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Abstract: We present an algorithm that uses linear programming to parameterize continuous and piecewise affine Lya-
punov functions for switched systems. The novel feature of the algorithm is, that it can compute Lyapunov
functions for switched system with a strongly asymptotically stable equilibrium, for which the equilibrium of
the corresponding differential inclusion is merely weakly asymptotically stable. For the differential inclusion
no such Lyapunov function exists. This is achieved by removing constraints from a linear programming prob-
lem of an earlier algorithm to compute Lyapunov functions, that are not necessary to assert strong stability for
the switched system. We demonstrate the benefits of this new algorithm sing Artstein’s circles as an example.

1 INTRODUCTION

We start with an informal introduction of the switched
systems and differential inclusions we will be con-
cerned with; the technical details follow later when
we concretize our setting. Keep in mind that we are
setting the stage to remove conditions on a Lyapunov
function for a switched system with a strongly asymp-
totically stable equilibrium, which is merely weakly
asymptotically stable for the corresponding differen-
tial inclusion.

We consider switched systems of the form

ẋ = fα(x), α : [0,∞)→ A , (1)

where for each a∈A the vector field fa : D(fa)→Rn

is defined on D(fa) ⊂ Rn, A is a finite set equipped
with the discrete topology, and α : [0,∞)→ A is a
right-continuous switching signal. Solution trajecto-
ries of the system are continuous paths obtained by
gluing together trajectory pieces of the individual sys-
tems ẋ = fa(x). Switched systems and their stabil-
ity have been intensively studied, cf. the monograph
(Liberzon, 2003; Sun and Ge, 2011). The main ques-
tions regarding the asymptotic stability of an equilib-
rium of a switched system, which we may assume is at
the origin, is if a switching can be chosen such that so-
lution trajectories are steered to the equilibrium (weak
asymptotic stability) or if trajectories are attracted to it
regardless of the switching (strong asymptotic stabil-
ity). The latter case is referred to as arbitrary switch-
ing. Both types of stability are usually dealt with us-
ing Lyapunov functions, i.e. functions from the state

space to the real numbers that are decreasing along so-
lution trajectories. In (Hafstein, 2007) an algorithm to
compute continuous and piecewise affine (CPA) Lya-
punov functions for arbitrary switched systems was
developed; we will discuss it below.

Closely related to the switched system (1) is the
differential inclusion

ẋ ∈ F(x) := co{fa(x) : x ∈D(fa)}, (2)

where coC denotes the convex hull of the set C ⊂Rn.
Solution trajectories are absolutely continuous paths
t 7→ x(t) fulfilling ẋ(t) ∈ F(x(t)) almost surely. One
speaks of weak asymptotic stability of an equilibrium
if there are solution trajectories that are asymptot-
ically attracted towards the equilibrium and strong
asymptotic stability if this is the case for all solu-
tion trajectories. In (Baier et al., 2010; Baier et al.,
2012) an algorithm for the computation of CPA Lya-
punov functions for strongly asymptotically stable in-
clusions was presented and in (Baier and Hafstein,
2014) a corresponding algorithm for the computa-
tion of control CPA Lyapunov functions for weakly
asymptotically stable differential inclusions. See also
(Baier et al., 2018) for a different approach including
semiconcavity condition into the formulation of the
optimization problem.

Let us give a short review of CPA Lyapunov func-
tions in the context of switched systems and differ-
ential inclusions. To define a CPA Lyapunov func-
tion V , first a triangulation T of its domain, a subset
of Rn, must be fixed. The triangulation must have
the property that any two different simplices inter-
sect in a common face or not at all. The continuous

Hafstein, S.
CPA Lyapunov Functions: Switched Systems vs. Differential Inclusions.
DOI: 10.5220/0009992707450753
In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2020), pages 745-753
ISBN: 978-989-758-442-8
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

745



and piecewise affine function V is then defined by as-
signing it values at the vertices of the simplices of T
and linearly interpolating these values over the sim-
plices. The resulting function is affine on each sim-
plex Sν ∈ T and thus differentiable in its interior S◦ν.
In particular, its gradient is a well defined constant
vector ∇Vν in the interior. At the boundaries, where
two or more simplices intersect, the function V is not
differentiable and its gradient is not defined. In (Baier
et al., 2010; Baier et al., 2012; Baier and Hafstein,
2014) this was dealt with in the context of nonsmooth
analysis using the Clarke subdifferential, which can
be defined through

∂ClV (x) := co{ lim
xi→x

∇V (xi) : ∃ lim
xi→x

∇V (xi)} (3)

for locally Lipschitz continuous V , cf. (Clarke, 1990).
That is, Clarke’s subdifferential ∂ClV (x) ⊂ Rn is the
convex hull of all converging sequences (∇V (xi))i∈N,
where xi→ x as i→∞. The establishing of the strong
stability of an equilibrium of the differential inclusion
(2) now essentially boils down to showing, where •

denotes the dot product of vectors and sets of vectors
N •M := {x •y : x ∈ N,y ∈M}, that

∂ClV (x) •F(x)< 0 (4)

in a punctuated neighbourhood of the equilibrium. In
this context < means that every element of the set on
the left-hand side is less than zero. For a CPA function
V this further simplifies to

∇Vν
• fa(x)< 0 (5)

for every ν such that x ∈ Sν and every a ∈A such that
x ∈ D(fa). This comes as every element in ∂ClV (x)
is the convex sum of such ∇Vν and every element of
F(x) is the convex sum of such fa(x). Exactly the
same condition (5) can be used to show the strong sta-
bility of the same equilibrium for the switched system
(1).

Now, even for considerably more general differ-
ential inclusions than (2), i.e. compact, convex, upper
semicontinuous F, the strong asymptotic stability of
an equilibrium was shown in (Clarke et al., 1998) to
be equivalent to the existence of a Lyapunov function
V fulfilling (4). However, there are arbitrary switched
systems with a strongly asymptotically stable equilib-
rium, such that the equilibrium is only weakly sta-
ble for the corresponding differential inclusion. We
will modify the CPA algorithm to compute Lyapunov
functions for arbitrary switched system and differen-
tial inclusions to deal with this case. Our motivating
example will be that of Artstein’s circles.

Figure 1: Trajectories of Artstein’s circles (6). For an initial
value (x0,y0) the trajectory is an arc of a circle with center
on the y-axis and passing through (0,0) and (x0,y0). Vary-
ing u changes the speed and the orientation of how the cir-
cles are traversed. For u > 0 the upper circles are traversed
clockwise and the lower circles counter-clockwise until the
equilibrium at zero is reached; for u < 0 vise versa. The
speed of the traversing is proportional to |u|.

1.1 Artsteins’s Circles

Artstein’s circles (Artstein, 1983) are given by the dif-
ferential inclusion

d
dt

(
x
y

)
∈
{

u
(
−x2 + y2

−2xy

)
: u ∈ [−1,1]

}
. (6)

See Fig. 1 for its solution trajectories. Clearly, the
equilibrium at zero is not strongly asymptotically sta-
ble for the differential inclusion, fix e.g. u = 0. How-
ever, it is clearly weakly stable because, e.g. fixing
u =−1 or u = 1, delivers an ODE with this property.

Let us define

f+(x,y) =
(
−x2 + y2

2xy

)
(7)

and f−(x,y) = −f+(x,y). Then system (6) can be
written ẋ ∈ co{f−(x), f+(x)} and the corresponding
switched system is

ẋ = fα(x), α : [0,∞)→{−,+}, (8)

for which the origin is a weakly asymptotically stable
equilibrium, and not strongly asymptotically stable!

From now on we limit the domains of f− and
f+ to D(f−) = (−∞,0]×R and D(f+) = [0,∞)×R.
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Then the switched system (8) has a strongly asymp-
totically stable equilibrium at the origin. The reason
for this is that the switching only has more than one
option on D(f−) ∩D(f+) = {0} ×R, and no mat-
ter which choice is made, the system state is asymp-
totically attracted to the origin. The decision only
influences whether the left- or the right trajectory
arc is traversed. Note that for the inclusion ẋ ∈
co{f−(x), f+(x)} with these domains for f−(x) and
f+(x), the origin is weakly- but not strongly asymptot-
ically stable, because 0 ∈ co{f−(x), f+(x)} for every
x ∈ {0}×R.

It follows from the discussion above, that there
does not exists a CPA Lyapunov function V fulfilling
(5) for the switched system (8), although the equilib-
rium is strongly asymptotically stable. The condition
(5) is unnecessary strict for switched systems; it is
used to assert

limsup
h→0+

V (x+hfa(x))−V (x)
h

< 0 (9)

for all fa such that x ∈ D(fa), but this may hold true
although (5) fails for some of them. To see this con-
sider two triangles, Sν = co{(−c,c),(0,c),(0,2c)}
and Sµ = co{(c,c),(0,c),(0,2c)} for c > 0, and x =
(0,3c/2) for the switched system (8). Let V be a CPA
function such that ∇Vν

•f−(x)< 0 and ∇Vµ •f+(x)< 0.
Since f−(x)=−f+(x) this implies ∇Vν

•f+(x)> 0 and
∇Vµ • f−(x)> 0, but (9) still holds true. The reason is
that f−(x) points into Sν and f+(x) points into Sµ. In
our modified CPA algorithm below we systematically
remove such unnecessary constraints from the origi-
nal linear programming problem.

2 THE SETUP

For formulating our modified CPA algorithm for
switched system some preparation is needed. Let
{Sν}ν∈T = T , T an index set, be a set of simplices
in Rn, such that different simplices Sν,Sµ ∈ T inter-
sect in a common face or not at all and with DT =⋃

ν∈T Sν, D◦T is a simply connected neighborhood of
the origin. The set T is the triangulation that we use
to define a CPA function V by fixing its values at the
vertices

VT := {xi : xi is a vertex of a simplex Sν ∈ T }

of the triangulation.
For each Sν ∈ T denote by Cν = {xν

0,x
ν
1, . . . ,x

ν
n}

the set of its vertices. Thus Sν = coCν and Sν∩Sµ =
co(Cν ∩Cµ). Define IT : Rn ⇒ T by IT (x) := {ν ∈
T : x ∈ Sν}. Thus IT (x) is a set of the indices of the
simplices in T containing x. The notation ⇒ denotes

a multivalued function, the values of IT are subsets
of T . We consider arbitrary switched systems as (1)
and corresponding differential inclusions (2) that are
adapted to the triangulation T .

For defining what adapted to the triangulation T
means some further definitions are useful: Let A be
a finite set and fa : D(fa)→ Rn be vector fields, such
that for every a ∈ A the domain D(fa) ⊂ Rn of fa is
the union of some of the simplices in T . Thus, for
every a∈A we have /0 6= D(fa) = Sν1 ∪Sν2 ∪·· ·∪Sνk ,
where ν1,ν2, . . . ,νk ∈ T . Define for every ν ∈ T the
set

Aν := {a ∈ A : Sν ⊂D(fa)}
and assume that Aν 6= /0 for all ν∈ T . Hence, on every
simplex Sν ∈ T at least one of the vector fields fa is
defined.

For a simplex Sν ∈ T define the set

NSν := {Sµ ∈ T : Sµ 6= Sν and Sµ∩Sν 6= /0}

of its neighbouring simplices in T .
Our modified CPA algorithm will eliminate un-

necessary constraints from the original linear pro-
gramming problem. For this we need to define for
every simplex Sν and every vector field fa defined on
the simplex Sν, i.e. every a ∈ Aν, the set of the essen-
tial neighbouring simplices ENSa

ν with respect to the
vector field fa. That is, ENSa

ν contains the simplices
Sµ ∈ NSν, such that solution trajectories of ẋ = fa(x)
with an initial position in x ∈ Sν can move into the
interior of Sµ in an infinitesimal time. In formula, for
every Sν ∈ T and every a ∈ Aν define

ENSa
ν := {Sµ ∈ NSν : ∃x ∈ Sν, ∃h > 0

s.t. x+[0,h]fa(x)⊂ Sµ},

where

x+[0,h]fa(x) := {x+h′fa(x) : 0≤ h′ ≤ h}.

Define

D+V (x,y) := limsup
h→0+

V (x+hy)−V (x)
h

.

It is well known that D+V (x, fa(x) is the orbital
derivative of a locally Lipschitz V at point x along
the solution trajectories of ẋ = fa(x), i.e. if t 7→ φ(t) is
the solution with φ(0) = x, then

D+V (x, fa(x)) = limsup
h→0+

V (φ(h))−V (x)
h

,

for a proof cf. e.g. (Marinósson, 2002, Th. 1.17). Fur-
ther, CPA functions are obviously locally Lipschitz.

Lemma 2.1. For every Sµ ∈ T such that there ex-
ists an h > 0 with x + [0,h]fa(x) ⊂ Sµ we have
D+V (x, fa(x)) = ∇Vµ • fa(x).
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Proof. Assume x+[0,h]fa(x)⊂ Sα∩Sβ for two sim-
plices Sα,Sβ ∈ T . Since V is affine on both simplices
Sα and Sβ we have for some constants aα,aβ ∈ R and
∇Vα and ∇Vβ defined as above that V (y) = ∇Vα

•y+
aα for all y∈ Sα and V (y) =∇Vβ

•y+aβ for all y∈ Sβ.
In particular, we have for all y ∈ Sα∩Sβ that

∇Vα
•y+aα = ∇Vβ

•y+aβ.

Now substitute x+h′fa(x) for y and simplify to get

h′(∇Vα−∇Vβ) • fa(x) = aβ−aα− (∇Vα−∇Vβ) •x

and note that this equation must hold true for all 0 ≤
h′ ≤ h. Since the right-hand side is constant we must
have (∇Vα−∇Vβ) • fa(x) = 0. The statement is now
obvious.

The next lemma justifies the nomenclature for
ENSa

ν: essential neighbouring simplices with respect
to the vector field fa

Lemma 2.2. Let x ∈D◦T . Then there is a ν ∈ T such
that x ∈ Sν and for every a ∈ Aν we have

D+V (x, fa(x)) = ∇Vµ • fa(x) (10)

where µ = ν or Sµ ∈ ENSa
ν.

Proof. That there is a ν ∈ T such that x ∈ Sν follows
directly from our setup. Since simplices are convex
and closed there surely exists an h > 0 and µ∈ T such
that x+[0,h]fa(x)⊂ Sµ and by the definition of ENSa

ν

necessarily Sµ ∈ ENSa
ν if µ 6= ν.

3 THE MODIFIED
CONSTRAINTS

We now describe how we eliminate unnecessary con-
straints from the liner programming problem in (Baier
and Hafstein, 2014). Note that this is the same linear
programming problem as for the differential inclusion
in (Baier et al., 2010; Baier et al., 2012), but when the
differential inclusion is considered, then these con-
straints are necessary. Indeed, as discussed in Sec-
tion 1.1 for Artstein’s circles, the equilibrium might
be merely weakly asymptotically stable for the differ-
ential inclusion, although it is strongly asymptotically
stable for the corresponding switched system.

The constraints to enforce ∇Vν
• fa(x) < 0 for all

x ∈ Sν are only verified at the vertices of the simplex
Sν. As a consequence one must verify ∇Vν

• fa(xν
i ) <

−ai at the vertices xν
i of the simplex Sν for appropriate

ai > 0, to make sure that the inequality folds for all
x ∈ Sν. This motivates the following definitions.

For a set C = {x0,x1, . . . ,xk} of affinely indepen-
dent vectors in Rn and a vector field fa defined on coC
with components ( f a

1 , f a
2 , . . . , f a

n ) = fa define

Ba
C,r,s := max

x∈coC
m=1,2,...,n

∣∣∣∣ ∂2 f a
m

∂xr∂xs
(x)
∣∣∣∣ . (11)

Further, for each (vertex) y ∈C define

Cmax
y,s := max

j=0,1,...,k
|es • (x j−y)|

and let Ea,y
C,xi

, i = 0,1, . . . ,k, be constants such that

Ea,y
C,xi
≥ (12)

1
2

n

∑
r,s=1

Ba
C,r,s|er • (xi−y)|(Cmax

y,s + |es • (xi−y)|).

A few comments are in order. As shown later,
the constants Ea,y

C,xi
are defined such that if for one

fixed vertex y of the simplex Sν = coCν ∈ T , Cν =
{xν

0,x
ν
1, . . . ,x

ν
n}, we have

∇Vν
• fa(xν

i )<−Ea,y
C,xν

i
‖∇Vν‖1, i = 0,1, . . . ,k = n,

then ∇Vν
• fa(x)< 0 for all x ∈ Sν.

For implementing the constraints it is of essen-
tial practical importance that Ea,y

C,xi
is an upper bound,

which in effect means that one must not compute
the Ba

C,r,s exactly, which can be difficult. Any upper
bound on the second order derivatives of the com-
ponents f a

m can be used. However, less conservative
bounds might mean that one needs smaller simplices
to fulfill the constraints.

Finally, if

Ea,y
C,xi
≥ h2

C

n

∑
r,s=1

Ba
C,r,s

whith hC = diam(C) := maxx,y∈C ‖x− y‖2, then the
estimate (12) follows. In particular one can for sim-
plicity use a uniform bound

Ba ≥ max
x∈D(fa)

m,r,s=1,2,...,n

∣∣∣∣ ∂2 f a
m

∂xr∂xs
(x)
∣∣∣∣

and set Ea,y
C,xν

i
= n2Bah2

ν, where hν := diam(Sν), for
/0 6=C ⊂Cν. Indeed, a little more careful analysis us-
ing that ‖x‖2

1 ≤ n‖x‖2
2 shows that using

Ea,y
C,xν

i
= nBah2

ν

is enough to fulfill the estimate (12), cf. e.g. (Baier
et al., 2012). However, although this more conserva-
tive formula is more pleasant to the eye, the imple-
mentation of (12) is not more involved in practice.
We therefore use the sharper estimate (12) in what
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follows. Note, however, that in order to understand
the linear programming problems very little is lost if
one just considers the Ea,y

C,xν
i

as appropriate constants
needed to interpolate inequality conditions from ver-
tices over simplices and faces and of simplices, with-
out following the details. Computing the Ea,y

C,xν
i

al-
gorithmically is simple given some upper bounds on
the second order derivatives of the components of the
vector fields fa.

We are now ready to state our linear programming
problem to compute CPA Lyapunov functions. We
first state it as in (Baier et al., 2010; Baier et al., 2012)
and then outline a proof of why a feasible solution to it
delivers a CPA Lyapunov function for the differential
inclusion used in its construction. From the proof it
becomes clear what conditions are unnecessary when
we move from the differential inclusion (2) to the ar-
bitrary switched system (1). In Section 3.2 we then
discuss how the removing of constraints can be algo-
rithmically implemented.

3.1 The Linear Programming Problem

Consider a triangulation T as in Section 2 and,
adapted to the triangulation, the differential inclusion
(2) and the corresponding arbitrary switched system
(1). Assume that the equilibrium in question is at the
origin. For every simplex Sν ∈ T let

Cν = {xν
0,x

ν
1, . . . ,x

ν
n}

denote its vertices, i.e. Sν = coCν. Assume that for
every Sν = coCν ∈ T and every /0 6=C⊂Cν and every
a ∈ Aν we have an upper bound Ba

C,r,s as in (11) and
that we have fixed a vertex y of C for the definition
of Ea,y

C,xi
. If 0 ∈C we must choose y = 0 to avoid un-

satisfiable constraints. Note that the sets coC, where
/0 6=C (Cν, are the faces of the simplex Sν.

The variables of the linear programming problem
are Vx for every x that is a vertex of a simplex in T ,
i.e. x ∈ VT . From a feasible solution, where the vari-
ables Vx have been assigned values such that the lin-
ear constraints below are fulfilled, we then define a
continuous function V : DT →R through parameteri-
zation using these values: for an x∈DT we can find a
simplex Sν = co{xν

0,x
ν
1, . . . ,x

ν
n} such that x∈ Sν and x

has a unique representation x = ∑
n
i=0 λixν

i as a convex
sum of the vertices. For x we define

V (x) :=
n

∑
i=0

λiVxν
i
.

If two different simplices in T intersect they do so in
a common face, hence V is well-defined and continu-
ous. By a slight abuse of notation we both write V (xν

i )

for the variable Vxν
i

of the linear programming prob-
lem and the value of the function V at xν

i , since after
we have assigned a numerical value to the former it is
the value of the function V at xν

i .
There are two groups of constrains in the linear

programming problem. The first group is to assert
that V has a minimum at the origin:

Linear Constraints L1
If 0 ∈ VT one sets V (0) = 0. Then for all x ∈ VT :

V (x)≥ ‖x‖2.

Another possibility is to relax the condition of
strong asymptotic stability of the origin to practical
strong asymptotic stability. In this case one prede-
fines an arbitrary small neighbourhood of the origin
N and does not demand that V is decreasing along
solution trajectories in this set. One must then make
sure through constraints that

max
x∈∂N

V (x)< min
x∈∂DT

V (x),

because sublevel sets of V that are closed in D◦T are
lower bounds on the basin of attraction. This is not
difficult to implements and is discussed in detail in
e.g. (Hafstein, 2004; Hafstein, 2007; Baier et al.,
2012; Hafstein et al., 2015). In short, the implica-
tions of such a Lyapunov function are that solutions
enter N in a finite time and either stay in N or stay
close and enter it repeatedly.

The second group of linear constraints is to assert
that V is decreasing along all solution trajectories.
The simplest case is when Aν = A for all ν ∈ T and
then the appropriate constraints are:

Linear Constraints L2 (Simplest Case)
For every Sν ∈ T , we demand for every a ∈ Aν and
i = 0,1, . . . ,n that:

∇Vν
• fa(xν

i )+‖∇Vν‖1Ea,y
Cν,xν

i
≤−‖xν

i ‖2. (13)

In the case of practical strong asymptotic stabil-
ity one disregards the constraints (13) for Sν ⊂ N .
Note that the constrains (13) are linear in the vari-
ables V (xν

i ), cf. e.g. (Giesl and Hafstein, 2014, Re-
marks 9 and 10), in particular ‖∇Vν‖1 can be mod-
elled through linear constraint using auxiliary vari-
ables.

Now, let us consider how one uses the con-
straints (13) to show that D+V (x, fa(x))≤−‖x‖2. By
(Marinósson, 2002, Lemma 4.16) we have for a ∈ Aν

and x = ∑
n
i=0 λixν

i ∈ Sν, ∑
n
i=0 λi = 1, that∥∥∥∥∥fa(x)−

n

∑
i=0

λifa(xν
i )

∥∥∥∥∥
∞

≤
n

∑
i=0

λiE
a,y
Cν,xν

i
. (14)
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Hence, Hölder inequality, constraints (13), and the
convexity of the norm imply that

∇Vν
• fa(x) = (15)

n

∑
i=0

λi∇Vν
• fa(xν

i )+∇Vν
•

[
fa(x)−

n

∑
i=0

λifa(xν
i )

]

≤
n

∑
i=0

λi∇Vν
• fa(xν

i )+‖∇Vν‖1 ·
n

∑
i=0

λiE
a,y
Cν,xν

i

=
n

∑
i=0

λi

(
∇Vν

• fa(xν
i )+‖∇Vν‖1Ea,y

Cν,xν
i

)
≤

n

∑
i=0

λi (−‖xν
i ‖2)≤−‖

n

∑
i=0

λixν
i ‖2 =−‖x‖2.

For an x ∈ S◦ν we have the existence of an h > 0 such
that x+h′fa(x)⊂ Sν for all 0≤ h′ ≤ h and we get by
Lemma 2.2 that

D+V (fa(x),x) = ∇Vν
• fa(x)≤−‖x‖2

for all a ∈ Aν. For an x ∈ ∂Sν we cannot con-
clude this in general, because is is possible that x+
[0,h]fa(x) 6⊂ Sν for any h > 0 and we need the con-
straints (13) to hold true with ν = µ, where Sµ is such
that x+[0,h]fa(x) ⊂ Sµ for some h > 0. Note that if
a ∈ Aµ then this is assured, therefore nothing can go
wrong if Aµ = A for all µ ∈ T .

In (Baier et al., 2010; Baier et al., 2012) the
general case, when Aµ 6= A for some µ ∈ T , was dealt
with by adding the constraints:

Linear Constraints L2 (Old)
For every Sν = coCν ∈ T we demand for every a ∈
Aν, in addition to the constraints (13), that for every
Sµ ∈ NSa

ν such that a /∈ Aµ we have for C =Cµ∩Cν =
{x0,x1, . . . ,xk} that:

∇Vµ • fa(xi)+‖∇Vµ‖1Ea,y
C,xi
≤−‖xi‖2 (16)

for i = 0,1, . . . ,k.

Note that the linear constraints (16) imply by com-
putations analog to (15) that ∇Vµ • fa(x) ≤ −‖x‖2 for
every x ∈ D(fa), even if a /∈ Aµ, i.e. Sµ 6⊂ D(fa) and
fa is only defined on a face of Sµ. Just substitute n,
∇Vν, xν

i , Ea,y
Cν,xν

i
with k, ∇Vµ, xi, Ea,y

C,xi
, respectively, in

the computations (15).
For the differential inclusion (2) these constraints

is indeed necessary to show strong asymptotic stabil-
ity of the equilibrium at the origin, or strong practical
asymptotic stability of a set N , because for a CPA
function V we have

∂ClV (x) := co{∇Vµ : x ∈ Sµ}

and
F(x) = co{fa(x) : x ∈D(fa(x))}.

Hence ∂ClV (x) •F(x)⊂ R consists of the elements(
∑

µ :x∈Sµ

αµ∇Vµ

)
•

(
∑

a :x∈D(fa)

βafa(x)

)
= ∑

µ :x∈Sµ
a :x∈D(fa)

αµβa∇Vµ • fa(x),

for all αµ,βa ≥ 0 fulfilling

∑
µ :x∈Sµ

αµ = ∑
a :x∈D(fa(x))

βa = 1.

In the case Sν ⊂ D(fa), Sµ 6⊂ D(fa), and x ∈ Sν ∩ Sµ,
we have Sµ ∈ NSa

ν and the constraints (16) assure that
∇Vµ • fa(x)<−‖x‖2.

However, by Lemma 2.2, we can conclude
D+V (fa(x),x) ≤ −‖x‖2 if the constraints (13) hold
for all essential neighbours Sµ ∈ ENSa

ν of Sν with
respect to the vector field fa. We do not need to
consider neighbouring simplices Sµ ∈ NSa

ν that are
not essential! The modified constraints are :

New Linear Constraints L2
For every Sν = coCν ∈ T we demand for every a ∈
Aν, in addition to the constraints (13), that for every
Sµ ∈ENSa

ν such that a /∈Aµ we have for C =Cµ∩Cν =
{x0,x1, . . . ,xk} that:

∇Vµ • fa(xi)+‖∇Vµ‖1Ea,y
C,xi
≤−‖xi‖2 (17)

for i = 0,1, . . . ,k.

Note that the only difference between the old con-
straints and the new ones is that NSa

ν in the old ones
has been replaced by ENSa

ν in the new ones.
For algorithmically implementing the new con-

straints we need to be able to generate the sets ENSa
ν

efficiently. In practice we can efficiently compute sets
(ENSa

ν)
∗,

NSa
ν ⊂ (ENSa

ν)
∗ ⊂ ENSa

ν,

using some of the same ideas as in the computa-
tions (15). The practical implementation of New lin-
ear constraints L2 is then done by using these sets
(ENSa

ν)
∗ instead of the sets ENSa

ν. We describe the
details of how to compute the sets (ENSa

ν)
∗ in the next

section.

3.2 Computing Essential Neighbours

Consider a simplex Sν = coCν ∈ T , where as before
Cν =

{
xν

0,x
ν
1, . . . ,x

ν
n
}

. Another way to describe the
simplex Sν is to define it as the intersection of n+ 1
half-spaces. Recall that a half-space is defined as {x∈
Rn : n •(x−y)≥ 0} for some vectors n,y∈Rn, n 6= 0.
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These half-spaces for Sν can be constructed using the
set Cν as follows, see also (Hafstein, 2017).

For i = 0,1, . . . ,n we construct a half-space Hν,xν
i

such that Sν ⊂ Hν,xν
i

and Cν \ {xν
i } is a subset of the

boundary ∂Hν,xν
i

of Hν,xν
i

in the following way:
Set yn := xν

i and pick an arbitrary, but fixed vector
y0 ∈Cν \{xν

i }. Let {y1,y2, . . . ,yn−1}=Cν \{y0,yn}
and define the matrix n×n matrix

Yν,xν
i

:= (y1−y0,y2−y0, . . . ,yn−y0)
T .

That is, the first row in the matrix Yν,xν
i

is the vector
y1−y0, the second row is the vector y2−y0, etc.

Because the vectors y0,y1, . . . ,yn are affinely in-
dependent the matrix Yν,xν

i
is non-singular and the

equation
Yν,xν

i
y = en,

where en is the usual n-th unit basis vector, has a
unique solution nν,xν

i
for y. Define the half-space

Hν,xν
i

:= {x ∈ Rn : nν,xν
i
• (x−y0)≥ 0}. (18)

Note that Hν,xν
i

is a half-space such that Sν ⊂ Hν,xν
i

and the vertices y1,y2, . . . ,yn−1 of the simplex Sν, and
hence the face co(Cν \ {xν

i }), are in the hyper-plane
∂Hν,xν

i
dividing the space. This can be seen from

nν,xν
i
= Y−1

ν,xν
i
en and then, since

nν,xν
i
• (x−y0) = eT

n Y−T
ν,xν

i
(x−y0),

where Y−T
ν,xν

i
:=
(

Y−1
ν,xν

i

)T
, and Y−T

ν,xν
i
(x− y0) = ek for

x = yk, k = 1,2, . . . ,n, we have nν,xν
i
• (yk−y0) = 0 if

k = 1,2, . . . ,n−1 and nν,xν
i
• (yn−y0) = 1.

Every point x ∈ Sν can be written uniquely as a
convex combination x = ∑

n
k=0 λkyk and thus

x−y0 =
n

∑
k=0

λk(yk−y0).

Hence,
nν,xν

i
• (x−y0) = λn,

from which the propositions follow. Using these re-
sults it is easily verified that

Sν =
n⋂

i=0

Hν,xν
i
. (19)

We now use this to compute a set (ENSa
ν)
∗ such

that ENSa
ν ⊂ (ENSa

ν)
∗ ⊂ NSa

ν. Fix an Sµ ∈ NSa
ν and

let
{z1,z2, . . . ,zr}=Cν∩Cµ

and
{y1,y2, . . . ,ys}=Cµ \Cν.

Figure 2: Continuous piecewise affine Lyapunov function
computed for Artstein’s circles with the new algorithm.

Corresponding to the half-spaces Hµ,y j are the vectors
nµ,y j computed as above, but now for the simplex Sµ
and its vertices Cµ ⊃ {y1,y2, . . . ,ys}. Assume that for
any j ∈ {1,2, . . . ,s} we have

0 > nµ,y j
• fa(zi)+Ea,y

Cν∩Cµ,zi
‖nµ,y j‖1 (20)

for all i = 1,2, . . . ,r. Then, for an arbitrary convex
combination x = ∑

r
i=1 λizi, we have

nµ,y j
• fa(x) =

r

∑
i=1

nµ,y j
•λifa(zi)

+nµ,y j
•

(
fa(x)−

r

∑
i=1

λifa(zi)

)

≤
r

∑
i=1

λi

(
nµ,y j

• fa(zi)+Ea,y
Cν∩Cµ,zi

‖nµ,y j‖1

)
< 0.

In particular, because nµ,y j
• (x− zk) = 0 as shown

above, where zk ∈ Cν ∩Cµ corresponds to the vector
y0 in (18), we have

nµ,y j
• (hfa(x)+x− zk) = h

[
nµ,y j

• fa(x)
]
< 0

for all h > 0. Hence, hfa(x)+x /∈Hµ,y j for any h > 0,
which, by (19), implies hfa(x)+x /∈ Sµ for any h > 0.
Thus Sµ /∈ ENSa

ν.
For each a ∈ Aν we define (ENSa

ν)
∗ as those Sµ ∈

NSν that are not eliminated by this process. That is,
Sµ ∈ (ENSa

ν)
∗ if for all j = 1,2, . . . ,s the inequality

(20) fails to hold true for at least one i∈ {1,2, . . . ,r}.
Note that this is easily checked algorithmically. For a
visual illustration of the sets (ENSa

ν)
∗ see Fig. 3.

Returning to our example of Artstein’s circles,
this new algorithm easily generates a CPA Lyapunov
function for the system (8) in a few seconds after the
domains of f+ and f− have been fixed as D(f−) =
(−∞,0]×R and D(f+) = [0,∞)×R, see Fig. 2. With
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Figure 3: The simplex Sν is the convex combination of the 3 = n+1 vertices 1,3,4, i.e. Sν = co{1,3,4}, and Sµ1 = co{3,4,6},
and Sµ2 = co{2,3,5}. Clearly {Sµ1 ,Sµ2}⊂NSν. We consider three constant fa(x) on Sν: f1(x) =

⇀
a , f2(x) =

⇀
b , and f3(x) =

⇀
c ;

depicted by arrows. Since the vector fields are constant the sets ENSa
ν and (ENSa

ν)
∗ coincide. Now Sν ∩ Sµ1 = co{3,4} and

the half-space Hµ1,6, with co{3,4} at its boundary and containing Sµ1 , is depicted in blue. We have Sµ1 ∈ (ENS1
ν)
∗ because

f1(x) =
⇀
a points into Hµ1,6 for (some) x ∈ co{3,4} but Sµ1 /∈ (ENSa

ν)
∗ for a = 2,3 because f2(x) =

⇀
b and f3(x) =

⇀
c do not

point into Hµ1,6 for any x ∈ co{3,4}. Similarly, Sν ∩ Sµ2 = {3} and the (n− 1)-faces co{2,3} and co{3,5} of Sµ2 contain
Sν∩Sµ2 . The half-spaces Hµ2,5 (blue) and Hµ2,2 (red) are supersets of Sµ2 and with co{2,3} and co{3,5} at their boundaries,
respectively, are depicted. Now Sµ2 ∈ (ENS1

ν)
∗ because f1(x) = a points into both Hµ2,5 (blue) and Hµ2,2 for x at the vertex 3,

but Sµ2 /∈ (ENS2
ν)
∗ because f2(x) =

⇀
b does not point into Hµ2,5 and Sµ2 /∈ (ENS3

ν)
∗ because f2(x) =

⇀
c does neither point into

Hµ2,5 nor Hµ2,2.

the old algorithm or when D(f+) = D(f−) = R2 no
such CPA Lyapunov function exists and the algo-
rithm reports that the corresponding linear program-
ming problem is infeasible.

4 CONCLUSIONS

We presented a novel algorithm that uses linear pro-
gramming to parameterize continuous and piecewise
affine Lyapunov functions asserting strong asymp-
totic stability of equilibria for arbitrary switched sys-
tems, for which the same equilibria of the correspond-
ing differential inclusion is merely weakly asymptot-
ically stable. For the differential inclusion no such
Lyapunov function can exists. This algorithm is an
adaptation of an earlier algorithm for differential in-
clusions presented in (Baier et al., 2010; Baier et al.,
2012; Baier and Hafstein, 2014). Artstein’s circles
were studied and used as motivation for the new ap-
proach in the paper.
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