
dismally in predicting protein interactions of proteins 
in a target human-virus domain, we introduced two 
transfer learning methods (i.e. frozen type and fine-
tuning type). Notably, our methods increased the 
cross-viral prediction performance dramatically, 
compared to the naïve baseline model. In particular, 
for small target datasets, fine-tuning pre-trained 
parameters that were obtained from larger source sets 
increased prediction performance.  
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