
Clothing Parsing using Extended U-Net

Gabriela Vozáriková a, Richard Staňa b and Gabriel Semanišin c

Institute of Computer Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, Košice, Slovakia

Keywords: U-Net, Clothing Parsing, Segmentation, Computer Vision, Multitask Learning, Deep Learning,
Fully-convolutional Network.

Abstract: This paper focuses on the task of clothing parsing, which is a special case of the more general object seg-
mentation task well known in the field of computer vision. Each pixel is to be assigned to one of the clothing
categories or background. Due to complexity of the problem and lack of data (until recently) performance
of the modern state-of-the-art clothing parsing models expressed in terms of mean Intersection over Union
metric (IoU) does not exceed 55%. In this paper, we propose a novel multitask network by extending fully-
convolutional neural network U-Net with two side branches – one solves a multilabel classification task and
the other predicts bounding boxes of clothing instances. We trained this network using a large-scaled iMate-
rialist dataset (Visipedia, 2019), which we refined. Compared to well performing segmentation architectures
FPN, DeepLabV3, DeepLabV3+ and plain U-Net, our model achieves the best experimental results.

1 INTRODUCTION

Recently, the fashion industry has been undergoing a
digital transformation by expanding into online plat-
forms. Automated processing and analysis of fashion
images have been gaining much attention. Clothing
parsing in itself is an important tool in fashion image
analysis (e.g. for automatic colour tagging of clothing
items), but also serves as an important intermediate
step in many other tasks. For example in (Aoki et al.,
2019) a fashion segmentation model is used to boost
the performance of a fashion style estimation model.
Segmentation models are also often utilized in Deep
Generative models, as is the case for clothing pars-
ing in the image synthesis model proposed in (Xian
et al., 2018). Another example outside the fashion
domain is described in (Simon et al., 2020), in which
a clothing parsing model is used as one of the four
steps of filtering candidates for person identification
in surveillance videos based on their outfit.

Although being part of the more general segmen-
tation task, clothing parsing poses its specific chal-
lenges. They consist mainly in ambiguous and numer-
ous clothing categories (sometimes difficult to differ-
entiate between even for human annotators), occlu-
sion, deformities, high intra-class variation. These
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obstacles, in combination with very limited amount of
data (until recently), result in the state-of-the-art seg-
mentation models’ performance not exceeding 55%
mean Intersection over Union metric. (Martinsson
and Mogren, 2019) reports state-of-the-art perfor-
mance on two benchmark datasets for clothing pars-
ing - Refined Fashionista with mean IoU of 51.78%
and CFPD with mean IoU of 54.65%. (Zheng et al.,
2018) provides a description of a recently released
large-scale fashion dataset and reports IoU between
28% and 68% separately for 13 clothing categories
for DeepLabV3+ architecture.

In this paper, we approach the clothing parsing
problem using an extended and modified version of
U-Net architecture trained on the large-scaled Kaggle
iMaterialist (Fashion) dataset (Visipedia, 2019). U-
Net (Ronneberger et al., 2015) is a fully-convolutional
network developed for biomedical image segmenta-
tion, but it proved to be successful in many other
domains. Deep layers of the U-Net network extract
semantically rich features, while spatial information
is preserved by cross connections. We used a mod-
ified version of U-Net by replacing backbone with
Resnet34 pre-trained on ImageNet and extended it
by two side branches solving object detection and
multilabel classification task. The evaluation shows
that these additional branches contribute to the in-
creased performance in the clothing parsing segmen-
tation task.
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Our contribution lies namely in:

• We propose a simplified version of the clothing
parsing task that we argue is still complex enough
to suffice many real-life applications.

• We propose an extension to the standard U-
Net architecture by providing additional two side
branches in order to increase the capacity of the
model to capture global dependencies.

• We perform a refinement of the large-scaled iMa-
terialist dataset (Visipedia, 2019), which results in
a significant performance boost of the proposed
segmentation model.

• We provide results of a selection of modern seg-
mentation models, namely Feature Pyramid Net-
works (FPN), DeepLabV3, DeepLabV3+ and U-
Net trained on the refined iMaterialist dataset.

This paper is organized into five sections. Sec-
tion 2 reviews prior work in semantic segmentation
of clothing items. Section 3 describes the proposed
network architecture and training specifics. Section 4
focuses on the refined version of iMaterialist dataset,
discusses the model performance and identifies its
bottleneck. Section 5 closes with a summary and con-
clusion.

2 RELATED WORK

Clothing parsing, also known as semantic segmenta-
tion of clothing items, is an important tool in fash-
ion image analysis. One of the first approaches to
clothing parsing and creation of Fashionista dataset
(685 images) for benchmarking purposes is described
in (Yamaguchi et al., 2012). This approach was
highly reliant on the performance of the pose estima-
tion model. (Liu et al., 2013) used additional color-
category meta tags provided by users and introduced
CFPD dataset with 2 682 annotated images.

More recent work has used powerful deep con-
volutional neural networks achieving state-of-the-art
results without the need for additional meta tags.
Tangseng et al. (Tangseng et al., 2017) augment fully-
convolutional networks (FCNs) by a branch that pre-
dicts combinatorial preference of garments. In (Khu-
rana et al., 2018) texture cues extracted by Gabor fil-
ters are used for clothing type classification boosting.
In (Martinsson and Mogren, 2019) architecture based
on feature pyramid networks with a ResNeXt back-
bone was used for the clothing parsing task.

All of these models were trained and evaluated
on rather small-size datasets (aforementioned Fash-
ionista and CFPD). Recently, in order to facilitate the

training of better performing models, three big-scale
datasets were released - namely ModaNet (Zheng
et al., 2018), DeepFashion2 (Ge et al., 2019) and a
dataset (Visipedia, 2019) released as part of the Kag-
gle iMaterialist (Fashion) Challenge 2019 at FGVC6
(iMaterialist). ModaNet and DeepFashion2 papers
also provide an overview of the performance of a se-
lection of modern segmentation models trained on the
corresponding datasets. To our knowledge, no re-
search was conducted using the iMaterialist dataset.

3 ARCHITECTURE OF THE
PROPOSED NETWORK

We base our neural network on the modified U-
Net architecture with the input image dimension of
288x192x3 (Ronneberger et al., 2015), which we en-
rich by two side branches - bounding box and mul-
tilabel classification branch. Figure 1 illustrates the
architecture of our network. Our compound loss func-
tion consists of 3 parts - object detection, multilabel
and segmentation loss term.

3.1 U-Net

U-Net architecture is a special type of fully-
convolutional neural networks. It has a typical
encoder-decoder structure with the aim of dense
pixel-wise predictions generation. We have made a
couple of modifications to the original U-Net archi-
tecture, namely:

1. Taking our hardware constraints into account, we
decided to use ResNet34 pre-trained on ImageNet
as the encoder.

2. Simple nearest neighbor technique was used as
an upsampling layer. We also experimented with
trainable upsampling layers, but we did not ac-
quire better results.

3.2 Additional Branches

Our U-Net branch extensions were deeply inspired
by the clothing parsing architecture described in
(Tangseng et al., 2017). They used VGG-16 based
fully convolutional network FCN 8s extended by a
side path that encoded and predicted combinatorial
preference of garment items. In simpler terms, the
added side path solves multilabel classification task
- predicts what clothing categories are present in the
input image. This side branch proved useful as was
demonstrated by increased Intersection over Union
metric. Inspired by this paper, we extended U-Net
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Figure 1: Visualization of Our model. Standard and downsampling ResNet34 blocks are described in ResNet paper (He
et al., 2016). ‘Adaptive Pooling’ stands for the concatenation of Adaptive Max Pooling and Adaptive Average Pooling layer.
Basic nearest neighbor upsamling layer was used. ‘multiLabel’ stands for the ‘ClassBranch’ logit output, additional sigmoid
function is used before the multilabel classification binary cross-entropy loss calculation. ‘objDet’ stands for the ‘BBbranch’
logit output, additional sigmoid function is used before the object detection smooth L1 loss calculation. ‘Expansion’ is
described in subsection 3.2. Please, zoom in if content not visible.

not only by the aforementioned multilabel classifica-
tion branch (’ClassBranch’), but also by object detec-
tion/localization bounding box branch (‘BBbranch’) -
the goal of this branch is to predict bounding boxes of
clothing instances (maximum of 1 instance per cloth-
ing category). In other words, ‘BBbranch’ focuses on
where the clothing items are on the more global im-
age (not pixel) level. On the contrary, ’ClassBranch’
is location agnostic. Insertion of the branches is illus-
trated in Figure 1.

’ClassBranch’ is implemented as a subnetwork

consisting of an adaptive average and max pooling
layer followed by two fully connected layers with
dimensions 512 and number of clothing categories.
The first fully connected layer is followed by ReLU,
Batchnorm and dropout layer. ‘BBbranch’ is imple-
mented as two fully connected layers without any pre-
ceding pooling layer. We want to emphasize that ‘BB-
branch’ is not solving the object detection task in its
general form, which has no prior knowledge about the
number of objects in the input image. On the contrary,
we use the fact that there is a maximum of one in-
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stance of each clothing category in the input image.
Each output channel of ‘BBbranch’ is dedicated to
bounding box prediction of a specific clothing cate-
gory, and no complex region proposal subnetwork is
needed. It is important to note that no additional anno-
tation work was done, the ground truth bounding box
position calculation was inferred automatically from
the ground truth segmentation mask.

Output layers of these additional branches are in-
jected back into the segmentation network by con-
catenation. More specifically, logit outputs of the
branches are expanded so that they match the reso-
lution of the input image (e.g. for the ’ClassBranch’
eight logit output neurons are transformed into eight
layers of resolution 288x192. Each layer contains
288x192 clones of the corresponding output neuron).
This way of branches injection enables gradient flow
from the main segmentation loss to the branches. The
concatenation is followed by a residual convolutional
layer and final convolutional layer outputting segmen-
tation mask logit prediction. We also experimented
with the setting, in which no inclusion of the addi-
tional branches into the main segmentation part was
performed.

3.3 Loss Function

Loss function used in our network is a weighted sum
of three terms:

First is a weighted cross-entropy loss (WCE) per-
taining to the main pixel-wise segmentation task. Be-
cause of the data imbalance (dominance of the back-
ground class), we have set the weight of WCE to 1
for the background class and 2 for every of the fore-
ground classes. This loss term was used with a weight
of 1.

Second loss term is binary cross-entropy pertain-
ing to the multilabel classification task of the ‘Class-
Branch’. This loss term was used with a weight of
0.5.

Third component is the smooth L1 loss described
in (Girshick, 2015). According to the paper, this loss
is less sensitive to outliers. The ground truth bound-
ing box position was expressed relative to the input
image size (resulting in values in [0,1] range). There-
fore, additional sigmoid function was introduced be-
fore the smooth L1 loss calculation. Not all clothing
categories were present in the input image. There-
fore, only loss terms from the channels corresponding
to the clothing categories present in the input image
contributed to the final loss term. This loss term was
used with a weight of 75.

Weights of the particular loss terms were de-
termined empirically, so that each loss term would

contribute approximately evenly to the final com-
pound loss (unweighted loss terms have different
value ranges).

3.4 Network Training Specifics

For reproducibility, this subsection provides our net-
work training details.

Preprocessing - based on the most prevalent height
to width ratio in our dataset (3:2) and the fact that
Resnet34 backbone downsizes images by 32, we re-
size every image to 288x192.

Data augmentation - rather conservative data aug-
mentation was performed, namely horizontal flip,
mild changes in lighting and rotation. It is impor-
tant to note, that segmentation mask was transformed
in the same way as the original input image, and
the ground truth bounding box was inferred from the
transformed mask (calculation performed more effi-
ciently on the GPU).

We used a batch size of 16. Because of GPU mem-
ory constraints while still aiming for a batch of suffi-
cient size, regarding the weights and activations the
whole training was performed using half-precision
(floating point 16), but loss terms and gradients were
32 floating-point precision.

We used GPU NVidia GTX 1080. The training
was two-phased, which is characteristic of transfer
learning. In the first phase, we froze the Resnet34
backbone pre-trained on Imagenet and trained only
the rest of the network (all the branches included).
This phase was ten epochs long, using Adam op-
timizer and cyclical learning rate scheduler (Smith,
2017) with learning rate maximum of 10−4. Then
we unfroze the whole network, continued for an-
other ten epochs, Adam optimizer and cyclical learn-
ing rate scheduler with learning rate maximum of
10−4. Weight decay of 10−3 was used in both phases
(weight decay decoupled from the Adam optimizer
was used as described in (Loshchilov and Hutter,
2017)). This training procedure was determined em-
pirically based on the training behavior of the Plain
U-Net. Training of all of the models was closely mon-
itored in terms of losses and metrics. There was no in-
dication of performance suffering from poorly chosen
training hyperparameters, hence no specific training
hyperparameters modifications for particular models
were performed.

The implementation of the network design and
training was done in FastAI (Howard et al., 2018)
and PyTorch (Paszke et al., 2017) environment.
(Yakubovskiy, 2020) implementation of DeepLabV3,
DeepLabV3+ and FPN architectures was used.
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Figure 2: Example of an annotation issue in iMaterialist
dataset (Visipedia, 2019). In images with more than one
person present, only one of the people was segmented.

Figure 3: Example of annotation inconsistency in the iMa-
terialist dataset. In the case of images with a partial view,
sometimes the cut off lower body garment was annotated
as ‘pants’ and sometimes it was annotated as ‘background’.
‘Ground Truth’ stands for the annotation, ‘Prediction’ is the
output of our segmentation model.

4 DATASET AND RESULTS

This section provides a description of the dataset used
and model results.

4.1 Dataset

As discussed in the introduction section, the major-
ity of the previous clothing parsing research was per-
formed on datasets of small size.

We use a large-scale dataset (Visipedia, 2019) re-
leased as part of the Kaggle iMaterialist (Fashion)

Figure 4: Demonstration of challenging nature of the cloth-
ing parsing task. Some very common clothing combina-
tions are easily confused even for human annotators, e.g.
dress vs top+skirt combination as depicted in the first row.
Furthermore, assignment to a clothing category might be
fuzzy for some items, especially when depicted solo with-
out any referential human models. The third row provides
an example of such an item - without additional info about
the length of the item, its assignment to clothing category is
rather ambiguous. ‘Ground Truth’ stands for the annotation,
‘Prediction’ is the output of our segmentation model.

Challenge 2019 at FGVC6. It contains the total of
45 622 clothing images (from which approx. 3 500
depict single clothing item, while the rest depict com-
plex clothing outfits as worn by people) from daily-
life, celebrity events, and online shopping with di-
verse poses (not limited to the full-frontal view), oc-
clusion types, scales, viewpoints, clothes layering.
The dataset recognizes 27 main clothing categories.

We made a couple of modifications to the dataset.
Upon inspection rather ambiguous (even for a hu-
man) and numerous clothing categories we reduced
the number of clothing categories by merging or ex-
cluding some of them. Final clothing categories and
their relation to the original dataset:
‘top’: merging of ‘shirt, blouse’ and ‘top, t-shirt,
sweatshirt’
‘overtop’: merging of ‘sweater’, ‘cardigan’, ‘jacket’,
‘vest’ and ‘coat’
‘pants’: ‘pants’
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Table 1: Performance of the plain U-Net model trained on the base vs refined dataset. ‘IoU excl. bg’ stands for IoU excluding
the background category, ‘IoU overall’ means IoU including background, ‘IoU Mask’ is IoU of special segmentation with
only two possible classes - foreground and background.

Dataset IoU excl. bg IoU overall Iou Mask
Base 70.01 89.44 91.38

Refined 72.10 90.23 92.03

Dataset Bg Top Overtop Pants Shorts Skirt Dress Shoe Bag
Base 97.02 69.22 69.43 76.61 59.31 47.54 75.20 62.37 40.10

Refined 97.24 71.02 71.72 78.25 61.60 51.12 77.21 65.05 46.04

Table 2: Performance expressed in terms of IoU. ‘IoU excl. bg’ stands for IoU excluding background, ‘IoU overall’ means
IoU including background, ‘IoU Mask’ is IoU of special segmentation with only two possible classes - foreground and
background. The best performance of each category is bold.

Method IoU excl. bg IoU overall Iou Mask
FPN 67.77 88.18 89.44

DeepLabV3 68.91 88.33 88.80
DeepLabV3+ 70.85 89.31 90.15
Plain U-Net 72.10 90.23 92.03
Our model 73.38 90.66 92.18

ClassBranch only 73.01 90.57 92.16
Branches 72.72 90.44 92.13

Method Bg Top Overtop Pants Shorts Skirt Dress Shoe Bag
FPN 96.29 66.74 66.56 74.35 55.99 47.91 73.68 56.31 33.69

DeepLabV3 96.03 68.05 68.81 74.28 59.41 49.26 74.18 53.80 39.64
DeepLabV3+ 96.54 70.14 70.05 76.33 60.93 50.88 76.45 58.18 40.36
Plain U-Net 97.24 71.02 71.72 78.25 61.60 51.12 77.21 65.05 46.04
Our model 97.29 72.49 72.68 79.81 65.90 53.83 77.97 65.97 48.31

ClassBranch only 97.30 72.23 72.70 78.95 63.83 51.84 77.61 65.70 46.47
Branches 97.27 71.46 72.24 79.08 63.56 53.39 77.42 65.60 48.09

‘shorts’: ‘shorts’
‘skirt’: ‘skirt’
‘dress’: ‘dress’
‘shoe’: ‘shoe’
‘bag, wallet’: ‘bag, wallet’.

Additionally, we excluded the ‘jumpsuit’ category
with approximately 900 images. We argue that this re-
duced version still suffices many real-life applications
(automatic colour extraction in the fashion domain,
suspicious person detection in surveillance videos,
etc.) while significantly lowering the complexity of
the clothing parsing task.

There was one major dataset annotation issue we
had to address. In images with more than one per-
son present, only one of the people was segmented.
Figure 2 shows an example of such an annotation.
We could not even identify the selection criterion for
choosing the person to be segmented. It proved to be
malicious for the model training, as when training on
these images, we were by means of the loss function
penalizing the model for correctly identifying cloth-
ing items of all the people in the input image.

To address this issue, firstly we applied Mask R-

CNN (Massa and Girshick, 2018) object detection
model to select out images with more than one per-
son (in a total of 12 188 images more than one person
was detected). Then we performed an iterative im-
age cropping with respect to the segmentation ground
truth mask (GT mask) - we cropped the rectangle con-
taining the GT mask keeping the original height of the
image and adding extra x% of the GT mask width to
the left and right of the rectangle (iteratively
x = 30%, 10%, 0%). After each iteration, cropped im-
ages with only one detected person were put aside, the
rest proceeded to the next iteration. Finally, cropped
images after the most restrictive type of cropping
(with x = 0%) with more than one detected person
were manually inspected (approx. 1 030 images). The
final cleaned dataset contained 43 470 images. The
effect of this dataset cleaning is shown in Table 1. It
contributed to more than 2% increase in IoU exclud-
ing background metric.

During visual inspection of the results of our
model, we identified another annotation inconsis-
tency. In the case of images with a partial view, some-
times the cut off lower body garment was annotated
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Table 3: Confusion matrix (in %) for predictions of our model on the test dataset. The first matrix expresses row percentages,
i.e. looking at the particular clothing category ground truth pixels what is the distribution of the corresponding predicted
labels. The second expresses column percentages, i.e. looking at the particular clothing category predicted pixels what is the
distribution of the corresponding ground truth labels.
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as ‘pants’ and sometimes it was annotated as ‘back-
ground’ (see Figure 3). It resulted in almost 10% of
the predicted ‘pants’ pixels being annotated as ‘back-
ground’, see confusion matrix Table 3. The issue is
beyond the scope of this paper.

The dataset was divided into training, validation
and test subsets of sizes 30 429, 3 913 and 9 128
respectively. Stratified sampling was used, so that
the clothing categories distribution would be approx-
imately the same in the training, validation and test
subset.

4.2 Evaluation Metrics

We used several evaluation metrics to measure the
performance of the main clothing parsing task, and
also the performance of the tasks solved by the side
branches.

Clothing parsing task - we calculated Intersection
over Union metrics (IoU), also known as Jaccard in-
dex, in several subversions - IoU excluding the back-

ground category ‘IoU excl. bg’, IoU including back-
ground ‘IoU overall’, IoU of a special segmentation
with only two possible classes - foreground and back-
ground (how well the model predicts which pixels are
clothing pixels regardless of the specific clothing cat-
egory assignment) ‘IoU Mask’ and IoU of each cloth-
ing category separately.

Multilabel classification task - F1, F2 score and
accuracy for the clothing classes separately.

Bounding boxes localization task - only visual in-
spection in combination with the final loss term as-
sessment.

Performance of our final model in terms of these
metrics is presented in Table 2 and 4. To our knowl-
edge, there is no clothing parsing research performed
on the dataset (Visipedia, 2019), so we resort to
comparing our model to a plain U-Net, DeepLabV3,
DeepLabV3+ and FPN architectures, which have
proved to perform well in the segmentation task.
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Table 4: Performance of the ClassBranch of our model.

F1 F2 % of images Top Overtop Pants Shorts Skirt Dress Shoe Bag
87.14 87.17 66.26 87.22 91.33 94.82 97.50 93.22 91.17 96.02 92.58

Table 5: Comparison of our model performance without and with the ground truth (GT) clothing category information injec-
tion. ‘IoU ex. bg’ stands for overall IoU excluding the background category and the rest of the columns represent IoU per
corresponding clothing category.

Method IoU ex. bg Bg Top Overtop Pants Shorts Skirt Dress Shoe Bag
Without GT 73.38 97.29 72.49 72.68 79.81 65.90 53.83 77.97 65.97 48.31

With GT 87.37 97.32 87.62 86.25 89.02 83.51 86.27 91.01 67.63 52.94

4.3 Model Performance Analysis

Table 2 summarizes the performance of our model
(and two additional) compared to various baselines.
Compared to FPN, DeepLabV3, DeepLabV3+ and a
plain U-Net, our model achieves the best experimen-
tal results. We reason that the contribution of the ad-
ditional branches lies in increasing the capacity of the
model to capture global dependencies.

Additional two models are provided for the abla-
tion study purposes. ‘ClassBranch only’ represents
the model with only the ‘ClassBranch’ with its output
being incorporated back into the segmentation trunk
by means of multiplication. ‘Branches’ stands for the
model with both ‘ClassBranch’ and ‘BBbranch’, but
no incorporation into the main segmentation trunk is
performed. Advantage of the ‘Branches’ model stems
from the fact that during inference, both branches can
be detached. Hence in inference time no extra compu-
tation is required compared to the plain U-Net, while
still achieving better performance.

Confusion matrix calculated on the segmentation
masks shown in Table 3 clearly shows that our model
is not performing well in distinguishing between dress
vs skirt + top, between top vs overtop and shorts vs
skirt combinations. As Figure 4 demonstrates, due
to diversity in the fashion domain, different view-
points, poses, clothes deformities in the input image
and sometimes absence of referential human models,
image clothing category classification task poses a
challenge even for a human. Performance metrics of
the ClassBranch shown in Table 4 (particularly sur-
prisingly low percentage of matched images) indicate
the same issue.

To put it quantitatively, we injected the ground
truth clothing category information to our model dur-
ing inference and performed model evaluation in this
new setting. The results of this evaluation can be seen
in Table 5. With the ground truth injection IoU ex-
cluding background metric rises from 73.38 to 87.37.
The evaluation supports the hypothesis that clothing
category identification is the bottleneck of our model.
Figure 5 visually demonstrates the effect of partial

Figure 5: Demonstration of the effect of the partial ground
truth clothing category information injection to the model.
First row depicts output of our model with no prior informa-
tion. Second row shows output of our model after injection
of the ‘no-dress’ information (probabilities for the ‘dress’
category were set to 0).

ground truth information injection to the model.
On the other hand, the high value of IoU of

segmentation with only foreground and background
classes ‘Iou Mask’ implies good ability of our model
to eliminate the background.

4.4 Qualitative Evaluation

To visually demonstrate the performance of our
model, we randomly sampled 1 000 images from the
test subset and sorted outputs according to their loss.
Figure 6 provides example outputs at each of the 3
loss levels. Majority of the failure cases were because
of the wrong clothing category assignment, as dis-
cussed in the previous subsection. This issue is more
frequent in images of women fashion since it is more
diverse. Our model shows good performance in the
background elimination.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

22



Figure 6: Visual demonstration of the performance of our model. 1 000 images were randomly sampled from the test dataset,
and corresponding outputs were sorted according to their loss value. The first row represents outputs with the highest loss
value, the second outputs from the middle loss category, and the third row presents outputs with the lowest loss term. The last
row provides examples of failure cases.

5 CONCLUSION AND FUTURE
WORK

This paper addresses the clothing parsing task with
motivation of its applicability in real-life scenarios.
Inspired by (Tangseng et al., 2017), an extended ver-
sion of U-Net architecture was proposed by attaching
two side branches. The first branch solves the mul-
tilabel clothing category classification task, the other
localizes bounding boxes of the clothing items. This
paper introduces a simplified version of the clothing
parsing task. Refinement of the iMaterialist dataset
(Visipedia, 2019) was performed. The empirical re-
sults presented in this paper support the hypothesis
that additional branches of our model contribute to the
performance improvement.

The model performance analysis subsection indi-
cates that the bottleneck of our model is clothing cat-
egory classification. Therefore, our recommendation
is to inject to the model any (even partial) known
prior knowledge about which clothing categories are
present in the input image. For example, in auto-

matic color extraction for fashion e-shops application,
one should for images in ‘skirts’ subsection inject this
‘skirt, but no dress’ information.

In our future work, we would like to address the
issue of our model’s confusion with the clothing cate-
gories. We would like to explore whether incorporat-
ing the annotators’ confusion regarding clothing cat-
egory assignment could be useful.
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