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Abstract: The main goal of this paper is to introduce and compare three different mathematical modelling approaches 
to robust emergency medical service system design. The idea of system robustness follows from the necessity 
of making the system resistant to various detrimental events, which may unexpectedly occur in the associated 
transportation network and thus negatively affect service. Such viewpoint is important mainly in different 
kinds of public service systems including rescue services, in which time necessary for service delivery plays 
a very important role. While the standard method of robust system designing takes into account only the worst 
possible situation considering the set of detrimental scenarios, suggested modeling approaches compute a 
separate objective function value for each scenario and then a special constraint is added to the original 
mathematical model. This way, an epsilon-constraint principle to the problem solution is applied. In this paper, 
numerical experiments to study the performance characteristics of suggested solving methods accompany the 
theoretical explanation of all presented models. 

1 INTRODUCTION 

This research paper deals with a special class of 
discrete network location problems, which are solved 
under uncertainty following from randomly and often 
unexpectedly occurring failures in the transportation 
network (Correia and Saldanha da Gama, 2015, Pan 
et al., 2014, Scaparra and Church, 2015). The main 
focus is on the application of suggested optimization 
approaches to the emergency medical system (EMS) 
designing. The rescue system performance efficiency 
is directly influenced by locations of service centers, 
which send the emergency vehicles to satisfy the 
requests raised at system users’ locations. Obviously, 
the number of service providing centers is limited due 
to economic and technological restrictions. It is not 
possible to locate a separate service center to each 
served geographical area or to each system users’ 
community.  

The most commonly used objective function in 
the mathematical models for EMS designing takes 
into account the service accessibility of an average 
user. This way, the emergency service system design 
problem can be described as the weighted p-median 
problem broadly studied by many researchers (Avella 
et al., 2007, Current et al., 2002, Ingolfsson et al., 

2008, Jánošíková, 2007, Snyder and Daskin, 2005) 
mainly from the points of developing effective exact 
and approximate solving techniques. It is worth 
mentioning, for example, the radial formulation of the 
problem, successfulness of which is based on the fact 
that there is only finite set of radii, which need to be 
taken into account (Elloumi et al., 2004, García et al., 
2011, Janáček, 2008). Such model reformulation 
makes the problem easier, smaller and thus better 
solvable. 

Simultaneously, several approximate approaches 
have been developed to get a good solution of the 
problem in acceptably short time (Doerner et al. 2005, 
Gendreau and Potvin, 2010).  

It is often assumed that service center has enough 
capacity to serve all assigned users and thus, each 
system user can be serviced from the nearest located 
service center. Otherwise, the concept of so-called 
generalized disutility can be applied to incorporate 
stochastic behavior of real system into the 
mathematical model (Kvet and Janáček, 2018). This 
model extension enables to consider more service 
centers, which can provide the associated service to 
the same user. In the research reported in this paper, 
only the nearest located service centers for each 
system user are considered. 
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When the emergency service system is designed, 
the designer must take into account that the transfer 
time from a service center to the affected user might 
be negatively impacted by various random events 
caused by weather or traffic. Furthermore, possible 
failure of a part of critical infrastructure should be 
taken into account because of congestion, disruptions 
or blockages. In other words, the system resistance to 
such critical events should be included into the 
decision-making process. 

Most of available approaches to increasing the 
system robustness (Correia and Saldanha da Gama, 
2015, Kvet and Janáček, 2017b, Pan et al., 2014, 
Scaparra and Church, 2015) are based on making the 
system resistant to possible failure scenarios, which 
can appear in the associated transportation network as 
a consequence of random failures due to congestion, 
disruptions or blockages. Thus, a finite set of failure 
scenarios is considered and each individual scenario 
is characterized by particular time distances between 
the users’ locations and possible center locations. 

The most commonly used objective function in 
the above-mentioned weighted p-median problem 
consists in minimizing the time accessibility of the 
service for an average user, i.e. a min-sum objective 
function is minimized subject to associated solution 
feasibility constraints. On the other hand, the most 
frequently used objective function of the robust 
design focuses on minimizing the maximal objective 
function of the individual instances corresponding 
with particular scenarios. It means that the worst 
possible impact of individual scenarios is minimized. 
It follows that the original min-sum objective 
function used in the weighted p-median problem is 
replaced by the min-max criterion. The min-max 
model uses the link-up constraints to limit the 
individual scenario min-sum objectives by their upper 
bound corresponding to the objective function of the 
resulting min-max model. In addition, incorporating 
the scenarios into the model causes the model soize to 
increase proportionally to the cardinality of the 
scenario set. Both the model structure and the 
increase in model size represent a burden to the 
computational process of most available IP-solvers. 
Thus, complementary approximate approaches to the 
robustness constitute a big challenge to operational 
researchers and professionals in the field of Applied 
Informatics (Janáček and Kvet, 2016, Janáček and 
Kvet, 2017, Kvet and Janáček, 2017a, Kvet and 
Janáček, 2017b). 

This paper focuses on the main disadvantage of 
the min-max approach to robust EMS design; only the 
worst impact of individual scenarios is minimized. 
The set of scenarios may contain a bad scenario with 

very low probability of occurring, yet this scenario 
may seriously affect the optimal robust system 
design. This paper discusses three approaches to the 
problem based on multi-objective optimization 
(Antunes and Henriques, 2016). These techniques 
consider each scenario to form a separate objective 
function and they apply epsilon-constraint principle 
to the problem solution. 

The remainder of this paper is organized as 
follows: Section 2 is devoted to the description of the 
original min-max robust design of emergency 
systems, in which all scenarios are taken into account. 
Section 3 explains two coefficients for robustness 
evaluation. The core of this contribution is reported in 
Section 4, in which all suggested multi-objective 
approaches are introduced and explained. The fifth 
Section discusses numerical experiments and yields a 
brief comparative analysis of the resulting designs. 
The results and findings are summarized in Section 6. 

2 STANDARD APPROACH TO 
ROBUST EMS DESIGN 

The standard approach to emergency medical service 
system design usually leads to formulation of a min-
sum problem (Current et al., 2002, Ingolfsson et al., 
2008, Jánošíková, 2007), in which the average system 
accessibility for users (average response time) is 
minimized. The robust system design is formulated as 
a min-max model bringing some difficulties into the 
computational process (Kvet and Janáček, 2017b). 

To formulate the mathematical model for robust 
EMS design, we introduce the following notations.. 

Let symbol J denote the set of users’ locations and 
let symbol I denote the set of possible service center 
locations. Furthermore, let bj denote the number of 
users sharing the location j. To solve the problem, p 
locations from I must be chosen so that the maximal 
scenario objective function value is to be minimized. 
The objective function value of an individual scenario 
is defined as a sum of users’ distances from the 
location of the service center providing them with 
service multiplied by bj. To incorporate system 
robustness into the mathematical model, a set U of 
possible failure scenarios is needed to be introduced. 
This set contains also one specific scenario called 
basic scenario, which represents standard conditions 
in the associated transportation network. For the 
purpose of conciseness, let U0 denote the set of 
scenarios without the basic one, i.e. U0 = U – {basic 
scenario}. The integer distance between locations i 
and j under a specific scenario u∈U is denoted by diju. 
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Even if the radial model is originally suggested for 
integer distance or time values only, the used 
principle enables us to adjust the model also for real 
values without any big problems.  

The decisions, which determine the structure of 
the rescue service system, are modeled by decision 
variables yi∈{0,1} modeling the decision on service 
center location at the place i∈I by the value of 1 if a 
service center is located at i and by the value of 0 
otherwise. In the robust problem formulation, the 
variable h denotes the upper bound of the objective 
functions over the set U of scenarios. To formulate 
the radial model, the integer range [0, v] of all 
possible distances of the matrices {diju} is partitioned 
into zones according to (García et al., 2011, Janáček, 
2008). The value of v is computed according to the 
expression (1). 
 
 { }max : , , 1ijuv d i I j J u U= ∈ ∈ ∈ −   (1) 
 

The radial formulation of the problem is based on 
the idea of making a system of zones. The zone s 
corresponds to the interval (s, s+1]. To complete the 
radial model, auxiliary zero-one variables xjus for j∈J, 
u∈U and s = 0 … v need to be introduced. The 
variable xjus takes the value of 1, if the distance of the 
user at j∈J under the scenario u∈U from the nearest 
located center is greater than s and it takes the value 
of 0 otherwise. Based on these assumptions, the  
expression xju0 + xju1 + xju2 + … + xjuv constitutes the 
distance dju* from user location j to the nearest located 
service center under scenario u∈U. Similarly to the 
set covering problem, let us introduce a zero-one 
constant aiju

s under scenario u∈U for each i∈I , j∈J, 
s∈[0..v]. The constant aiju

s is equal to 1, if the 
disutility diju between the user location j and the 
possible center location i is less than or equal to s, 
otherwise aiju

s is equal to 0. Then the model of the 
robust system design problem can be formulated as 
follows. 
 

Minimize h     (2) 

: 1

, 0, 1 ,

s
jsu iju i

i I
Subject to x a y

for j J s , , v u U
∈

+ ≥

∈ = ∈




  (3) 

i
i I

y p
∈

=      (4) 

0

v

j jsu
j J s

b x h for u U
∈ =

≤ ∈    (5) 

{0, 1}iy for i I∈ ∈    (6) 

{0, 1} , 0,1 ,jsux for j J s , , v u U∈ ∈ = ∈   (7) 

0h ≥     (8) 

 
The objective function (2) gives an upper bound 

of all objective function values corresponding to the 
scenarios. The constraints (3) ensure that the 
variables xjus are allowed to take the value of 0, if 
there is at least one center located in radius s from the 
user location j and constraint (4) limits the number of 
located service centers by p. The link-up constraints 
(5) ensure that each perceived disutility (time or 
distance) is less than or equal to the upper bound h. 
The obligatory constraints (6), (7) and (8) are 
included to ensure the domain of the decision 
variables yi, xjus and h. 

3 SERVICE SYSTEM 
ROBUSTNESS EVALUATION 

The main goal of robust service system design is to 
make the system resistant to randomly occurring 
failures on the associated transportation network. To 
evaluate the gauges of robustness, we introduce the 
following additional notations. As before, let U 
denote the set of all considered failure scenarios, 
which contains also the basic scenario. Let y denote 
the vector of location variables yi; i∈I. Let yb 
correspond to the basic system design, i.e. the 
solution of a simple weighted p-median problem, in 
which only the basic scenario is taken into account. 
Let fb(y) denote the associated objective function 
value. Similarly, let yr denote the solution of the 
model (2)-(8), which brings the robust system design. 
Finally, the objective function (2) will be denoted by 
fr(y). The price of robustness (POR) expresses the 
relative increment (additional cost) of the basic 
scenario objective function, when yr is applied instead 
of the optimal solution yb obtained for the basic 
scenario. Its value is defined by (9). 
 

 
( ) ( )

( )100*
b r b b

b r

f f
POR

f

−
=

y y

y
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The price of robustness expresses the percentage 
increase in cost in the basic scenario when the robust 
system design is chosen, but it does not express what 
we gain by applying the robust solution. Therefore, 
we introduce also a coefficient called gain of 
robustness (GOR) expressed by (10). 
 

 
( ) ( )

( )100*
r b r r

r r

f f
GOR

f

−
=

y y

y
  (10) 

 
This coefficient evaluates the profit following 

from applying the robust solution instead of the 
standard one in the worst case ignoring detrimental 
scenarios. 

4 MULTI-OBJECTIVE 
APPROACHES 

The main disadvantage of the standard approach to 
robust service system design described by the model 
(2)-(8) consists in minimizing only the worst possible 
impact of detrimental scenarios on the resulting 
system performance measured by average service 
accessibility for system users (average response 
time). It must be noted that the partial objective 
functions corresponding to individual scenarios may 
take different values and it is assumed that not only 
the highest one should be considered. Therefore, three 
different multi-objective-based approaches will be 
introduced in the following subsections. 

4.1 Function GetGoalMinMax 

The first approach is based on minimization of the 
objective function for the basic scenario under the 
condition that the objective functions corresponding 
to the detrimental scenarios do not increase too much. 
To achieve this goal, the following denotation must 
be introduced and it will be used in the remaining 
parts of this paper. If the index u is set to the value of 
zero, it means that the basic scenario is concerned. In 
other words, the matrix {dij0} corresponds to the basic 
scenario.  

If all the scenario objective functions are to be 
taken into account in the form of separate constraints, 
the goal value G(u) for each scenario u∈U0 should be 
computed. The expression (11) shows the weighted 
p-median problem solved for each failure scenario. 
Remember, that the symbol U0 denotes the set of 
detrimental scenarios without the basic scenario. 
 

 ( ) 1

1 1

: ,
min min

,
iju

j
j J

d i I
G u b

I I I p∈

 ∈    =   ⊆ =    
  (11) 

 
Based on these preliminaries, a non-negative 

parameter ε can be introduced to limit the maximal 
increase of the objective function G(u) for scenario 
u∈U0. The parameter ε can either take a given exact 
value or it can be expressed as some percentage of the 
objective function G(u). Then, the model for robust 
EMS design can be formulated by the expressions 
(12)-(17). 

0
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{0, 1} , 0,1 ,jsux for j J s , , v u U∈ ∈ = ∈   (17) 

 
Since the mathematical model (12)-(17) has very 

similar structure as the original model (2)-(8), it is not 
necessary to explain each constraint separately. There 
are only two differences to be noted.  

The first one is the objective function, which now 
corresponds to the service accessibility of all users 
under the basic scenario.  
The second difference consists in the link-up 
constraints (15), in which the objective functions of 
all scenarios are limited by their goal values instead 
of their upper bound. 

4.2 Function AdjGetGoalMinMax 

The second suggested approach to robust EMS design 
follows from the previous GetGoalMinMax function 
described by the model (12)-(17) and goal values 
G(u) for all scenarios from the set U0.  

The adjustment consists in replacing the link-up 
constraints (15) of the former model by their adjusted 
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version (18), in which only the maximal goal is taken 
into account. 
 

0
0

v

j jsu
j J s

b x MG for u Uε
∈ =

≤ + ∈    (18) 

 
The maximal goal value MG can be obtained by 

the following expression (19). The individual goals 
G(u) are defined by (11). 
 
 ( ){ }0max :MG G u u U= ∈   (19) 
 

This way, the AdjGetGoalMinMax strategy can be 
described by minimizing the objective function (12) 
under the constraints (13), (14), (16), (17) and (18). 

4.3 Function GetGoalMinH 

The last modeling strategy GetGoalMinH is based on 
a different principle. Here, the robust service system 
design is obtained in such a way that the goal 
objective function value G(0) for the basic scenario 
is computed first. Then, the value of parameter ε must 
be given to limit the maximal possible increase of 
mentioned goal value G(0). The objective function 
used in this approach minimizes possible increase h 
of the maximal goal MG over the set of scenarios. The 
associated mathematical model can be formulated in 
the following way. 

Minimize h     (20) 
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The minimized objective function (20) expresses 
the increase of the maximal goal value MG over the 
objective functions corresponding to individual 
scenarios. The constraints (21) ensure that the 
variables xjus are allowed to take the value of 0, if 
there is at least one center located in radius s from the 
user location j and constraint (22) limits the number 
of located centers by p. The link-up constraints (23) 
ensure that each perceived disutility (time or distance) 
is less than or equal to the maximal goal value MG 
increased by h. The constraint (24) does not allow to 
exceed given value of the objective function for the 
basic scenario G(0) by more than ε. Finally, the 
obligatory constraints (25), (26) and (27) are included 
to ensure the domain of the decision variables. 

5 CASE STUDY 

The main goal of the computational study reported in 
this section was to study: 

• robustness coefficients, 
• computational time demands. 

The first aspect consists in robustness coefficients 
POR and GOR introduced in Section 3. Since each 
approach minimizes different objective function, for 
each resulting vector y of location variables yi the 
robust objective functions fb and fr were computed in 
order to evaluate POR and GOR. The values of fb and 
fr are defined by (28) and (29) respectively. 

 { }0( ) min : 1b
j ij i

j J
f b d y

∈

= =y   (28) 

 
{ }min : 1 :

( ) max
j iju ir j J

b d y
f

u U
∈

 = =  
 ∈ 


y   (29) 

The second studied characteristic of all suggested 
modeling approaches consists in computational time. 

All numerical experiments were performed using 
the optimization software FICO Xpress 7.3. They 
were run on a PC equipped with the Intel® Core™ i7 
5500U processor with 2.4 GHz and 16 GB RAM. 

The benchmarks were derived from the real 
emergency health care system, which was originally 
implemented in eight regions of Slovak Republic. For 
each region (Bratislava (BA), Banská Bystrica (BB), 
Košice (KE), Nitra (NR), Prešov (PO), Trenčín (TN), 
Trnava (TT) and Žilina (ZA)), all cities and villages 
with corresponding population bj were taken into 
account. The coefficients bj were rounded to 
hundreds. In the benchmarks, the set of communities 
represents both the set J of users’ locations and the set 
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I of possible center locations as well. The cardinalities 
of these sets are reported in the tables together with 
the number p of located centers. The network time - 
distances from a user to the nearest located center 
were derived from the real transportation network. 
Due to the lack of scenario benchmarks for the 
experiments, the problem instances used in the 
computational study were created in the way used in 
(Janáček and Kvet, 2016). There were selected one 
quarter of matrix rows so that these rows 
corresponded to the biggest cities concerning the 
number of system users. Then same of them were 
chosen randomly and the associated time distance 
values were multiplied by the randomly chosen 
constant from the numbers 2, 3 and 4. The rows, 
which were not chosen by this random process, stay 
unchanged. This way, 10 different scenarios were 
generated for each self-governing region. These 
benchmarks and generated scenarios were used also 
in the research reported in (Janáček and Kvet, 2016, 
Janáček and Kvet, 2017, Kvet and Janáček, 2017a, 
Kvet and Janáček, 2017b). 

The experiments were organized so that each of 
suggested multi-objective-based approaches was 
used to get the resulting robust EMS design for two 
different values of parameter ε. The obtained results 
are reported in the following six tables. The left part 
of all tables contains the sizes of used benchmarks. 
The right part contains the obtained results reported 
by four values:  

• Let the symbol ObjF denote the particular 
model objective function.  

• Computational time in seconds is reported in 
columns denoted by CT.  

• Finally, the coefficients POR and GOR are 
reported in percentage.  

The expressions (9) and (10) define their values. 
In this short computational study, the values of 
parameter ε were set directly, i.e. they were not set to 
any percentage of the scenario goals. 

Table 1: Results of the GetGoalMinMax approach applied 
on benchmarks derived from the self-governing regions of 
Slovakia. The parameter ε was set to 1600. 

Region |I| p ObjF CT POR GOR 
BA 87 14 Problem infeasible 
BB 515 52 17289 705.0 0.00 0.00 
KE 460 46 20063 929.1 0.10 3.55 
NR 350 35 22728 1299.7 0.34 2.24 
PO 664 67 20025 1203.7 0.00 0.00 
TN 276 28 15739 478.4 0.34 3.19 
TT 249 25 18966 1422.9 0.49 3.55 
ZA 315 32 21320 4593.6 1.55 8.53 

Table 2: Results of the GetGoalMinMax approach applied 
on benchmarks derived from the self-governing regions of 
Slovakia. The parameter ε was set to 3000. 

Region |I| p ObjF CT POR GOR 
BA 87 14 21999 126.0 8.15 32.18 
BB 515 52 17289 492.3 0.00 0.00 
KE 460 46 20042 392.4 0.00 0.00 
NR 350 35 22651 268.9 0.00 0.00 
PO 664 67 20025 1111.3 0.00 0.00 
TN 276 28 15686 75.9 0.00 0.00 
TT 249 25 18873 133.7 0.00 0.00 
ZA 315 32 21119 779.4 0.59 4.99 

Table 3: Results of the AdjGetGoalMinMax approach 
applied on benchmarks derived from the self-governing 
regions of Slovakia. The parameter ε was set to 1600. 

Region |I| p ObjF CT POR GOR 
BA 87 14 22050 138.2 8.40 36.24 
BB 515 52 17289 710.1 0.00 0.00 
KE 460 46 20055 841.1 0.06 1.46 
NR 350 35 22756 1132.7 0.46 3.76 
PO 664 67 20025 1165.5 0.00 0.00 
TN 276 28 15706 473.0 0.13 3.26 
TT 249 25 18939 1011.5 0.35 1.72 
ZA 315 32 21320 539.4 1.55 8.53 

Table 4: Results of the AdjGetGoalMinMax approach 
applied on benchmarks derived from the self-governing 
regions of Slovakia. The parameter ε was set to 3000. 

Region |I| p ObjF CT POR GOR 
BA 87 14 21999 75.7 8.15 32.18 
BB 515 52 17289 788.4 0.00 0.00 
KE 460 46 20042 434.3 0.00 0.00 
NR 350 35 22651 250.0 0.00 0.00 
PO 664 67 20025 1284.7 0.00 0.00 
TN 276 28 15686 188.8 0.00 0.00 
TT 249 25 18873 134.2 0.00 0.00 
ZA 315 32 21119 559.2 0.59 4.99 

Table 5: Results of the GetGoalMinH approach applied on 
benchmarks derived from the self-governing regions of 
Slovakia. The parameter ε was set to 500. 

Region |I| p ObjF CT POR GOR 
BA 87 14 6871 83.7 1.70 10.98 
BB 515 52 386 18380.0 2.61 2.73 
KE 460 46 548 15768.5 2.16 6.29 
NR 350 35 710 15775.4 2.14 6.84 
PO 664 67 286 18419.1 2.00 5.48 
TN 276 28 328 1522.6 3.16 9.85 
TT 249 25 998 2226.6 2.08 4.61 
ZA 315 32 601 2957.5 2.33 12.93 
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Table 6: Results of the GetGoalMinH approach applied on 
benchmarks derived from the self-governing regions of 
Slovakia. The parameter ε was set to 1500. 

Region |I| p ObjF CT POR GOR 
BA 87 14 3217 104.4 6.88 25.70 
BB 515 52 386 18054.0 2.61 2.73 
KE 460 46 548 23663.2 2.16 6.29 
NR 350 35 657 13426.0 2.47 7.07 
PO 664 67 286 19660.5 2.00 5.48 
TN 276 28 284 2378.1 4.05 10.13 
TT 249 25 788 2267.6 3.87 5.68 
ZA 315 32 525 4196.0 3.75 13.31 

Analyzing the results reported in Tables 1 - 6, the 
expectations have been confirmed. As can be 
observed, the quality of obtained resulting system 
designs measured by the values of coefficients POR 
and GOR depend on the parameter settings. As far as 
the service system robustness is concerned, presented 
approaches represent suitable contribution to the 
state-of-the-art methods for robust system designing. 

Focusing on computational time requirements, the 
big difference between the first two approaches and 
the third one can be explained by the model structure. 
While the mathematical model used in the functions 
GetGoalMinMax and AdjGetGoalMinMax uses a 
min-sum optimization criterion, the model used in the 
GetGoalMinH approach takes the form of a min-max 
problem, which is generally harder to solve, leading 
to longer computation times. 

6 CONCLUSIONS 

This paper was focused on robust emergency medical 
service system design. The robustness follows the 
idea, which aims to make the system resistant to 
various randomly occurring detrimental events, 
which may negatively affect system performance and 
quality of the service provided. The main focus was 
on the set of detrimental scenarios, which allows 
forming an additional constraint to the model for each 
element of the scenario set. In this paper, three 
approaches were introduced and experimentally 
compared.  

It can be observed that the computational time 
demands depend on the model structure. If we replace 
a min-sum objective by a min-max optimization 
criterion, then the model gets more complicated so it 
requires a longer computation time.. Besides that, 
quality of obtained results is very satisfactory. 

The future research in this field could be aimed at 
other approximate techniques, which will enable to 
reach shorter computational time with acceptable 

solution accuracy. Another future research goal could 
be focused on mastering the presented problem with 
a larger set of detrimental scenarios. 
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