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Abstract: Collective decision-making systems (or ensembles) based on fuzzy logic have proven their effectiveness in a 
number of test and practical tasks. However, the problem of configuring the system and forming the main 
operators remains unsolved. In this paper is a study of the effectiveness of different sequences of applying 
optimization procedures for the formation of the main operators of a collective decision-making system based 
on fuzzy logic. The effectiveness of tuning schemes for a collective decision-making system is investigated 
using the problem of restoring the cryolite ratio and the content of calcium and magnesium fluorides. It is 
shown in the research that an effective choice of the sequence of applying optimization procedures for tuning 
and forming the main operators can significantly increase the overall efficiency of the system. 

1 INTRODUCTION 

Fuzzy rule-based systems (FRBS) are one of the most 
important application areas of fuzzy sets and fuzzy 
logic. These concepts were first proposed by the 
American scientist Lotfi Zadeh in 1965 (Zadeh, 
1965). As an extension of classical rule-based 
systems, FRBS are successfully applied to a wide 
range of problems in various fields of human activity 
(Chi et al., 1996), (Pedrycz, 2012). 

An FRBS allows us to implement a fuzzy 
inference, which is an algorithm for obtaining fuzzy 
conclusions based on fuzzy conditions or 
assumptions using the concepts of fuzzy logic. This 
process combines all the basic concepts of fuzzy set 
theory: membership functions, linguistic variables 
(LV), fuzzy logical operations, and methods of fuzzy 
implication and fuzzy composition. 

The work (Polyakova et al., 2019) first examined 
the usage of FRBS as a collective decision-making 
method (CDMM). We have also investigated the 
performance of hybrid approaches, which combine 
FRBS and final solution building using mean (mean) 
and weighted mean (Wmean), titled “FRBS + 
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Wmean” (or “FLS + Wmean”). The proposed scheme 
for forming the ensemble output based on fuzzy logic 
systems (FLS) can significantly improve the quality 
of decisions in classification and regression problems 
(Polyakova et al., 2017). 

A number of successful studies show that the 
effective selection of individual parameters of a fuzzy 
system can improve the efficiency in solving 
classification and regression problems. Thus in 
(Cord, 2001), (Lee, 1994), algorithms were proposed 
for automating the stage of forming a knowledge 
base. In (Delgado et al., 2001), (LóPez et al., 2013), 
(Chien et al., 2002) and (Hoffmann et al., 2001) 
effective learning algorithms, based on various 
intelligent information technologies were proposed 
for both the LV structure and the parameters of fuzzy 
models. 

The results of many experiments, for example 
(Mazurowski et al., 2010) and (Grochowski et al., 
2004), show that the use of instance selection 
algorithms allows us to obtain various compromises 
between data compression and the accuracy of 
problem solving, depending on the acceptability 
threshold and characteristic relationship parameters. 
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In some cases, it is possible to achieve higher 
compression and higher accuracy than the algorithm 
for selecting an individual instance (Millán-Giraldo et 
al., 2013). 

Despite the high accuracy of “FRBS + Wmean”, 
the practical implementation of the approach is 
complicated by a large number of hyper-parameters 
and ways for their tuning. When solving hard data 
analysis problems, it is important not only to choose 
effective parameter values, but also to use appropriate 
order of their adjustment. 

This paper provides a study of the influence of the 
order of the application of the FRBS design stages on 
the accuracy of solving a problem.  

We have chosen the problem of identifying the 
cryolite ratio (CR) as a benchmark data analysis 
problem (Yurkov et al., 2002), (Jinhong et al., 2008). 
This problem is real-world industrial and is associated 
with a large number of uncontrolled and unmeasured 
factors. Thus, it can be considered hard and suitable 
for the purposes of our research. 

The explanatory factors do not always fully 
represent the resulting variable and are not always 
measured accurately enough. At the same time, in 
order to predict the cryolite ratio, metallurgical 
industry experts have developed a specialized model 
that takes into account technological and chemical 
dependencies between explanatory factors and the 
resulting variable. 

The study shows that the appropriate choice of 
system parameters and of the order of their formation 
allow designing effective systems of an ensemble 
inference and improving industrial models obtained 
by industry specialists. 

The following sections describe in detail the 
proposed approach, experimental results, conclusions 
and future plans. 

2 PREDICTIVE MODELLING 

2.1 Collective Decision-Making System 
based on Fuzzy Logic “FRBS + 
Wmean” 

The general scheme of the fuzzy logic based system 
for ensemble decision making “FRBS+Wmean” is 
presented in Figure 1. 

 

Figure 1: The general scheme for ensemble inference using 
“FRBS+Wmean”. 

“FRBS + Wmean” is formed in a way to 
effectively combine algorithms (so called “agents”) 
into an ensemble. The FRBS makes a decision on the 
choice of a classifier or regression algorithm based on 
the distance of the test object to the objects of the 
training sample and on the success of the classifier at 
the nearest object. 

The original sample is divided into 3 parts: 
training, test and validation. Agents are trained 
independently using the training set. We use the test 
set for estimating the effectiveness of agent training 
and training the fuzzy rule base in FRBS. Finally, the 
validation set is used for the assessment of the 
efficiency of the whole system. 

The FRBS uses the following three input and one 
output linguistic variables: 

1. Distance: the distance of the test sample object 
to the nearest point from the training set. 

2. Error: the difference between the output of the 
model (agent) on the test sample and at the nearest 
point of the training set (agent error on the sample 
object). 

3. Weight_agent: agent's weight that is calculated 
based on agent errors on the training set. 

4. Confidence: the degree of confidence in the 
agent, which is calculated using a fuzzy inference 
procedure, taking into account 3 inputs. 

The output of the FRBS for each sample object 
from the test set is the degree of confidence in the 
agent. Fuzzy inference of the degree of confidence is 
evaluated for each agent. One or more agents with the 
highest confidence are selected. 

The reference set is a subset of the training set 
(nPoints of instances from the training set without 
taking into account the value of their output) 
(Polyakova et al., 2019). In an ensemble output using 
a fuzzy logic system for a point from the test set, one 
(in the case of nPoints = 1) or several nearest points 
(in the case of nPoints> 1) is determined not from the 
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training set, but from the reference one. Depending on 
how close this point is to an object from the test set 
and how well the algorithm copes with it, the agent’s 
confidence in this test point is determined. 

One or more decision-making agents are selected 
for each point of the test set using FRBS. If there are 
several agents, then the final decision is made by 
averaging. 

2.2 About of Designing a “FRBS + 
Wmean” 

A distinctive feature of FLS is that the model is built 
on the principle of a "white box". FLS allow you to 
coordinate and combine the experience of experts, 
and are also able to model nonlinear functional 
dependencies of arbitrary complexity. Therefore, the 
use of “FRBS+Wmean” as a method of collective 
decision-making in this work will significantly 
improve the quality of decisions made, as well as their 
interpretability. 

The effectiveness of the formation of a fuzzy 
system for ensemble output depends not only on the 
composition of the ensemble and the examples on the 
basis of which each agent is trained, but also on the 
type of intra-collective communication (collective 
inference, selection of agents into the ensemble, and 
distribution of resources between agents). Each of the 
design stages of “FRBS + Wmean” requires tuning 
and optimization of the corresponding parameters. 

For effective options for forming ensembles, each 
stage requires the use of powerful and universal 
adaptive-type optimization procedures. For this, the 
use of adaptive stochastic algorithms for solving 
global optimization problems of algorithmically 
defined functions of mixed variables, in particular, 
evolutionary algorithms (EA), is proposed. An EA 
allows you to automatically select a configuration and 
configure the parameters of collective decision-
making models based on fuzzy logic. 

In this work, rule base is formed via two stages 
(Polyakova et al., 2019). At the first stage, a 
population of different rule bases (RB1) is formed 
using a genetic algorithm. The most effective rule 
bases are selected and merged into a single RB1 base. 
At the second stage, effective rules are selected from 
RB1 in order to form the most accurate base with the 
minimum number of rules using the two-criteria 
Nondominated Sorting Genetic Algorithm NSGA-II. 
The resulting base is RB2. 

When selecting a final set of fuzzy rules, the 
following criteria are used accuracy, expressed by the 
mean squared error of the rules (MSE) for the 

regression problem, and complexity, evaluated as the 
number of selected rules. 

An example of the resulting RB2 Rule Base is: 
1) IF error - high THEN confidence – low; 
2) IF error - medium AND distance – close 

AND weight_agent - high THEN confidence – high; 
3) IF error - medium AND distance – medium 

THEN confidence – medium; 
4) IF error - low AND distance – close AND 

weight_agent - high THEN confidence – high; 
5) IF error - low AND distance – close AND 

weight_agent - low THEN confidence – medium; 
6) IF error - low AND distance – medium 

AND weight_agent - high THEN confidence – high; 
7) IF distance – far THEN confidence – low. 
For optimizing the parameters of the membership 

functions LV (Distance, Error, Weigh_agent, nAgent, 
nPoints) the differential evolution (DE) algorithm is 
applied (Polyakova et al., 2019). The membership 
function is triangular. 

As an evolutionary procedure for the automated 
selection of the training set samples to the reference 
set (NP), a genetic algorithm of unconstrained single-
objective optimization with a special encoding 
scheme is used. 

For the automated formation of an ensample (Ag), 
the NSGA-II algorithm is proposed. This algorithm is 
able to automate the formation of the composition of 
the ensemble, thereby saving computing resources 
(by minimizing the number of agents), and to solve 
the assigned problems efficiently (by increasing the 
ability to generalize the result). 

In this paper, we consider the dependence of the 
quality of the problem solution on the sequence of the 
following design and optimization stages of “FRBS + 
Wmean”: formation of the ensemble formation (Ag), 
selection of the reference set (NP), formation of the 
rule base (generation (RB1) and selection of rules 
(RB2)), the formation of linguistic variables (LV) 
(Polyakova et al., 2019). 

2.3 Forming of the Ensemble 
Composition for “FRBS+Wmean” 

Generally, most problems of technological 
production have their own specifics. When solving 
them, specialized mathematical models are often 
used. However, each such model is intended only for 
solving a specific type of problem and is not 
applicable (or “not replicated”) to others. The use of 
such models often does not provide the desired 
efficiency, but they can carry some additional and 
important information. 
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When using a CDMM, the effectiveness depends 
on the set of relevant agents and their diversity. From 
the substantive point of view, in the CDMM each 
agent should improve or at least not worsen the value 
of its utility function, or the system as a whole should 
improve the quality of solving the general problem. 
In accordance with this, it is necessary to include such 
mathematical models as an agent in the ensemble. 

In this paper, to solve the problem of modelling 
the technological process of metallurgical production 
(restoration of the cryolite ratio), it is proposed to 
study the following two schemes: 

1) Agent training is based on the available data set 
for solving the CR recovery problem. A comparative 
analysis of the effectiveness of an ensemble based on 
fuzzy logic FRBS + Wmean and a model available in 
aluminium production is performed. 

2) The training of agents is performed using the 
same inputs as in Scheme 1, but the model from 
production is included in the ensemble.  

Accordingly, it is additionally proposed to 
investigate the situation (Scheme 3) when agents are 
trained on the basis of the available data set for 
solving the problem of restoring the cryolite ratio and 
on the basis of the model’s output from production, 
i.e. the model output is also the agent input. The 
model from production is also part of the ensemble as 
a separate agent. 

3 DATABASE DESCRIPTION 

The electrolyte composition is determined by the 
values of three parameters - the cryolite ratio and the 
content of calcium and magnesium fluorides. 

The electrolyte composition is adjusted based on 
the selection of the optimal CR: the ratio of 
aluminium fluoride to sodium fluoride (NaF / AlF3). 
The complexity of the problem facing analysts is that 
the CR is not a measurable quantity, but is calculated 
from the measured amounts of fluorides of sodium, 
aluminium, calcium, magnesium and lithium. The 
analysis of crystallized samples taken from the baths 
is performed by chemical or X-ray diffractometric 
methods in laboratory conditions after sampling 
(Zaloga et al., 2016), (Chen et al., 2017). 

The disadvantage of diffractometric method for 
determining the CR is that the selection of samples of 
the electrolyte for analysis of its chemical 
composition is usually carried out once every three 
days, which is insufficient from the point of view of 
the efficiency of control, since the value of the 
cryolite ratio can vary significantly over several 
hours. In this regard, the electrolyzer for a long time 

works with the deviation of the parameters from the 
set values, which entails a decrease in the 
performance indicators of his work (Wade et al., 
2016). 

In this paper, the problem was set to simulate the 
process of determining the cryolite ratio to forecast 
the values of the indicator at the moments when it is 
impossible to take readings from the equipment 
directly (true values). 

Data was provided by an aluminium smelter. In 
the problem of predicting the cryolite ratio, we used a 
feature space with nine features and 2193 
measurements. 

The accuracy of each agent in the training sample 
is calculated on the basis of the efficiency criterion - 

Concordance Correlation Coefficient (CCC) c   (1): 
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where x  and y  are average values of two 
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 are dispersions. 𝜌  is the 
correlation coefficient between two variables. 

The CCC shows the degree of agreement between 
the studied variables. The concordance coefficient 
takes a value in the range from 0 to 1: 

- if there is no correlation between the studied 
variables, it is equal to 0; 

- a coefficient equal to 1 denotes full agreement of 
the studied variables. 

This coefficient was chosen as a criterion of 
efficiency in order to conduct a comparative analysis 
of efficiency with other scientific papers in which the 
task of predicting indicators of technological 
production for aluminium was solved. 

4 EXPERIMENTS AND RESULTS 

To solve the CR recovery problem, a comparative 
analysis of the effectiveness of the three proposed 
schemes for an ensemble based on FRBS with a 
model available in aluminium production is 
performed: 

- agents are trained based on the available data set 
to solve the problem of CR recovery; 

- agents are trained using the same inputs as in 
scheme 1, but the model from production is included 
in the ensemble; 
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- the model from production is also part of the 
ensemble as a separate agent. However, additional 
training for agents is based on the model’s exit from 
production. 

To configure the FRBS, it is necessary to solve the 
problem of setting parameters for each design phase 
of “FRBS + Wmean” separately. Accordingly, the 
problem arises of choosing effective options for the 
ensemble. These require the use of powerful and 
universal adaptive-type optimization procedures.  

For each stage of “FRBS + Wmean”, the 
corresponding optimization procedures were 
launched with the following resources: 

- 100 individuals, 100 generations; 
- FRBS parameters: nPoints = 1, nAgent = varies 

from 1 to 5. 
The initial sample was divided into three parts: 

learning comprises 60% of the total number of points, 
validation - 25%, and testing - 15%. 

The criterion of efficiency is the concordance 
correlation coefficient (Pvalid is the accuracy on the 
test sample, and Ptest is the control); 

The following algorithms presented in the Scikit-
learn library (Python) were selected as methods in the 

ensemble: the ensemble of decision trees using 
gradient boosting (GBR); algorithm of k-nearest 
neighbours for the regression problem (KNR); linear 
regression, which is based on the metric L1 (LLasso); 
linear regression, which is constructed by the method 
of least squares (LR); ridge linear regression, which 
is based on the L2 metric (LRidge); artificial neural 
network (multilayer perceptron) (MLP), network 
structure: 200x100x50x20 neurons on the 
corresponding layers, sigmoidal activation function; 
the ensemble of decision trees by the method of 
"random forest" (RFR), the number of trees in the 
ensemble: 10, 50, the depth of the tree: 18, the number 
of signs used by one tree: 100; the Support Vector 
Regression (SVR) method. 

Table 1 presents a study of the effectiveness of 
FRBS based on Scheme 1 depending on different 
sequences of the following optimization stages: 
formation of the ensemble formation (Ag), selection 
of the reference set (NP), generation (RB1) and 
selection of rules (RB2), formation of linguistic 
variables (Linguistic variables, LV). 

Table 1: A study of the effectiveness of different sequences of the design and formation stages of FRBS based on Scheme 1. 

 Optimization stage 

Scheme №1 
1 2 3 4 5 

Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest

Stages of formation 
and optimization of 

FRBS 

Best agent 0.533 0.508 0.533 0.508 0.533 0.508 0.533 0.508 0.533 0.508

Worst agent 0.348 0.339 0.348 0.339 0.348 0.339 0.348 0.339 0.348 0.339

Medium 
Agent 

0.477 0.459 0.477 0.459 0.477 0.459 0.477 0.459 0.477 0.459

Mean 0.501 0.481 0.501 0.481 0.501 0.481 0.501 0.481 0.501 0.481

Wmean 0.500 0.482 0.500 0.482 0.500 0.482 0.500 0.482 0.500 0.482

RB1, RB2, LV, Ag, NP 

+Wmean 

0.531 0.441 0.531 0.441 0.549 0.434 0.528 0.481 0.548 0.483

Ag, RB1, RB2, LV, NP 0.528 0.481 0.546 0.490 0.546 0.490 0.547 0.490 0.546 0.481

Ag, NP, RB1, RB2, LV 0.528 0.481 0.547 0.484 0.528 0.481 0.528 0.481 0.528 0.481

RB1, RB2, LV, NP, Ag 0.542 0.465 0.542 0.465 0.549 0.472 0.549 0.472 0.528 0.481

NP, RB1, RB2, LV, Ag 0.554 0.499 0.555 0.497 0.555 0.497 0.559 0.491 0.528 0.481

NP, Ag, RB1, RB2, LV 0.540 0.471 0.528 0.481 0.541 0.485 0.541 0.485 0.541 0.485

LV, RB1, RB2, Ag, NP 0.541 0.464 0.541 0.464 0.541 0.464 0.528 0.481 0.545 0.489

Ag, LV, RB1, RB2, NP 0.528 0.481 0.541 0.487 0.544 0.483 0.544 0.483 0.550 0.483

Ag, NP, LV, RB1, RB2 0.528 0.481 0.546 0.491 0.548 0.491 0.548 0.491 0.548 0.491

LV, RB1, RB2, NP, Ag 0.521 0.505 0.540 0.521 0.540 0.521 0.540 0.521 0.540 0.521

NP, LV, RB1, RB2, Ag 0.556 0.489 0.556 0.489 0.556 0.489 0.556 0.489 0.556 0.489

NP, Ag, LV, RB1, RB2 0.559 0.480 0.528 0.481 0.544 0.497 0.545 0.481 0.545 0.481

 
 

Researching the Efficiency of Configurations of a Collective Decision-making System on the Basis of Fuzzy Logic

281



The combination of tuning procedures and the 
automated formation of FRBS does not significantly 
improve the results compared with the effectiveness 
of the best agent. The maximum accuracy can be 
achieved only with one sequence of tuning 
procedures: “LV, RB1, RB2, NP, Ag”. 

Using the sequence of steps “NP, LV, RB1, RB2, 
Ag”, it can be seen that the application of each 
subsequent stage of design and optimization of FRBS 
does not improve efficiency, but at the same time 
does not impair it. In all other cases, the use of various 
such sequences can increase the efficiency in 
comparison with when the optimization procedure is 
applied only at the first stage. Table 2 presents the 
results of a study of the effectiveness of the 
application of Scheme 2 in the design of FRBS. 

The greatest value of the performance criterion is 
achieved with the sequence of stages: “RB1, RB2, 
LV, Ag, NP”. However, as with the combination 
“LV, RB1, RB2, NP, Ag” in Scheme 1, the efficiency 
of solving the problem is higher in comparison with 

the best agent. Other combinations give even better 
results. 

The efficiency of the model available in 
production for solving the problem of modelling the 
technological process of metallurgical production, 
namely the recovery of CR is 54% in the control 
sample and 50% in the test sample. The maximum 
efficiency obtained on the basis of FRBS in Scheme 
2 is 67.6% for the test sample and 59.8% for the 
control one, which is a significant increase in the 
accuracy of solving the problem. 

Consistent application of the design and 
optimization stages of FRBS also improves the 
efficiency from stage to stage. 

Research is also conducted in a situation (Scheme 
3), whereby agents are trained on the basis of the 
available data set for solving the problem of CR 
recovery and on the basis of the model’s output from 
production, i.e. the model output is also the agent 
input. Additionally, the model from production is part 
of the ensemble as a separate agent.  

Table 2: A study of the effectiveness of different sequences of the design and formation stages of FRBS based on Scheme 2. 

 Optimization stage

Scheme №2 
1 2 3 4 5 

Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest 

Stages of formation 

and optimization of 

FRBS 

Best agent 0.546 0.509 0.546 0.509 0.546 0.509 0.546 0.509 0.546 0.509

Worst agent  0.348 0.339 0.348 0.339 0.348 0.339 0.348 0.339 0.348 0.339

Medium Agent 0.485 0.464 0.485 0.464 0.485 0.464 0.485 0.464 0.485 0.464

Mean 0.552 0.525 0.552 0.525 0.552 0.525 0.552 0.525 0.552 0.525

Wmean 0.545 0.522 0.545 0.522 0.545 0.522 0.545 0.522 0.545 0.522

RB1, RB2, LV, Ag, NP 

+Wmean 

0.641 0.584 0.641 0.584 0.676 0.598 0.676 0.598 0.676 0.598

Ag, RB1, RB2, LV, NP 0.587 0.560 0.587 0.560 0.587 0.560 0.587 0.560 0.587 0.560

Ag, NP, RB1, RB2, LV 0.587 0.530 0.606 0.484 0.623 0.499 0.623 0.499 0.623 0.499

RB1, RB2, LV, NP, Ag 0.697 0.585 0.697 0.585 0.697 0.585 0.697 0.585 0.697 0.585

NP, RB1, RB2, LV, Ag 0.672 0.506 0.672 0.506 0.672 0.506 0.689 0.510 0.689 0.510

NP, Ag, RB1, RB2, LV 0.632 0.520 0.587 0.530 0.617 0.492 0.617 0.492 0.611 0.484

LV, RB1, RB2, Ag, NP 0.612 0.580 0.663 0.521 0.663 0.521 0.587 0.530 0.587 0.530

Ag, LV, RB1, RB2, NP 0.587 0.530 0.587 0.530 0.587 0.530 0.587 0.530 0.587 0.530

Ag, NP, LV, RB1, RB2 0.587 0.530 0.587 0.530 0.587 0.530 0.587 0.530 0.587 0.530

LV, RB1, RB2, NP, Ag 0.640 0.490 0.632 0.531 0.632 0.531 0.664 0.523 0.587 0.530

NP, LV, RB1, RB2, Ag 0.642 0.467 0.631 0.478 0.631 0.478 0.631 0.478 0.587 0.530

NP, Ag, LV, RB1, RB2 0.669 0.509 0.587 0.530 0.587 0.530 0.587 0.530 0.587 0.530
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Table 3 presents a study of the effectiveness of 
incorporating the recovery model of CR from 
production into the ensemble and as an input to FRBS 
(according to scheme No. 3) with a different sequence 
of stages of design and optimization of FRBS. 

Based on the results obtained, it can be concluded 
that the sequence of stages of design and optimization 
of FRBS is important, since it can significantly 
increase the accuracy of the ensemble output as a 
whole. 

Furthermore, as in the previous two schemes, the 
sequence of steps “LV, RB1, RB2, NP, Ag” allows 
you to increase the efficiency of solving the problem 
and get a better solution than the best of the agents. 

It is also worth noting that in the sequence of steps 
“LV, RB1, RB2, Ag, NP”, when designing FRBS 

with a combination of mean output, each subsequent 
step in designing FRBS does not improve the 
solution. In addition, with a combination of the 
sequences of steps "RB1, RB2, LV, Ag, NP" with 
Wmean, each subsequent step increases the 
effectiveness of FRBS. 

The maximum value of the effectiveness of the 
solution to the CR recovery problem obtained on the 
basis of three schemes is 68.6% for the control sample 
and 61.5% for the test sample. 

In general, according to the results of the three 
cases, it can be noted that schemes are more effective 
than others if the fuzzy decision-making system is set 
up before the remaining operators: the choice of 
agents and the choice of the reference set.  

Table 3: A study of the effectiveness of different sequences of the design and formation stages of FRBS based on Scheme 3. 

Scheme №3 Optimization stage
1 2 3 4 5 

Stages of formation 

and optimization of 

FRBS 

 
Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest Pvalid Ptest

Best agent 0.687 0.577 0.687 0.577 0.687 0.577 0.687 0.577 0.687 0.577

Worst agent 0.298 0.340 0.298 0.340 0.298 0.340 0.298 0.340 0.298 0.340

Medium Agent 0.579 0.517 0.579 0.517 0.579 0.517 0.579 0.517 0.579 0.517

RB1, RB2, LV, Ag, NP +mean 0.652 0.560 0.652 0.560 0.695 0.571 0.667 0.572 0.692 0.575

+Wmean 0.671 0.557 0.671 0.557 0.656 0.564 0.667 0.572 0.690 0.574

Ag, RB1, RB2, LV, NP +mean 0.667 0.572 0.688 0.577 0.680 0.577 0.692 0.570 0.692 0.570

+Wmean 0.667 0.572 0.688 0.572 0.688 0.572 0.687 0.570 0.687 0.570

Ag, NP, RB1, RB2, LV +mean 0.663 0.559 0.692 0.563 0.692 0.563 0.692 0.563 0.693 0.563

+Wmean 0.667 0.572 0.692 0.570 0.693 0.570 0.693 0.570 0.693 0.570

RB1, RB2, LV, NP, Ag +mean 0.695 0.597 0.695 0.597 0.695 0.597 0.695 0.597 0.695 0.597

+Wmean 0.673 0.591 0.673 0.591 0.673 0.591 0.673 0.591 0.673 0.591

NP, RB1, RB2, LV, Ag +mean 0.716 0.544 0.711 0.552 0.714 0.552 0.586 0.599 0.586 0.599

+Wmean 0.704 0.560 0.704 0.551 0.704 0.551 0.704 0.555 0.667 0.572

NP, Ag, RB1, RB2, LV +mean 0.718 0.522 0.667 0.572 0.689 0.577 0.689 0.577 0.684 0.572

+Wmean 0.721 0.592 0.721 0.592 0.721 0.592 0.721 0.592 0.721 0.592

LV, RB1, RB2, Ag, NP +mean 0.720 0.603 0.720 0.603 0.720 0.603 0.720 0.603 0.720 0.603

+Wmean 0.724 0.591 0.724 0.591 0.724 0.591 0.724 0.591 0.724 0.591

Ag, LV, RB1, RB2, NP +mean 0.667 0.572 0.667 0.572 0.667 0.572 0.667 0.572 0.667 0.572

+Wmean 0.667 0.572 0.692 0.578 0.693 0.573 0.693 0.573 0.687 0.571

Ag, NP, LV, RB1, RB2 +mean 0.667 0.572 0.691 0.565 0.693 0.572 0.689 0.571 0.689 0.571

+Wmean 0.663 0.559 0.694 0.558 0.694 0.563 0.694 0.564 0.694 0.564
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Table 3: A study of the effectiveness of different sequences of the design and formation stages of FRBS based on  
Scheme 3 (cont.). 

LV, RB1, RB2, NP, Ag 
+mean 0.694 0.564 0.691 0.562 0.691 0.562 0.733 0.553 0.667 0.572

+Wmean 0.680 0.565 0.686 0.615 0.686 0.615 0.686 0.615 0.686 0.615

NP, LV, RB1, RB2, Ag +mean 0.723 0.600 0.722 0.605 0.724 0.596 0.721 0.596 0.667 0.572

+Wmean 0.719 0.557 0.723 0.574 0.725 0.601 0.725 0.601 0.725 0.601

NP, Ag, LV, RB1, RB2 +mean 0.723 0.606 0.667 0.572 0.681 0.555 0.675 0.580 0.675 0.580

+Wmean 0.711 0.543 0.682 0.612 0.682 0.612 0.682 0.612 0.682 0.612

 
For example, in each of the three schemes, the 

sequence of steps “LV, RB1, RB2, NP, Ag” allows 
you to achieve a better efficiency than the best agent. 

This effect can be explained by the fact that an 
efficiently tuned fuzzy system reduces the influence 
of “bad” agents and objects from the reference set by 
extracting useful solutions even from these objects. 
Also for configuring a fuzzy system, it is important to 
maintain diversity of agents and points of the 
reference set. 

When using the reverse order of the stages, the 
execution of Ag and NP is performed using the 
starting rule base and linguistic variables that are not 
optimal for the given problem. The diversity of agents 
and reference points is reduced, which leads to 
limitations in tuning the rule base and linguistic 
variables. 

5 CONCLUSION 

Thus, an ensemble output based on general machine 
learning methods allows you to achieve a result at the 
level of a model developed by industry experts. 
Moreover, the inclusion of such a model in the 
ensemble makes it possible to significantly increase 
the accuracy of the forecast. In addition, the inclusion 
of model data for training general machine learning 
models and the inclusion of the model in the ensemble 
makes it possible to further increase the accuracy of 
the forecast. 

For the successful formation of a collective 
decision-making system based on fuzzy logic, the 
schemes where the system core is formed first — the 
fuzzy decision-making procedure according to the 
schemes “LV, RB1, RB2” or “RB1, RB2, LV” – 
proved to be more effective, and then the reference 
set and set of agents are configured. In some cases, 
tuning the reference set and set of agents does not 
improve the performance of FRBS. 

However, tuning the system kernel from scratch 
requires a lot of computing resources. The problem 
can be solved by researching and developing a pre-
trained universal core of the system. Adaptation of the 
kernel to a specific problem could reduce the amount 
of computations required to configure the whole 
system for a specific problem. 
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